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In this paper we characterize the operations on distribution functions that
are both derivable from functions on random variables defined on a common
probability space and induced point wise by functions from [0, l ] n into [0,1]. We
specify the class of functions on random variables from which the operations
are derived and show that it includes all order statistics; and we give a descrip-
tion of the n-place functions from which these operations are induced pointwise.
In addition, by way of illustration, we show that mixtures, which are induced
pointwise, are not derivable.

1. Preliminary Concepts and Results. We shall denote by V the
space of proper one-dimensional distribution functions (d.f.'s), i.e. the space of
functions F : R := [—00, +00] —» [0,1] that are nondecreasing, left-continuous
on R := (-00, +00) and such that

F(-oo) = 0 = Urn F(x) and F(+oo) = 1 = lim F(x).
X• OO X » + OOX

An n-operation φ on V is a mapping from Vn := V x V X X V into

X>, i.e., a mapping that assigns a d.f. to every ordered collection of n d.f.'s. If

Xi is a random variable (r.v.), we shall denote the distribution function of X{

by i^ , Fχn or d/(X2 ), whichever is more convenient.

DEFINITION 1.1. An n-operation φ on V is said to be derivable from a func-

tion on r.v.'s if there exists a Borel measurable function V from R into R that
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satisfies the following condition: For every collection of n d.f.'s F\, F2, , Fn in

£>, there exist a probability space (Ω,*4, P) and an n-dimensional random vec-

tor X = (Xi,X2? * * ,-ϊn) o n ( Ω M ? ^ ) whose one-dimensional marginals are

FuF2, -> Fn, respectively, i.e. df(Xi) = F{, and such that φ(FuF2, , F n )

is the d.f. of the r.v. V(Xi,X 2>' * * ?^n) whose value for any ω in Ω is given

byV(X1(ω),X2(ω),---,Xn(ω)).

Therefore, if φ is derivable, then

φ(FuF2, , Fn) = Fv{XuX2^Xn) (1.1)

for every choice of i<\, F2,- , F n in X>, where X = (Xi, X2, * *, -ϊn) has a

distribution function belonging to the Frechet class of ί\, F2, , Fn.

DEFINITION 1.2. An n-operation 0 on P is said to be induced pointwise

by an n-place function Φ from [0, l ] n into [0,1] if

φ(F1,F2, • ,Fn)(t) = Φ[F1(t),F2(t), --,Fn(t)]

for every choice of i*\, F2, , Fn in V and for every t in R.

To illustrate, the convolution Fi *F 2 * • Fn of n d.f.'s F\,F2, - ,Fn

is an n-operation on P which, since it may be viewed as the d.f. of the sum

of n independent r.v.'s, is derivable from the operation of addition. However,

since the value (Fι*F2*- -*Fn)(t) generally depends on more than the values

Fi(t),F2(t), - - , Fn(t), this operation is not induced pointwise by any n-place

function. In the other direction, the mixture cF\ + (1 — c)F 2, 0 < c < 1, of

two d.f.'s F\ and F2 is induced pointwise by the two-place function Φ(#,y) =

ex + (1 — c)y; but, as shown in Alsina and Schweizer (1988), this mixture is

not derivable from any binary operation on V.

In Alsina, Nelsen, and Schweizer (1993), the first and third authors of

this paper, in collaboration with C. Alsina, characterized the class of those

binary operations on V which are both induced pointwise and derivable from

functions on random variables. In this paper we generalize these results to

n-operations on V. We provide a complete characterization (see Theorem

2.2) of the functions V from which these n-operations are derived: this class

includes the usual order statistics, and, indeed, its elements may be viewed as

generalized order statistics. We also give a description (see Theorem 2.5) of

the n-place functions from which these n-operations are induced pointwise.

To present our results we need a number of preliminary notions which

are combinatorial in nature.
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The set of vertices of the unit n-cube [0, l ] n will be denoted by J n , i.e.

Jn := {(^1,^2, •• ,^n) I z% = 0 or 1,1 < i < n}. The set Jn with the usual

coordinate-wise partial ordering, given by (yu y2, ,yn) < (*i,22, , zn) if

and only if yι < Z{ for 1 < i < n, is a lattice which, as is well-known, is

isomorphic to the lattice ^P(n) of all subsets of n = {1,2, , n} - the vertex

(Zi->Z2,- '->zn) corresponding to the set of integers i for which Z{ — 1. We

let Tn denote the set of nondecreasing Boolean functions / from Jn onto

{0,1} and, for any / £ Tn, we let Sj denote the set {(zι,z2, ,2n) £ Jn \

f(zi,Z2?' ' ,Zn) = 1} Note that since / is onto {0,1}, the set 5/ is neither

empty nor equal to Jn. Clearly any / £ Tn is completely determined by the

(non-empty) set of minimal elements of Sf. This set is an antichain (any two

elements are incomparable) which corresponds to a non-empty antichain in

V(n). Since any non-empty antichain in Jn\{(0,0, , 0)} can be taken as the

set of minimal elements of the set Sf associated with a nondecreasing Boolean

function / from Jn onto {0,1}, it follows that Tn, endowed with the usual

pointwise partial ordering, is isomorphic to the set of non-empty antichains in

P(n)\{0}, ordered by set inclusion (for details, see Kleitman (1969)).

While we shall give a complete description of the case n = 3 in Section

3, it is instructive to consider an example from that case now. Suppose that

h is the nondecreasing Boolean function from J3 onto {0,1} for which Sh =

{(0,0,1), (0,1,1), (1,0,1), (1,1,0), (1,1,1)}. The set of minimal elements of

Sh is {(0,0,1), (1,1,0)} and the corresponding antichain in P(3)\{0} is σ =

{{3}, {1,2}}. Furthermore, it can be shown, Harrison (1965), that h is given

by the Boolean sum of products of the variables whose subscripts appear as

members of the elements of σ; so that here h(z\, z2, z%) — z% + z\z2. We shall

return to this example throughout this section and the next.

Now let Φ n be the set of all the functions Φ from [0, l ] n into [0,1] satis-

fying

(a) Φ is nondecreasing in each place on [0, l ] n and left-continuous in each

place on (0, l ] n ;

(b) Φ(0,0, , 0) - 0 and Φ(l, 1, , 1) = 1;

(c) Φ(^i, 22? * *»zn) equals either 0 or 1 at every vertex (21, z2, , zn) £ Jn.

Note that the restriction of Φ to Jn is an element of Tn.

DEFINITION 1.3. Two functions Φi and Φ2 in Φ n are said to be vertex-

equivalent, and we write Φχ£Φ2, if they take the same value at every vertex

of [0,1]-.



236 DERIVABLE OPERATIONS

Clearly £ is an equivalence relation on the set Φ n ; and it follows at

once from the above discussion that the quotient set Φ n / £ is in one-to-one

correspondence with Tn. Thus the preceding discussion yields:

LEMMA 1.4. The quotient set Φ n / £ is in one-to-one correspondence with

the set of non-empty antichains ofV(n)\{φ}.

2. Derivable Operations. We begin with the following:

LEMMA 2.1. If φ is an n-operation on V which is derivable from V : R™ -*

R and induced pointwise by Φ : [0,1]71 —> [0,1] then Φ belongs to Φ n .

PROOF. Since φ is induced pointwise by Φ, for all .Fi, !^, , F n in Z>,

and all t in R, we have

and since φ(Fι,F2, , Fn) is in X>, setting, respectively, t = —oo and t — +oo

yields Φ(0,0, , 0) = 0 and Φ(l, 1, , 1) = 1. It is also easy to see that Φ is

nondecreasing and left-continuous in each place.

Next, for any x in R, let εx be the unit step function in V defined by

θ, t<x,

and for any a?i,a?2, ,&n in R, consider the d.f.'s ε X l , ε X 2 , , ε X n . Since φ is

derivable from V, there is a probability space (Ω,*4, P) and a random vector

X = (X1,X2,- ,Xn) on (Ω,A,P) such that df(Xi) = εXi, whence X{ = x{

P-a.s. (i = 1,2, * ,n) . It follows that V(Xι,X2im m>,Xn) is a Γ v which is

equal to ^ ( # 1 , #2> , xn) P-a.s. Thus, for every t £ R,

*(£«,(*)>£*»(*)>•••»£*„(<)) - ^ V ^ Λ . ^-ϊί*) = εv(XuX2,...,Xn)(t). (2.1)

Now let (^i, 2:2, , zn) be an arbitrary vertex in Jn. Then it is clear that for an

appropriate choice of xι, x<2, , xn and t we have εXi(t) — Z{, i — 1,2, , n.

(Indeed, we may let X{ = 1 - Z{ and t = 1/2.) Thus, since ^v(arlfx2,-,a?n)(*) ^s

either 0 or 1, it follows that Φ belongs to Φ n . I

Using Lemma 2.1, we can now give a representation of the Borel measur-

able functions V from which the 0's are derived.

THEOREM 2.2. Let φ, V and Φ be as in Lemma 2.1. Let Φ/£ be the

equivalence class of Φ, let f be the nondecreasing Boolean function in Tn that
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corresponds to Φ/S, and let σ be the corresponding antichain in P(n)\{0}.

Then, for any x\,x2, , xn in R> we have

V(x\, x2, , a?n) = min{max{a:j | j G 5} | 5 G σ}. (2.2)

For example, if σ = {{3}, {1,2}}, then V(xι,x2,x3) = min{£3,max{zi,

PROOF. First consider the case when σ is a singleton, say σ = {5}. Then,

since f{zχ,z2, *# •? ^n) = 0 unless all the Z{ having subscripts in s are equal to

1, we have that

{ 0, if ί < max{xj | j G 5},

1, if t > maxjzj | j G 5},

from which, using (2.1), it follows that V(x\,x2,- * »^n) = max{#j | j G 5}.

Now suppose that σ has two elements, say σ = {51,52}. Then /(21,22? * *# ? ^n)

= 0 unless all the 2t having subscripts in 5i are 1, or all the Z{ having sub-

scripts in 52 are 1, whence Φ(εXl(t)yεX2(t), ,ε X n (ί)) is 0 as long as t is less

than or equal to the smaller of max{#j | j G 5i}, max{#j | j G 52} and

Φ(εXl(t),εX2(t),- - ,εXn(t)) is 1 for any larger t. It follows that in this case

V = (#i,£2, ,£n) = min{max{Xj \ j G 5i}, max{a;j | j G 52}}. Continuing

in the same fashion yields (2.2). I

Note: It is convenient to view the composite function Φ(εXl (/), εX2(t), ,

εXn(t)) as a "two-stage binary counter" and to consider the operation of this

counter as t increases from —00 to +00. For t < min{£i, x<ι, , xn}, we have

εXl(t) = εX2(t) = >>. = εXn(t) = 0, whence Φ(εXl(t),εX2(t),- ,εXn(t)) = 0. As

t increases the εXi 's begin to jump from 0 to 1 in an order which is determined

by the ordering of the X{. The resulting arguments of Φ form a chain from

(0,0, , 0) to (1,1, , 1) in Jn - which has maximal length whenever the X{

are distinct. Finally Φ(εXl(t),εX2(t), ,εXn(t)) jumps from 0 to 1 when this

chain first hits the set Sf.

COROLLARY 2.3. When Sj = {(1,1, , 1)}, i.e., when σ = {{1,2, , n}},

weh3LveV(xux2,'- ,Xn) = ma,x{xι,x2, - - ',xn}; when Sf - Jn\{(0,0, ,0)},

i.e., whenσ = {{1}, {2}, , {n}}, wehaveV(x1,x2, -,xn) = min{a:1,X2, ,

xn}; and when Sf = {(zuz2, ,* n ) G Jn I Zj - 1}5 i e., when σ = {{j}}, we

have V(xι,x2, - ,^n) = Xj

COROLLARY 2.4. When 5*/ consists of precisely the ordered n-tuples in

Jn with k or more Vs, 1 < k < n, i.e., when σ consists solely of the (£)
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subsets of n of cardinality k (so that s G σ if and only if card(s) = k), then

V(x\^X2, , xn)
 J S the kth order statistic x^y That is,

V(x1,x2r' m,Xn) = min{max{xj | j € s} | card(s) = k} =

We note that V(x\,X2, m,xn)
1S a n order statistic for the set {x\,X2, ,

xn} whenever σ is invariant under a permutation of the elements of n, e.g., in

cases (1), (11), and (18) of Table I. Whenever this holds for a proper subset m

of n, then we obtain the order statistics for the proper subset of {zi, x2, , xn}

whose elements have subscripts in m, e.g., in cases (2) and (15) of Table

I, where m = {2,3}. However, not all of the V's given in (2.2) are order

statistics for {#i, z 2 , , xn} or one of its subsets; for example, V{x\, x2, £3) =

:i,X2}} is not such an order statistic.

Using Theorem 2.2, we can obtain further information about the structure

of the n-place functions Φ. To this end, recall that if φ is derivable from V

and induced pointwise by Φ, then for every ra-tuple of d.f.'s i<\, F 2 , , Fn in

V and every t in R, we have

Φ[F1(t),F2(t),---,Fn(t)} = Fv(Xl<X2,...<Xn)(t),

where Xi,X2? *' '<>Xn a r e random variables defined on a common probability

space and such that df(X{) = i^ , i = 1,2, ,n. Considering the functions V

listed in Corollary 2.3, we first have - trivially - that:

If V(si,S2, ,*n) = 3j, then Φ[Ή(t),F2(t), ,Fn(t)] = Fj{t).

If V(xι,x2, ,xn) = max{a;i,£2, -->Xn}-> then as is well-known, Φ[iΓΊ(/),

• 2̂(0? " " ? Fn(t)] = Hn{t, /, , ί), where Hn is the n-dimensional joint d.f. of

Xi,X 2 , ->Xn Next, by Sklar's Theorem, Schweizer and Sklar (1983), Sklar

(1959), we have that

• , ̂ n(ttn)), (2.3)

where C n is the n-copula of Xi, X 2, * ? -^n? whence

Consequently, for any n-tuple of d.f.'s ί\, F 2 , , F n , there exists an n-copula

Cn having the property that Φ agrees with Cn on a "track in [0, l ] n from

(0, (V -, 0) to (1,1, ., 1)," specifically, on the set {(Fi(ί), F2(t), , Fn(t)) \

t 6 R } . Thus, following the terminology introduced in Alsina, Nelsen, and
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Schweizer (1993), we define an n-dimensional quasi-copula (briefly, an n — q-

copula) to be a function on [0, l ] n that agrees with some copula on every track

in [0, I f from (0,0, - , 0) to (1,1, , 1). Then we have that:

If V(x\,x2, , s n ) = ma,x{xι,x2, ,£n}? then Φ is an n - g-copula.

In the case V(xχ,x2, , # n ) = min{xi,x2, ,^n}, indeed, in all the re-
maining cases, we need to appeal to the Inclusion-Exclusion Principle. Specif-
ically, we have

THEOREM 2.5. Let φ be an n-operation on V which is derivable from

V : R71 -+ R and induced pointwise by Φ : [0, l ] n -+ [0,1]. Let Φ/£ be the

equivalence class ofΦ, let f be the nondecreasing Boolean function in Tn that

corresponds to Φ/S, and let σ be the corresponding antichain in P(n)\{0}. Let

Fi? ^2, iFn be any collection ofn d.f Js in V, and for s C n, let V{(s) = Fi(t)

if i G s and V{(s) = 1 if i £ s. Finally, let Uk(cr) be the collection of all ('£')

unions ofk elements of σ. Then there exists an n-dimensional copula Cn such

that

M
Φ[F1(t),F2(t), ,Fn(t)] = Σ(-l)k+1 Σ Cn(^),^(5),...,t;n(β)).

k=l seUk(σ)

(2.4)

Thus, on the track {(Fι(t), F2(t), , Fn(t)) \ t e ΈL}, Φ agrees with the linear
combination ofCn and its margins given by the right-hand side of (2A).

Note that the collection Uk(σ) is a multiset, that is, it may have repeated

elements; e.g., if σ = {{1,2}, {1,3}, {2,3}}, then U2(σ) = {{1,2,3}, {1,2,3},

{1,2,3}}.

PROOF: From Definition 1.1, we know that there exist a probability

space (Ω,*4,P) and an n-dimensional random vector X = {Xι,X2, -,Xn)

on (Ω,*4, P) whose one-dimensional marginals are F\,F2, - , Fn respectively.

Let Hn denote the n-dimensional d.f. given by Hn(xι,x2, -,xn) — P[X\ <

xuX2<X2,~',Xn< Xn] Since Φ[Ji(ί), F2{t), , Fn(t)] = Fv(Xuχ2^Xn)(t)

<ιτιdV(X1,X2, ,Xn) = min{max{Xj | j € s} \ s £ σ), we have Φ[JF\(/), F2(t)

'~,Fn(t)] = PtV.eσίΛjeJ^"^- 0 0 ^)]}]- ApP^ng t h e Inclusion-Exclusion
Principle now yields

Hn{uι{s),u2{s), ,un{s)),
k=l s£Uk(σ)
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where Ui(s) = t if i £ s and U{(s) = +00 if i ^ s. Invoking (2.3) now yields
(2.4). I

To illustrate (2.4), if σ = {{3}, {1,2}}, then |σ| = 2, so that Uι(σ) = σ

and C/2(σ) = {{1,2,3}}. Thus

t), F2(t)J F3(t)} = C3(l, 1,

-C3(F1(t),F2(t),F3(t)),

which is equal to P[X3 < t or (ΛΊ < ί and X2 < 01? a s ^ should be, since

V(a?i,a?2ĵ 3) = min{a:3,max{xi,X2}} (See case (14) in Table I.)

On specializing Theorems 2.2 and 2.5 to the case n = 2, we obtain the
principal result of Alsina and Schweizer (1988) as the following:

COROLLARY 2.6. Suppose that φ is a binary operation on V which is
derivable from V : R —» R and induced pointwise by Φ : [0,1]2 —> [0,1].
Then precisely one of the following holds:

(a) V(x,y) = max{£,t/} and Φ is a quasi-copula, i.e., for any Fχ,F2 6 V,
there exists a copula C2 such that Φ(F1(t),F2(t)) = C2{F1{t),F2{t)) for
all t in R;

(b) V(x,y) = min{x,y} and Φ is the dual of a quasi-copula, i.e., for any
F\,F2 e V, there exists a copula C2 such that Φ(F1(t),F2(t)) = F^t) +

F2{t) - c 2 ( i ? i ( t ) , F 2 ( 0 ) f o r Ά11 t i n R ;

(c) V(x, y) — x and Φ(i/, v) = u; or

(d) V(x, y) = y and Φ(^, v) = v.

3. The Case n = 3. In this section, to illustrate the situation relat-
ing the antichains σ, the Borel-measurable functions V : R —> i2, and the
n-place functions Φ : [0, l ] n —> [0,1], we present the case n — 3 in detail.
The results for the 18 non-empty antichains of 7?(3)\{0} appear in Table I.
In the first column, we list the antichains; in the second column the func-
tions V] and in the third column, for any F\,F2,Fz in P, we give the values
Φ(Fι(t), F2(t), Fs(t)) in terms of the 3-copula C3 with which Φ agrees on the
track {(Fi(f),F2(t), i^ί*)) I t € R}. Furthermore, x V y = max{z,y} and
x Ay = { }
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Table I. The case n = 3

case antichain V(x,y,z) Φ(*Ί(ί)> F2(t),F3(t)) = Φ(α,6,c)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

{{1,2,3}}

{{2,3}}

{{1,3}}
{{1,2}}

{{1,2},{1,3}}
{{1,2},{2,3}}
$SΛ Q\ JO Q\\
I 1 l O 1 1 u> O [ ]

{{1}}
{{2}}
,{{3}}

I 1 l Z [ 1 li O 1

{2,3}}

{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}

{{2},{3}}
{{1},{3}}

{{1},{2}}
{{1},{2},{3}}

(x

(x

(x

(X

x V y V z

y V z

xy z

x V y

V y) A (x V z)

yy)A(yyz)

y z)A(yy z)

X

y

z

V y) A (x V z)

Λ(y V z)

xA(yyz)

yA(χyz)

z A (x V y)

y Az

x Az

x Ay

x Ay A z

C
3
(a,b,c)

C
3
(l,6,c)

C
3
(α,l,c)

C
3
(α,6,l)

C
3
(α, 6,1) + C

3
{a, 1, c) - C

3
(a, 6, c)

C
3
(α,6,l) + C

3
(l,6,c)-C

3
(α,6,c)

C
3
(α,l,c) + C

3
(l,6,c)-C

3
(α,6,c)

α

6

c

C
3
(α,6,l) + C

3
(α,l,c)+

C
3
(l,6,c)-2C

3
(α,δ,c)

α + C
3
(l,6,c)-C

3
(α,6,c)

6 + C
3
(α,l,c)-C

3
(α,6,c)

c + C
3
(o,δ,l)-C

3
(α,6,c)

6 + c-C
3
(l,6,c)

a + c- C
3
(α, l,c)

o +6-C
3
(α,6,1)

α + 6 + c - C
3
(α, 6,1) - C

3
(o, 1, c)-

C
3
(l,δ,c)+C

3
(α,6,c)

4. Concluding Remarks and Open Problems.

1. Let ci, c2, , cn be such that 0 < cz < 1 and cλ + c2 H h cn = 1,

and let Mn : [0,1]71 -> [0,1] be defined by

Mn(zuz2, -- ,zn) = c1z1 + c2z2 + + cnzn.

It is not true that Mn{zι,z2, - ,zn) equals either 0 or 1 at every vertex of

( ^ i ^ 2 r " ^ n ) € Άi And, by Lemma 2.1, it follows from this simple obser-

vation that mixtures of d.f.'s are not derivable from operations on random

variables defined on a common probability space.

2. In Alsina and Schweizer (1988) a two-dimensional quasi-copula that

is not a two-dimensional copula was explicitly exhibited. Using this quasi-

copula, it is easy to construct n-dimensional quasi-copulas that are not copulas.

Consider first the case n = 3. Let Φ be the two-dimensional quasi-copula
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constructed in Alsina and Schweizer (1988), let Φ' be the mapping from [0,1]3

onto [0,1] given by

Φ'(x,y,z) = zΦ{x,y),

and note that, since Φ'(z,y, 1) = Φ(#,y), Φ' is not a 3-copula. Now let B be

any track in [0,1]3 from (0,0,0) to (1,1,1). The projection β of B onto the

zy-plane is a track in [0,1]2 from (0,0) to (1,1); and since Φ is a quasi-copula,

there exists a copula Cβ that coincides with Φ on β. By Theorem 6.6.3 of

Schweizer and Sklar (1983), the mapping Cβ from [0,1]3 onto [0,1] given by

is a 3-copula. Clearly Cβ and Φ' agree on i?, hence Φ' is a 3-quasi-copula.

In general if, for any positive integers m and n, Cm is an ra-copula and

Cn is an n-copula, then again by Theorem 6.6.3 of Schweizer and Sklar (1983),

the mapping C m + n from [0, l ] m + n onto [0,1] given by

is an (m + n)-coρula. A simple extension of the above argument then shows

that if Φ n is an n-quasi-copula (n > 2) and Cm is an m-copula, then the

mapping Φ m + n from [0, l ] m + n onto [0,1] given by

Φ m + n ( x i , , Xm+n) = Cm(a?i, , £ m ) Φ n ( £ m + i , , Xm+n)

is an (m + n)-quasi-copula but not an (m + n)-copula. (Note that if m = 1,

then necessarily Cm{z) — z.)

3. The number of order statistics of {Xi,X2r " i^n} a nd its subsets

is known to be n2n~1. The problem of determining the number of derivable

n-operations on V is equivalent to the problem of determining the number of

nondecreasing Boolean functions from Jn onto [0,1]. This problem dates back

to Dedekind. It is known that for n = 1 through n — 1 these numbers are 1, 4,

18, 166, 7579, 7828352 and 2414682040996, respectively. Asymptotic results

are also known. For details, see Kleitman (1969) and Wegener (1987).
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