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COPULAS, MARGINALS, AND JOINT DISTRIBUTIONS
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and Western Washington University

Any pair of univariate marginal distributions can be combined with any
copula to yield a bivariate distribution with the given marginals. This being the
case, it is tempting to conclude that the dependence properties of the distribution
can be determined by examination of the copula alone. Unfortunately, this idea is
seriously flawed: (i) Copulas exist which yield the Frechet upper bound for some
marginal pairs and the Frechet lower bound for other marginal pairs, (ii) There
is no nonconstant measure of dependence which depends only on the copula, (iii)
Weakly convergent sequences of bivariate distributions with continuous marginals
exist for which the unique corresponding copulas do not converge. Related issues
are considered.

1. Introduction. If C is a bivariate distribution function with marginals
uniform on [0,1], and if F and G are univariate distribution functions, then
as is well known,

H = C(F,G) (1.1)

is a bivariate distribution function with marginals F and G. In this context,
C is variously called a "dependence function" or a "copula", and C is often
thought of as a function which "couples" the marginals F and G. A number
of parametric families of copulas have been proposed in the literature, with
at least an implied suggestion that they be used to generate bivariate distri-
butions with given marginals through the formula (1.1). What can one say
about the joint distributions so generated if the marginals are unknown?

The marginals F and G can be inserted into any copula, so they carry no
direct information about the coupling; at the same time, any pair of marginals
can be inserted into C so C carries no direct information about the marginals.
This being the case, it may seem reasonable to expect that the connections
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between the marginals of H are determined by C alone, and any question
about these connections can be answered with the knowledge of C alone.

Of course, things are not that simple. Some problems stem from the fact
that copulas are not unique when at least one marginal is discontinuous. In
fact the marginals can sometimes play as significant a role as the copula in
determining the way in which they are coupled in H in the extreme case,
degenerate marginals by themselves determine the joint distribution and any
copula can be used. But interaction between the copula and the marginals is
often critical; copulas can look quite different in different parts of their domain,
and the relevant part is determined by the range of the marginals.

1.1. EXAMPLE. Consider the copula which has mass uniformly distributed
on the line segments υ = u, 0 < u < 1/3; υ = u + 1/3, 1/3 < u < 2/3; and
υ = u— 1/3, 2/3 < u < 1. This copula coincides with the Frechet upper bound
in the region 0 < w, υ < 1/3 and it coincides with the Frechet lower bound in
the region 2/3 < u, υ < 1. So if the range of F and G is limited to the region
0 < w, υ < 1/3, then H(u,υ) = C(F(u),G(υ)) will be a Frechet upper bound;
on the other hand, if the range of F and G is limited to the region 2/3 < M,
v < 1, H will be a Frechet lower bound. Depending on the marginals, this
copula can yield a Frechet upper bound or a Frechet lower bound.

This kind of extreme behavior occurs only because discontinous marginals
are involved. Moreover, the copula of Example 1.1 has been constructed to
show quite different characteristics over different parts of its domain. Because
of this, the range of the marginals radically affects the properties of the joint
distribution.

Much of the literature regarding copulas has been based upon the assump-
tion that the marginals of H are continuous because this is a necessary and
sufficient condition for the copula of H to be unique (Sklar, 1959; Schweizer
and Sklar, 1983). In this paper the assumption of continuous marginals is
avoided, so that various familiar results no longer apply. Some details are
discussed in Section 2 below.

Even though the marginals F and G together carry no direct information
about the copula C, much of the literature on bivariate distributions with
given marginals can be regarded as providing copulas that have a particular
affinity for, or are particularly appropriate for the given marginals. So it is not
a new idea that marginal pairs at least sometimes carry implicit information or
make suggestions about the copula. Perhaps this is so because the probabilistic
mechanism that generates F and G may also have a hand in generating the
copula. If such linkage exists, then it is to be expected that copulas sometimes
carry implicit information about appropriate marginals, but this idea does not
seem to have been exploited in the literature. In Section 3, an example is given
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that may be relevant to this issue.

2. Relationships Between H and C.

Dependence properties of H from C. It is easy to check that if C is
positive quadrant dependent, negative quadrant dependent, or associated in
the sense of Esary, Proschan, and Walkup (1967), then H has the same prop-
erty. A similar statement can be made about positive dependence by mixture
(Shaked, 1977) although that concept requires equal marginals. Various other
of the notions of positive or negative dependence in the literature also have this
nice property. (See, e.g., Nelsen, 1991). Because copulas are not unique for
discontinuous marginals, the converse of these results are all false. However,
the following proposition holds.

2.1. PROPOSITION. If H is positive (negative) quadrant dependent, then
among the various copulas ofH, there is at least one that is positive (negative)
quadrant dependent.

PROOF. If C is a copula for H, then C is uniquely defined on (range F)
x (range G), and can be extended to closure of this set by taking limits. The
part of the unit square outside this closed set is a union of a countable number
of sets of the form (α,6) X [0,1] and sets of the form [0,1] X (c,d). Suppose
that (U)V) is in (α,δ) X (range G), and define

C(u, v) = ^C(α, v) + l^C(b, v).
b — α b — α

Similarly, if (u, v) is in (range JF) X (C, d), let

C(u, v) = ^C(u, c) + V-f^C{u, d).
α — c α — c

For (iί, v) in (α, b) x (c, cf), take

C(tt, υ) = [(6 - u)(d - υ)C(α, c) + (6 - u)(υ - c)C(α, d)

+ (u- α)(d - υ)C(b, c) + (u- α)(v - c)C(6, d)]/(b - α)(d - c).

It is routine to check that this extension of C is a copula (in fact, it is a
standard extension); positive (negative) quadrant dependence follows imme-
diately from the positive (negative) quadrant dependence of C on the closure
of (range F) x (range G). I

Weak Convergence. Suppose that #1,1/2> is a sequence of distri-
butions converging weakly to H. Suppose further that the marginals of each
Hn are continuous, so that Hn has a unique copula Cn. Must Cn converge to
some C that is a copula of H? The following example shows that the answer
to this question is "no"; the copulas Cn need not converge to anything.
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2.2. EXAMPLE. Let i*\, F2, and GΊ, G2? be sequences of continuous
distributions that converge weakly to F and G respectively. Suppose further
that F and G have discrete parts so that range F and range G are proper
subsets of [0,1]. Let C be a subcopula defined on (range F) X (range G) and
for each n, let Cn be a copula extending C Then Jϊn = Cn(Fn, Gn) converges
weakly to H = C(F, G), but Cn need not converge.

Measures of dependence. Pearson's correlation coefficient, Spear-
man's /), and Kendall's r are perhaps the most widely known measures of
dependence. Since they are intended to measure dependence, and since the
copula couples the marginals, it is natural to ask if these measures can be
determined from the copula. For Pearson's correlation coefficient, the answer
is clearly "no." On the other hand, with the assumption that the marginals
are continuous, Nelsen (1991) provides nice expressions for both Spearman's p
and Kendall's τ in terms of the copula alone. But the assumption of continu-
ous marginals is critical; in general, none of these measures can be determined
from the copula. A stronger statement can be made.

2.3. PROPOSITION. LetTί be a set ofbivariate distributions which includes
those with Bernoulli marginals, and let p : 7ί —> (-00,00). Suppose that
H G H and H = C{F,G) implies ρ{H) = p(C), i.e., p depends only on a
copula ofH. Then p is a constant.

PROOF. Let F and G be Bernoulli distributions with respective ranges
{0,r, 1} and {0,s,l}. If C is a copula for the joint distribution H and
C*(r,s) = C(r,θ), then C* is also a copula for H. So p{C) = p(C*) de-
pends only on the number C(r,s). The idea of the proof is to define C* in
such a way that not only is C*(r,s) — C(r, θ), but also C*(r*,θ*) = r*s* for
some r*,θ* in (0,1). Then with another pair of Bernoulli marginals, it will
follow that p{C*) — p(Π), where Π is the independent copula. This would
mean that for any ϋf, p(H) = p(Π), and so p is a constant.

I. Suppose first that rs < C(r, s) < min(r, θ). Let r* = C(r, θ)/θ, so
that r < r* < 1. It is readily verified that the quantities pu = C(r,s),
P12 = r - C(r, θ), P21 = 0, P22 = r* -r,p31 = s- C(r, θ), and p32 = C(r, s) -

r* + 1 — s are all nonnegative. Let Ru = {(u,υ) : 0 < u < r, 0 < υ < s},
R12 = {(u,υ) : 0 < u < r,s < υ < 1}, R2ι = {(u,υ) : r < u < r*,0 < v < θ},
R22 = {(u,υ) : r < u < r*,5 < υ < 1}, R31 = {(u,v) : r* < u < 1,0 < υ < s},
R32 — {{u->v) : r* ^ u ^ I? 5 ^ v ^ 1}? and let C* be the copula that
distributes mass pij uniformly on the rectangle R{j. Then C*(r*,θ) = r*s =
J7(r*,θ). Thus />(C) = /?(/7).

II. Suppose that max(0,r + s — 1) < C(r, s) < rθ, so that 0 < r* =
C(r,s)/s < r. Then g n = C(r,θ), ς1 2 = r* - C(r,θ), ς2i = 0, q22 = r - r*,
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P3i = s - C(r,s), and p32 = C(r,s) - r + 1 - s are all nonnegative. Let C*
be the copula which puts mass qij uniformly on the rectangle R{j redefined
by interchanging r and r*. Then C* is a copula and again C*(r*,s) = r*θ =
Π(r*,s). I

Suppose that ίΓn converges weakly to H, so that the corresponding
marginals Fn and Gn converge weakly to F and G respectively. Suppose
further that all of the Hn have a common copula C, so that H = C(F,G).
Still, it need not be true for Spearman's /? that p(Hn) converges to p(H). A
similar statement can be made about Kendall's r. To make this important
observation clear, suppose that Fn — Gn for all n, Fn(x) — x, 0 < x < 1/2,
and ]imFn(x) = 1, x > 1/2. Then if and hence p{H) depend upon C(u,υ)
only for 0 < u, υ < 1/2. Any copula which coincides with C on this square
gives the same limit H, and these various copulas will have various p.

Correlations possible with a given copula. Let C be a copula and
let

Rc = {p : for some pair of marginals F and G,

77 = C(F,G) has correlation />}.

Here are two open questions:

1) For a given copula C, how can Rc be determined?

2) What kinds of sets can play the role of Rc for some C!

Although these are open questions, some partial answers can be given.

2.4. EXAMPLE. If C(u,υ) — mm[u,v] is the Frechet upper bound, then
Rc = (0,1]. To see this suppose that F and G are Bernoulli distributions, with
respective expectations p and 1 — p. If H = C(F, G), then if has covariance

, 1 — p)] — p(l — p) and correlation

min f ,- ) - 1.
\l-p pj

This quantity is 1 for p = 1/2, and it approaches 0 as p approaches 0 or 1.

2.5. EXAMPLE. If C{u, υ) = max(w + υ - 1,0), 0 < u, v < 1 is the Frechet
lower bound, then Rc = [-1,0). To see this, let F and G be Bernoulli dis-
tributions with expectation p < 1/2. If H — C(F, G), then H has correlation
—p/(l — p)t which i s — l a t p = l / 2 , and which approaches 0 as p approaches
0.

2.6. PROPOSITION. RC is an interval.

PROOF. Supose that H1 = C(F, G) has correlation p1 and H2 = C(F*,G*)
has correlation />2. The result follows from the fact that ίfα = C(αF + (1 -
α)jP*, αG + (1 - α)G*) has a correlation continuous in α. I
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2.7. PROPOSITION. If p > 0 is in Re, then (0,/?] C Re- If p < 0 is in Re,

then [/>,0) C Re-

PROOF. Suppose p > 0. Because C(F,G) < min[F,G], the corresponding
correlations are ordered in the same way; but according to Example 2.4, this
upper bound can be arbitrarily close to 0. Finally, the result follows from
Proposition 2.6. The proof for p < 0 is similar. |

2.8. EXAMPLE. Suppose C has a density 1 on [0,1/3)2U [1/3,2/3)2 and 2
on [0,1/3) X [1/3,2/3) U [1/3,2/3) X [0,1/3). Suppose also that C(u,v) =
min(?x, υ) elsewhere. Then C is positive quadrant dependent so that Re
contains no negative values. If F and G take no value in [1/3,1), then
H(x,y) = C(F(x),G(y)) = F(x)G(y) is the case of independence. If F = G
takes no value in (0,2/3), then H is an upper Frechet bound with correlation
1. Thus Rc = [0,1].

2.9. EXAMPLE. Suppose that C has mass uniformly distrbuted on the

line segments u = υ, 0 < u < α, and v = a -\- 1 — u, a < u < 1. Then

Corr C = (2a3 — 6α2 + 6α — 1), which is arbitrarily small when a is near —1.

On the other hand, if F — G and F takes no value in the interval (α, 1), then

Corr C(F,G) = 1. So this example shows that Re can include intervals of the

form [—1 + e, 1] for arbitrarily small e. A similar example shows that Re can

include intervals of the form [—1,1 — €]. Whether or not Re can be the full
interval [—1,1] is not known.

Conditions under which correlations of H = C(F, G) are always nonneg-
ative are given by the following proposition.

2.10. PROPOSITION. C(F, G) has a nonnegative correlation for all F and G
(for which a correlation exists) if and only ifC is positive quadrant dependent.

This result is an immediate consequence of Proposition 2.11.

2.11. PROPOSITION.

(i) Corr C(F,G) > Corr C*(F,G) for all marginal pairs F,G for which the
correlations exist if and only if

(ii) C(u, υ) > C*(w, υ) for all u, υ.

PROOF. That (ii) implies (i) is immediate from the fact that

Cov C(F, G) = - ί[C(F(x), G(y)) - F(x)G(y)]dx dy.

To prove that (i) implies (ii), let F and G be Bernoulli distributions with

respective values u and v on (0,1).

Cov C(F, G) - Cov C*(F, G) = C(r, s) - C*{r, s)>0. I
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Inclusion of the Frechet bound and/or independence. Example
1.1 shows that with proper choices of F and (?, it is possible for one copula
to yield both of the Frechet bounds. There are simple criteria for C to admit
these possibilities.

2.12. PROPOSITION. There exist nondegenerate marginals F and G for
which H(x, y) = C(F(x), G(y)) = min[F(x), G(y)] if and only if there exists a
square [0, α] x [1-α, 1] or a square [1-α, 1] x [0, α] where C puts no mass. There
exist nondegenerate marginals F and G for which H(x,y) = C(F(x),G(y)) =
max[0, x + y — 1] if and only if some square of the form [0, α]2 or of the form
[1 - α, I] 2 is given no mass by C.

PROOF. First, suppose that H = C(F,G) is the Frechet upper bound for
marginals F and G and let (u, υ) be a point in (range F) X (range G), 0 < u,
υ < 1. Then C(u,υ) = mm(u,υ). If u < v, then C(u,v) — C(u,l) = w, so
there is no mass in the rectangle in the unit square above and to the left of
(u,υ). If u > v, then C(u, υ) — v, so there is no mass in the rectangle in the
unit square below and to the right of (Ή, υ).

Suppose that C puts no mass above and to the left of (Ή, V), where 0 < w,
υ < 1. Then C(u,υ) = u = min(w,v). Let F be a distribution taking no
values in the open interval (w, 1), and let G be a distribution taking no values
in (0,t;). Then C(F,G) = mm(F,G).

The proof for the lower bound is similar. I

2.13. PROPOSITION. There exist nondegenerate marginals F and G for
which H = FG = C(F, G) is the case of independence if and only if there
exists a point (u, υ) in the interior of the unit square such that C(u, υ) = uυ.

PROOF. Suppose that (u,v) is in the interior of the unit square and
C(u,v) — uυ. If F and G are Bernoulli distributions such that F[x) — u,
0 < x < 1 and G(y) = υ,0<y<l, then C(F, G) = FG for all x, y.

Suppose that C(F,G) = FG where F and G are not degenerate, and let
u be a point in range F, υ be a point in range G. Then C(ti, υ) = uυ. |

2.14. REMARK. The conditions of Propositions 2.12 and 2.13 can all be
simultaneously satisfied. Example 1.1 is of this kind because there, C(u,υ) =
uυ when u = υ = 1/Λ/3

Example 1.1 shows that with different marginal pairs, there are copulas
that can produce both Frechet bounds. It is possible to generalize this result
by replacing the Frechet bounds by any other pair of symmetric copulas.
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2.15. PROPOSITION. If C\ and C2 are symmetric copulas, then there
exists a copula, C and marginal pairs F\,G\ and F2,G2 such that C(Fι,Gι) =
C1(F1,G1), C{F2,G2) = C2(F2,G2).

PROOF. TO construct the required copula C, divide the unit square into
nine subsquares

Aij = {u,υ) : (t - l)/3 < u < </3,(j - l)/3 < υ < j/3}, ij = 1,2,3.

Let
fn(u) = d{C1(u9l/3)}/du

fa(u) = d{C2(u + 2/3,1) - C2(u + 2/3,

/3i(α) = fis(u) = min{l - /n(t*), 1 - /3

Λi(tι) = fi2(u) = 1 - /i3(u) - /π(ti),

On An, set C = Ci, and on A33, set C = C2. On the diagonal of the other
squares A{j, put mass which projects onto the w-axis with density fy. Now,
if (range Fι) x (range Gi) contains points off the boundary of the unit square
only in An, then C(iΓΊ,Gi) = CΊ(Fi,Gi). If (range F2) x (range G2) contains
points off the boundary of the unit square only in A33 then C(F2,G2) =
C2(F2,G2). I

3. Copulas Suggesting Particular Marginals. In this section, a
rather large class of copulas that take on particular interest with particular
marginals is presented. Of course what is interesting depends upon the eye of
the beholder; in this case, "interesting" means "supported by a probabilistic
model that has proven to be useful in certain contexts."

3.1. PROPOSITION. Suppose that φ and φ are increasing functions defined
on the interval [0,1] such that φ(0) = ^(0) = 0, φ(l) = ^(1) = 1, and the
functions φ*(u) = φ(u)/u, ψ*(υ) = φ(v)/υ are both decreasing. Then the
function C denned for 0 < u, v < 1 by

C(n, υ) = uv mm[φ(u)lu, ψ(v)/υ] (3.1)

is a copula.

3.2. PROPOSITION. If C is the copula given by (3.1) and H = C(F,G),
then the following are equivalent:

(i) Random variables X,Y with joint distribution H have a representation
of the form

X = max(jR, W), Y = max(5', W)
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where R, S, and W are independent random variables.

(ii) H has the form H(x,y) = FR(x)Fs(y)Fw(τnin[x,y]) where FR, FS, and

are distribution functions.

(iii) φ*F(x) = φ*G{x), i.e., G{x) = φ*~\φ*F{x)).

Of course, (iii) says that in order for (i) or (ii) to hold, F and G must be

paired in a critical way. One can also take the view that for given F and G,

a copula of the form (3.1) is particularly appropriate if φ and φ are chosen in

such a way that (iii) holds.

PROOF OF PROPOSITION 3.2. The equivalence of (i) and (ii) is immediate.

Suppose that H = C(F,G) where C is given by (3.1), and suppose that (ii)

holds. Then

F = FRFW and G = FSFX, (3.2)

and

H(x, y) = C{F{x), G(y)) = mm[F(x)φ(G(y)), G(y)φ(F(x))}

= mm[FR(x)Fs(y)Fw{x), FR(x)Fs(y)Fw(y)}.

It follows that FR = φ(F), Fs = φ(G). Using this in (3.2) yields Fw =

F/FR = G/Fs = F/φ(F) = G/φ(G), and this is (iii).

Now, suppose (iii) holds, and H = C(F, G) where C is given by (3.1).

Let FR = φ(F), Fs = φ(G), and Fw = F/φ(F). It can be easily verified

that under the conditions on φ and φ of the proposition, these functions are

distribution functions, and moreover (ii) holds. I

Notation: For any random variable with distribution function F, denote

the corresponding survival function by F — 1 - F. Similarly, if X and Y have

joint distribution function if, then the joint survival function is denoted by

H; that is, H(x,y) = P{X > x,Y > 2/}.

3.3. PROPOSITION. If C is the copula given by (3.1) and H(x,y) =

C(F,G), then the following are equivalent:

(i) Random variables X, Y with joint distribution H have a representation

of the form

where R, S, and W are independent random variables.

(ii) H has the form ϊϊ(x,y) = FR(x)Fs(y)Fw(ma>x[χiy]) where FR, FS, and
Fw are distribution functions.

(iii) φ*F(x) = φ*G{x), i.e., G(x) = φ*~\φ*F{x)).

The proof of this result is similar to the proof of the preceding proposition.



222 COPULAS, MARGINALS, AND JOINT DISTRIBUTIONS

Of course, the structure indicated in (i) above is just the structure of

the bivariate exponential distribution of Marshall and Olkin (1967), who give

motivations in terms of probabilistic models; because of this structure, this

distribution has proved useful in diverse applications such as the study of nu-

clear reactor safety and the study of cancer metastasis. Similarly, the structure

of (i), Proposition 3.2, can be expected to be of particular interest when i2, S,

and W have extreme value distributions for maxima of the same type.
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