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ORDER STATISTICS OF VARIABLES

WITH GIVEN MARGINAL DISTRIBUTIONS

BY TOMASZ RYCHLIK*

Polish Academy of Sciences

We review some results on order statistics based on random variables with
given one-dimensional distributions. We present bounds on the distribution func-
tion of each order statistic and conditions on the marginals for attaining the
bounds. For identically distributed samples, we show sharp bounds for the ex-
pectation and variance of arbitrary function of a given order statistic and for the
expectation of an arbitrary X-estimate.

1. Introduction. Order statistics and functions of order statistics have
numerous applications in statistical inference (see, e.g., Balakrishnan and Co-
hen (1991), David (1981)). The theory has been developed mostly for the
standard model of independent identically distributed random variables, for
which order statistics have simple distribution functions and the limiting dis-
tributions with the rates of convergence for various sequences of order statis-
tics and parent distributions have been explicitly described (see Balkema and
de Haan (1978), Reiss (1989)). Asymptotic representations for order statistics,
especially extreme ones, were also intensively studied under various relaxations
of the independence assumption (see, e.g., Leadbetter et al. (1983)). Another
direction of research is devoted to formulas and recurrence relations for distri-
butions and moments of order statistics based on independent non-identically
distributed or even arbitrarily distributed random variables (cf. Balakrishnan
(1992) and Balakrishnan et al. (1992), respectively).

The aim of this paper is to summarize some results on order statistics
based on possibly dependent random variables X i , . . . , X n , with given one-
dimensional distribution functions F i , . . . , Fn, respectively. We will write X m : n

for the mth smallest order statistic and Fm:n for its distribution function. In
Section 2 we determine bounds on the distribution functions of each order
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statistic and present conditions in terms of marginal distributions for the exis-

tence of stochastically extreme order statistics, whose distributions attain the

bound, on the whole real axis. In Section 3 we first characterize all possible

distributions of each order statistic based on dependent identically distributed

random variables with a given marginal. Then we use the characterization to

obtain sharp bounds for the expectation and variance of an arbitrary measur-

able function of the order statistic. In Section 4 we establish accurate bounds

for the expectation of arbitrary i-estimates arising from an arbitrarily de-

pendent identically distributed sample. We also indicate some applications to

deterministic inequalities for ^-estimates and to robust statistics.

It is worth pointing out that the restrictive assumption of identical mar-

ginals in Sections 3 and 4 is essential and it cannot be trivially removed,

because standard transformations of arbitrary joint distributions onto copulas

generally do not preserve the order of variables. Observe finally that some

lower bounds follow immediately from upper ones and conversely by a simple

change of variables Yi = -X 2 , i = l , . . . , n , implying Ym:n = - X n + i _ m : n .

Consequently, we concentrate below merely on deriving upper bounds except

in Section 3, where the trivial transformation does not provide the opposite

bounds.

2. Bounds on Distribution Functions of Order Statistics. Two
well known pairs of bivariate random variables attaining the Frechet bounds

(cf. Frechet (1951)) also provide the stochastically largest and smallest maxi-

mum and minimum of variables with marginals JF\, F2:

max{FuF2} < F1:2 < min{F1 + F2,1},

F! + F2 - 1,0} < F2:2 < min{FuF2}.

These results can be generalized to the extremes of n > 2 random vari-

ables. The distribution function of the maximum attains the upper bound

min{i<\,..., Fn} (and that of the minimum attains the lower bound max{i<i,

. . . , Fn}) if Xi — F^ι(U), i — 1, . . . , n, for a random variable U uniformly dis-

tributed on [0,1]. Construction of the stochastically largest maximum, with

the distribution function attaining the lower bound m a x { ^ = 1 F{ - n + 1,0},

is less obvious. It was first presented by Mallows (1969) for [0, l]-uniformly

distributed variables and by Lai and Robbins (1976) for general marginals.

Tchen (1980) proved the existence of an infinite sequence of random variables

with given marginals such that every partial maximum is stochastically largest.

Theorem 1 provides an upper bound for the distribution function of an arbi-

trary order statistic and necessary and sufficient conditions for the existence

of a random sample with given marginals such that the bound is attained.
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THEOREM 1. (Rychlik (1995)). (a) If random variables Xu...,Xn have
distribution functions i*\,..., Fn, respectively, then

(1)

(b) Let x* stand for the upper end-point of the distribution function F* —
m™{^ΣΪ=iFiA}, and Pι(x*),...,Pn(x*), and P*(z*) for the jumps of Fu

. . . , Fn, and F* at x*, respectively. Then there exist random variables Xι,

. . . , Xn, and Xm:n on a common probability space, with distribution functions
F i , . . . , Fn, and F*, respectively, iff

< I „ (-co,,*) ( Σ f l ) - « , (2)

x*). (3)

IDEA OF THE PROOF, (a) We apply the identity

n 772—1 n

m i Γ m . n ( χ ) = Y" Fi(x) ~ V P{Xi n < X < Xm n) " Ύ] Fi.n(x), (4)
i=l i=l t=m+l

which follows directly from

ΐ = l i = l

(b) The proof is constructive. A closer analysis of (4) shows that Fm:n =
F* is possible iff

P(Xl:n = Xm:n < %* < Xm+l:n) = l

This property implies (2) and (3), and is used in the construction. First, we
take an ^-distributed random variable X* < x* and put X{ = X* for exactly
m variables among Xi,...,Xn. The choice of indices is random with the
distribution depending on the value of X*. Assumptions (2) and (3) enable
us to make m coordinates equal to X* and to preserve marginal distributions.
The remaining X{ are distributed on [z*,+oo) according to the respective
conditional F{. I

COROLLARY 1. (cf. Lai and Robbins (1976)). For any distribution func-
tions Fι,...,Fn, there exist random variables X1,..., Xn with marginals Fι,...,
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Fn, respectively, such that

COROLLARY 2. (Caraux and Gascuel (1992), Rychlik (1992)). For ev-

ery distribution function F and m < n, there exist identically F-distributed

random variables Xι,...,Xn such that

m

There are marginals for which stochastically smallest order statistics exist

and the bounds are tighter than (1) (e.g., a deterministic sample). There are

also marginals such that stochastically extreme order statistics do not exist.

For instance, take -XΊ, X2 and X 3 with the following marginal distributions:

P(Xτ = 1) = P(X1 = 3) = | ,

P(X2 = 2) = 1,

P(X3 = 1) = P(X3 = 3) = i

(see Rychlik (1995)). Then the joint distribution depends on a single parame-

ter p = P(X\ = X3 = 1) < \ and X2:3 — 1,2 and 3 with probabilities p, 1 - 2p

and p, respectively.

From now on we assume that the X{ are identically distributed.

3. Bounds on Expectations and Variances of Functions of Order
Statistics. This section contains a summary of Rychlik (1994).

THEOREM 2. There exist identically distributed random variables X\,...,

Xn such that X\ and Xm-.n have distribution functions F and Fm:n, respec-

tively, iff

maxio, -—~ \ < Fm.n < mini— F, l) (5)
\ n - m + lj~ \m ) v y

and
^ T < « F-α.s. (6)

IDEA OF THE PROOF. Inequalities (5) are special cases of (1) and the

analogous lower bound. That (6) is also necessary follows from

n

F (r) _ F f?Λ < V ^ P(Ή <r X — X- < TΛ < n\F(r\ —
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Assuming (5) and (6), we construct X\,... ,Xn as follows. Define two distri-
bution functions

nF - Fm:n -
= max < 0,

m

:n-m+l\
— n )

. / nF - Fm:n \
= mm < — , 1 > .

{ m-1 J

Then Gi < Fm:n < G2. Put Xi:n = G ^ t / ) , / ^ ( t O or G '^ ίJ ) for i less
than, equal to, or greater than m, respectively, where U is a random variable
uniformly distributed on [0,1]. Finally, set X{ by a random ordering of Xz:n,
i = 1,..., n, so that all orderings are equally probable. I

As a consequence of Theorem 2, we can replace the problems of finding
extremes of the expectation and variance of an arbitrary function h of a given
order statistic by finding extremes of the following functionals

f+oo

h(x)dFm:n(x), (7)/
J—

r+oo

inf / (h(x)-c)2dFm:n(x), (8)

respectively, with respect to Fm:n £ Tm:n, which denotes the family of dis-
tribution functions determined by (5) and (6). These latter problems can be
further simplified once we prove that the extremes are attainable on the set of
extreme points of Tm..n, which have a particularly simple form for continuous
marginal distribution functions F.

THEOREM 3. Tie extreme values of (7) and (8) over J^mm are attained at
extreme points oΐTm.n.

We now describe the extreme points. For a given Fm:n £ Tm-.n, let

A= \xeR: m a x ί o , n F ( x ) ^ m + 1 \ < Fm:n(x) < min {—JP, l j ) ,

and define A~ similarly, using the left-continuous versions of the functions.
Then A Π A~ is an open set, i.e., a possibly empty and at most countable
union of disjoint open intervals, Af) A~ = Uj£j(αj,bj), J C N, and AAA~ C
{ύj.bj : j e J}.

THEOREM 4. A distribution function Fm:n is an extreme point of Tm:n iff
the measure of every set

[αj,bj]n(Au A-)n | o < ΪZzp- < n | , j e J,
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with respect to F either equals 0 or is concentrated at a single point.

COROLLARY 3. If F is continuous, then Fm:n is an extreme point oΐTm:n

iff

\JL A.

= 0 or n on A F- α.s.

IDEA OF THE PROOF OF THEOREMS 3 AND 4. In the proof of Theorem 3

we use the fact that the set of probability densities {dFJ^n : Fm:n G Tm:n] is

compact in the weak* topology of the class of F-essentially bounded functions

and so are the subsets on which convex functionals are maximal. The extreme

points of the subsets satisfy the statement. For the supremum of the variance

we also need a version of the minimax theorem. In the proof of Theorem 4 we

merely apply the definitions of Tmxn and extreme points. I

Usually, given a fixed function Λ, we are in position to guess immediately

the shapes of the extreme densities that yield the extremes of (7) and (8). The

precise determination of solutions may pose only numerical problems. Some

applications of Theorems 3 and 4 are given in Rychlik (1994).

4. Bounds on Expectations of L-Estimates. Linear combinations
are the most popular functions of order statistics. Many examples and appli-

cations are presented by Balakrishnan and Cohen (1991). Asymptotic expan-

sions for the case of independent identically distributed random variables are

given in Helmers (1982). Dropping the assumpion of independence, we have

THEOREM 5. (Rychlik (1993a)). if X i , . . . , X n have a common distribu-

tion function F, then

TciXi:n< ί F-\X)dC{x),E > c Xrn < I F~1(x)dC(x), (8)

£ ί Jo

where C is the greatest convex function such that

C(0) = 0 and

Inequality (9) is best-possible.

IDEA OF THE PROOF. First, we show that F i : n , . . . , Fn:n are the distribution

functions of X i : n , . . . , Xn-.n-, respectively, iff conditions

n

Σ Fi:n = nF and Fi:n > Fi+1:n, i. = 1,. . . , n - 1,
2 = 1
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hold, which are evidently necessary. The sufficiency is proved by the construc-
tion:

XJ = Fz~n(U) with probability -, ί , j = l , . . . , n , (10)
n

where U is uniformly distributed on [0,1]. It follows that

71 Λ+OO

E J 3 aXi:n = x
«=i J-°°

where
n

^2 Gi(x) = nx and 1 > Gi(x) > Gi+1(x) > 0, (11)
t = l

i — 1, . . . , n — 1, x G [0,1]. We replace the maximization of the expectation by

the pointwise minimizations of ΣΓ=i ciGi{%), x G [0,1], with constraints (11).

These are linear programming problems, whose solutions G*(x) satisfy

and so (9) holds. Moreover, since x ι-+ G*(x), i = l , . . . , n , are continuous

distribution functions on [0,1], we can let F ί : n = G* o F in (10) in order to

construct random variables attaining the equality in (9). I

Calculating the right-hand side of (9) is a simple matter, because C is

a piecewise linear function and the integral can thus be split into a linear

combination of Lebesgue integrals.

Theorem 5 has an application to the robust analysis of Z-estimates against

dependence of observations. It was shown in Rychlik (1993b) that the sample

mean is the most bias-robust i-estimate of location, whereas, for instance, the

sample median is very sensitive and, for some models, it is the most sensitive

one in a reasonable class of X-estimates. This contrasts sharply with the clas-

sical theory of robust estimation (see Huber (1981)), where only the marginal

distributions are violated, and with the common opinion of practitioners.

Another application of Theorem 5, stemming from ideas of Arnold (1980),

(1985), is the determination of bounds on the expectation of i-estimates under

various moment conditions. To illustrate the method, we assume that X{ are

identically distributed, with expectation μ and variance σ 2. Then, by (9) and
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the Schwarz inequality, we obtain

E T Ci(Xi:n -μ)< I C\x)[F-\x) - μ] dx
ί=i J o

= !\c'{x)-c][F-\x)-μ)dx
Jo

= Kσ,

where C denotes the derivative of C, and c = Σ " = 1 c, , and K2 = JQ[C'(X) -
c]2 dx. Here c is chosen so to minimize the integral. Note that equality holds
iff F-1 — μ and C — c are proportional, which, together with the variance
condition, imply

P (x , = xj = μ + f : [ C φ - c]) = i , j = l,...,n. (12)

The analogous sharp deterministic inequality

i=i \ n ΐ=i

for arbitrary numbers a?i,.. ,,a:n can be deduced by the following reasoning.
The urn model with n balls, labelled # i , . . . ,xn, and exhaustive random sam-
pling without replacement generates n identically distributed random variables
with expectation x and variance ^Σ^ = i (^ i — x)2- Therefore (13) holds and,
moreover, it becomes equality if we take the Xjh from (12).

Rychlik (1993c) proved several sharp bounds on the expectation of L-
estimates in terms of various parameters of location and dispersion of the
marginal distribution as well as their deterministic counterparts. This ap-
proach, based on metric projections onto convex sets, enables us to determine
tight bounds for monotone sequences and functions and more general inequal-
ities. The results will be published elsewhere.
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