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Makarov (1981) and Frank, Nelsen and Schweizer (1987), and indepen-
dently Rϋschendorf (1982), have found upper and lower bounds for P{X+Y < t}
(t £ M = (—oo, oo)), when the marginal distributions of X and Y are fixed, and
they have proved that their bounds are sharp.

In this paper we find similar bounds when X and Y are vectors rather
than scalars. First we determine lower and upper bounds by generalizing the
method of Frank, Nelsen and Schweizer and we show that the method can be
used also to determine bounds for distributions of functions other than the sum.
Then, by generalizing Rύschendorf's method, based on a theorem of Strassen,
we prove that the bounds previously obtained are sharp. Finally we use the
bounds to obtain inequalities for expectations of increasing and of Δ-monotone
functions of X + Y.

1. Int roduct ion. Makarov (1981) and Frank, Nelsen and Schweizer

(1987), and independently Rϋschendorf (1982), have solved the following prob-

lem: Let X and Y be real-valued random variables with respective one-

dimensional distribution functions F\ and i<2, and let JΓF1IF2 be the Frechet

class of joint distributions with marginals F\ and i^. For all t G M find the

best bounds

L(t) := inf P{X + Y < t} (1.1)

and

U(t):= sup P{X + Y<t}. (1.2)

•^1,^2

A review can be found in Section 2.2.5 of Rϋschendorf (1991) or in Section 8

of Schweizer (1991); see also Remark 7.3.3 in Rachev (1991).
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In this paper we extend the methods of Frank, Nelsen and Schweizer

(1987), and of Rύschendorf (1982), to the multivariate case, that is, to the

case in which F\ and F2 are n-dimensional. Whereas the extension of Frank,

Nelsen and Schweizer's method provides bounds that are easy to compute,

we cannot prove sharpness using their method. To show that the bounds are

sharp we generalize Rϋschendorf 's idea, which in turn is based on a theorem of

Strassen. The bounds can be used to establish inequalities for the expectations

of increasing and of Δ-monotone functions of the sum of two random vectors.

Below, the terms "increasing" and "decreasing" stand, respectively, for

"nondecreasing" and "nonincreasing." Also, whenever we study an expecta-

tion or an integral we implicitly assume it exists. For two elements s =

(θi,θ2,.. .,θn) and t = (h,t2,.. .,tn) i n ^n? the notation s < t will mean

Si < ίt , i = 1,2,..., n, and the notation s < t will mean st < <t , i = 1,2,..., n.

In this paper, when we refer to the distribution function F of a random vector

T = (Γi,Γ 2 , . . .,Γ n ) we mean the function F defined by F(t) = P{T < t}.

The corresponding survival function F is defined by F(t) = P{T > t}.

1. Bounds on the Distribution Function of X + Y. Let X =

(Xi,X2,...<,Xn)
 a n d Y = (Yi)Y2-,' .->Yn) be two random vectors with re-

spective marginal distributions F\ and F2, and some joint distribution F.
Define

W(x, y) = m^x{F1(x) + F2(y) - 1,0}, (2.1)

Z(x, y) = mm{Fλ{x) + F2(y), 1}. (2.2)

In general W and Z are not distribution functions. When n = 1, W is the

lower Frechet bound of JΓF1IF2 ( a n d therefore a distribution function), and Z

is one minus the lower Frechet bound for the class of joint survival functions

F(x,y) = P{X > x,Y > y} with the above marginals. Also define

L(t)= sup W(u,υ), (2.3)
u + v — t

U(t)= inf Z(u,υ). (2.4)
u + v = t

THEOREM 2.1. For every pair of random vectors X = (Xi,X2, .,-^n)

and Y = (Yi, Y2,..., Yn) having distributions F\ and F2, respectively,

L(t) < P{X + Y <t}< U(t). (2.5)

PROOF. Note that for all t,u e Mn

(u, t-u) = max{ί\(u) + F2(t - u) - 1,0}

< P{X <u,Y <t-u} < P{X + Y < t},
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Z(u, t-u) = min{Fi(u) + F2(t - tι), 1}

Therefore

(2-7)
> 1 - P{X > u, Y > t - u} > P{X + Y < t}.

L(t) = sup W(u, t-u)< P{X + Y < t}, (2.8)
it

U(t) = inf Z(t*, t - w) > P{X + Y < *}, (2.9)

for each 2n-dimensional distribution F of (X, Y) with n-dimensional margins

Fα and F 2 . I

The central point is that the bounds L(t) and U(t) in (2.5) depend only

on the margins and not on the joint distribution. Note that these bounds are

not necessarily distribution functions.

The bounds given in Theorem 2.1 are on the probability of a lower orthant

{u G Mn : u < t}. We present next the analogous bounds on the probabilities

of upper orthants {u G Mn : u > t}. These bounds are obtained in an entirely

similar fashion by way of the survival functions F\ and F 2 . Define

w(x,y) = Ίmx{Fι(x) + F2(y) - 1,0}, (2.10)

z(x, y) = min{Fi(x) + F 2 (y), 1}. (2.11)

In general w is not a survival function except when n = 1. Also define

Ί(t) = sup w(ti,v), (2.12)
u + v — t

ΰ(t)= inf J(t*,i;). (2.13)
u + v = t

THEOREM 2.2. For every pair of random vectors X — (Xi,X2, ?-X"n)

and Y — (Yi,i2,.. .,yn) having distributions Fι and F2, respectively,

Ί(t) < P{x + γ> t} < «(t).

REMARK 2.3. A comparison of Theorems 2.1 and 2.2 shows the compli-

cation that arises in the multivariate case, in contrast to the univariate case.

When n — 1 the two theorems yield the same bounds, those of Frank, Nelsen

and Schweizer (1987). However the bounds are different when n > 2 because

the complement of a lower "orthant" is an upper "orthant" only when n = 1.

We now extend Theorem 2.1 to functions other than addition. Note that

the last inequalities in (2.6) and (2.7) follow from two simple set inclusions:

For any fixed u , v G l n

{{u, v) : u' < ti, v < v} C {(*', v) : u1 + v < u + v}
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and
{(«',vf) : u' > u,v > v} C {(it',v1) : u + v > u + v}.

Thus, one may replace X + Y in Theorem 2.1 by a more general function
g(X,Y) provided that

{(« ' ,v ') :u '<u,v '<v}C {(«',„') : g(u',v') < g(n,v)}

and
{(u',v') :u'>u,v'>v}C {(«',«') : g(u',v') > g(u,v)}.

Any increasing function g : M2n —> M, such that

(«, v) < («', v') = > ff(«, t,) < ff(«',»'), (2.15)

satisfies these conditions. Define now

Lg(t)= sup W(u,υ),
g(u,v) = t

Ug(t)= inf Z(u,υ),
g(u,v) = t

where W and Z are defined in (2.1) and (2.2). Also define

Ίg(t)= sup w(u,v),
g(u,v) = t

¥(£) = inf ^(it,v),
flf(ti,v) = t

where ΪZ; and J are defined in (2.10) and (2.11). Then we have the following
result.

THEOREM 2.4. Let g : R2n -^ R be an increasing function that satisfies
(2.15). For every pair of random vectors X = (Xι,X2,...,Xn) and Y =
(Yί, Y2,.. ",Yn) having distributions F\ and F2, respectively,

Lg(t)<P{g(X,Y)<t}<Ug(t)

and
Ίg(t)<P{g(X,Y)>t}<ϋg(t).

3. Sharp Bounds. In this section we show that the bounds in Theorems
2.1 and 2.2 are sharp.

We start by stating a special case of Theorem 11 of Strassen (1965). Let
S and T be Polish spaces and let Pi be a probability measure on (£, Bor(S')),
P2 be a probability measure on (Γ,Bor(T)), and let Vplip2 be the class of
probability measures on (S x Γ, Bor(S') ® Bor(Γ)) with marginals Pi and P 2.
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LEMMA 3.1. Fix a closed set AC S x T and an e > 0. Then the following

two statements are equivalent.

(a) There exists a μ G VpΎ,p2 such that μ(A) > 1 — €.

(b) For every open set C C Γ , P 2 (C) - Pi(πi(A Π (5 X C))) < 6, wiiere TΓI

denotes the projection on S.

Now, for any closed set 4 C 5 X T, let M(A) = sup{μ(A) : μ G Vplip2}

and m(A) = inf{//(A) : μ G ^p^Pal? a n ( ^ ^ e t ^T denote the class of open
subsets of T. The following result was stated without proof in Rϋschendorf
(1982) for the case 5 = Γ = M.

LEMMA 3.2. For any ciosed set 4 C 5 x T one has

= 1 - sup {P2(C) - Pi(τri(A Π ( S x C)))}.

PROOF. We will establish the inequalities

M(A) < 1 - sup {P2(C) - Pi(τri(Λ Π (5 x C)))}, (3.1)

and

M(Λ) > 1 - sup {P2(C) - Pi(τri(A Π(Sx C)))}. (3.2)

Recall that M(A) = sup{/i(A) : μ G ̂ P j ^ } . Thus, for every δ > 0, there
exists a μ G Vpλ,p2 such that

- (5 = 1 - (δ - M(A) + 1).

By Lemma 3.1, for every open set C C Γ,

P 2 (C) - Pi(τri(Λ Π (5 x C))) < (5 - M(Λ) + 1.

Therefore

sup {P2(C) - Pi(τri(A Π (5 x C)))} < (5 - M(A) + 1.
ceoτ

Letting ί->0we obtain (3.1).

Now, for a fixed closed set A C 5 x Γ, let

0(A)= sup{P 2 (C)-P 1 (π 1 (AΠ(5xC)))} .
C£OT

Then, for every open set C C Γ,

Π (5 x C))) <



LI, SCARSINI, SHARED 203

By Lemma 3.1 there exists a μ G Vplip2 such that μ(A) > 1 — Θ(A). Since, by
definition, M(A) > μ(A), it follows that M(A) > 1 - 0(A), which is (3.2). |

We are now ready to provide sharp bounds for P{X + Y < t} and
for P{X + Y < t} along the lines of Rύschendorf (1982). For t G Mn let
A(t) = {(x,y) : x + y < t} and A(t+) = {(χ,y) :χ + y < *}. For any teRn

and C C Mn, let t — C = {y : y = t — x for some x G C}. Recall that a set
4 C l n is called upper [Wer](3.6) if t G A and β > [<] t imply that s G A.
Let (9 and ZY be, respectively, the class of open subsets and the class of upper
open subsets of Mn. As in Section 1 we denote by J:F1,F2 the class of joint
distributions with marginals F\ and F2.

THEOREM 3.3. For every pair of random vectors X = (Xi, X2? >-Xn)
and Y = (Yi, Y2,.. .,Yn) having distributions F\ and F2, respectively,

inf P{X + Y < t } = sup {P 2 ( (-oc,α))-P 1 ( (-oc, t-α) c ) } (3.3)

and

sup P{X + y < t} = inf {P2(CC) + P^t - C)}, (3.4)

where Pi and P2 are the probability measures associated with F\ and F2,
respectively.

PROOF. TO prove (3.4), first note that

sup P{X + Y < t} = M(A(t+)).
JΓF1 ,F2

By Lemma 3.2 we have

M(A(t+)) = 1 - sup {P2{C) - P1(π1(Λ(<+) Π (R» x C)))}.
ceo

For C C Γ define

Π (Mn X C)) = {x : x < t - y for some y € C)

(C| is a lower set).

Note that given t and C, there exists an upper set V such that

(3.5)

(To see it just take V = {y1 : y > y for some y G C} and verify that (3.5)
holds.) When C is an upper set then Cf. = t - C.
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Now, from (3.5) it follows that

- P1(π1(A(t+

= sup{P2(C) - P1(πi(Λ(*+) Π

sup {P2(C) - P1(π1(A(t+) Π (Kn x C)))}
ceo

Therefore

M(A(t+)) = 1 - sup{P2(C) - P1(π1(A(t+) Π (Mn x C)))}

= l - s U p { P 2 ( C ) - P 1 ( C ί * ) }

= l-8xφ{P2(C)-P1(t-C)}
ceu

and this gives (3.4).

The proof of (3.3) is similar. First note that

inf P{X + Y < t} = m(A(t)).

Since the set (A(t))c is closed, Lemma 3.2 yields

M((A(t)γ) = l - sup {P2(C) - p^mwγ n (R» X C)))}.

For C C 1 " define

Q := π1((A(ί))c Π (Rn x C)) = {x : x £ t - y for some y € C}

{Cf is an upper set).

For every t and C, there exists a lower set V such that

Ct = Vt. (3.6)

(To see it just take V = {y' : y' < y for some y G C} and verify that (3.6)
holds.) More than that, for every t and C, there exists a lower orthant Q such
that _ _

Ct = Q*. (3.7)

(To see it suppose that C is a lower set and take Q to be the smallest lower
orthant containing C. Then, clearly, Cf C Qf. But if a; G Qj then x <£ t - y
for some y £ Q. Thus there exists a y G Q such that #; + t/t > ίt for some

i G {1,2, . . . ,n} . Since C is a lower set, it follows from the definition of Q

that there exists a point y G C such that ŷ  = yi for that i. For y1 we have

^i + Vi > ίή a n d therefore x G Q , and (3.7) follows.)
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When C is the lower orthant, C = (-00, α), say, then

Cf = (-00, t - α)c.

From (3.7) we have

sup {P2(C) - PiίnίίAίt))6 n (ir x c)))}

α G Mn

Therefore

M((A(t))c) = 1 - sup {P2((-oo, a)) - Pi((-oo, t - a)c)}.
a G Mn

Hence
= 1 - M((A(t)Y)
= supjP.α-oo^^-^α-oo^-αr)},

and this gives (3.3). |

The same method yields bounds on probabilities of upper orthants. This

is stated next. The proof is omitted since it is similar to the proof of Theorem

3.3. Let C be the class of lower open subsets of Mn.

THEOREM 3.4. For every pair of random vectors X = (Xi, X^ ?-Xn)
and Y = (Yi, Y2,..., Yn) having distributions F\ and P 2 , respectively,

inf P{X + Y >t}= sup {P2{(α, 00)) - Pi((t - α,oo)c)} (3.8)
^1^2 α G l n

and

sup P{X + Y > t} = inf {P2(CC) + P x(t - C)} (3.9)

where Pi and P 2 are t ie probability measures associated with F\ and F2,

respectively.

From Theorems 3.3 and 3.4 we can obtain the sharpness of the bounds

given in Theorems 2.1 and 2.2.

COROLLARY 3.5. Let X = (XuX2,...,Xn) and Y = (Yi, Y2,..., Yn) be

a pair of random vectors with distributions F\ and F 2 , respectively. IfX + Y

has a continuous distribution then the bounds given in (2.5) and in (2.14) are

sharp.

PROOF. It is easy to verify that the lower bounds given in (3.3) and in

(3.8) are the same as the lower bounds given in (2.5) and in (2.14), respectively.
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In order to show that the upper bound given in (2.5) is sharp, first note
that since the upper bound in (3.4) is sharp it follows that for any t E Mn,

U(t) > i

where U{t) is given in (2.5), and, for convenience, we interchanged the indices 1
and 2 in (3.4). Now we show that, for any t £ Mn,

U(t) < inf {Pi(Cc) + P2(t - C)}. (3.10)
CξJΛ

Fix a ί G l n and an upper open set C. Let u0 be a boundary point of
C (some of the coordinates of UQ may be infinite). Since C is an upper set it
follows that (-oo,it0] C Cc and that (u0,oo) C C. Hence F^uo) < P\{CC)
and F2(t - i*0) < P2(t - C). Therefore, for any open upper set C,

Pi(Cc) + P2(t -C)> J\(«o) + F2(t - uo) > inf{^(i ) + F2(t - «)} > U(t),
u

and (3.10) follows.

In a similar fashion it can be shown that the upper bound given in (2.14)
is equal to the upper bound given in (3.9). I

The results given in Theorems 3.3 and 3.4 can be extended to sums
of more than just two random vectors. We describe only the extension of
(3.4); the other bounds can be extended similarly. The discussion below is an
extension of Proposition 3(a) of Rύschendorf (1982).

Let Xi, X25 j Xk be random vectors with distributions Fi, F2,..., Fk,
respectively. Let FFι,F2,...,Fk denote the class of joint distributions with mar-
gins Fι,F2,...,Fk. For F G ^Fi^,. . . ,^-! denote by GF the distribution
function of the sum of k - 1 random vectors that have the joint distribution
F. Then

sup P{X1+X2 + + Xk<t} = sup inf {Pk(
^ Λ ilk ^ 1 ^ 2 - ^ - 1 €U

where Pk and QF are the probability measures associated with Fk and GF,
respectively. The proof of this is immediate from (3.4).

4. Inequalities for Expectations of Functions of X + Y. In this sec-
tion we show how Theorems 2.1, 2.2, 3.3 and 3.4 yield bounds on expectations
of the form E[φ(X + Y)] for certain classes of functions φ.
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First recall that for a real n-variate function φ, the multivariate difference
operator Δ is defined by

where s and £ are elements of Mn. The function 0 is called Δ-monotone if

Δgφ > 0 whenever s < t.

Let Λ4 be the set of all n-variate functions that are Δ-monotone in any k of

their coordinates when the other n—k coordinates are held fixed, 0 < k < n—l.

For example, every distribution function is a member of Λ4. Also, all functions

φ of the form φ(tι,t2^.. . , ί n ) = ΠΓ=i&(*t) belong to M provided φi is a

nonnegative increasing function, i = l , 2 , . . . , n . An n-times differentiate

function φ is in Λ4 if, and only if, ^ dt^—dt Φi*) — ^' {ύ?*2? ?*m} ^

{1,2,.. . ,n} . We will consider only these members of M. We then write

ϊdtnΦit) which is well defined and nonnegative. Using Theorem

2.2 (or Theorem 3.4) and ideas of Cambanis, Simons and Stout (1976), Tchen

(1980), Rύschendorf (1980) and Mosler (1984) we obtain the following bounds.

THEOREM 4.1. Let X = (XuX2,...,Xn) and Y = (YuY2,...,Yn) be

any random vectors with respective marginal distributions F\ and F2. Let

φ G λΛ be n-times differentiate, and assume that there exists a b > — oo such

t h a t l i m t - _ + _ o o Φ{t\-> . , i » - i , f t , i t + i ? > * n ) = b, i = 1 , 2 , . . . , n . T h e n

b + I αφ{t)Ί{t) dt < E[φ(X + Y))<b+ f αφ{t)u(t) dt, (4.1)

jRn JW1

where 1 and ΰ are defined in (2.12) and (2.13).

PROOF. Let K denote the distribution of X + Y. Writing φ(t) =

ft
b + αφ(x) dx, and applying Fubini's theorem to interchange the order

J — oo
of integration, we obtain

E[φ(X + Y)] = b+ I αφ(t)K(t) dt

>b+ I αφ(t)Ί(t) dt,
/TCPn

J JK

where the inequality follows from the fact that K(t) > Ί(t) (see (2.14)).

The proof of the other inequality is similar. I
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When 7 and ΰ happen to be survival functions, associated with the dis-
tribution functions I and u, then (4.1) can be written as

Φ(t) dl(t) < E[φ(X + Y)}< I φ(t) du(t),
1 JRn

or as

Φ(t) di(t) < E[φ(x + Y)) < (-i) n J^n φ(t) dΰ(t).

Inequality (4.1) essentially follows from Theorem 2.2 . In a similar fashion
one can use Theorem 2.1 (or Theorem 3.3) to obtain the following result.

THEOREM 4.2. Let X = (XuX2^..,Xn) and Y = (YuY2,...,Yn) be
any random vectors with respective marginal distributions Fι and F2. Let
g : Rn —> R be n-times differentiate such that φg £ M. where φg is de-
nned by φg(t) = g(—t), < G l n (for example, g satisfies these conditions if

C ^ °> {»i>«2,...,*m} C {l,2,...,n};. Suppose that

there exists a b > — oo such that l im ί ._, o o β(/i, . . . , ί , _i, ί t ,^ + i , . . . , t n ) = b,
i= 1,2,...,n. Then

- l ) n / αg(t)L(t) dt < E[g(X + Y)] < b + (-l)n I αg(t)U(t) dt, (4.2)

where L and U are denned in (2.3) and (2.4), and αg denotes the nth partial
derivative of g.

PROOF. A computation similar to the one in the proof of Theorem 4.1
yields

= b+ ί αφg(t)P{-(X + Y)>t}dt
mn

= b+ ί αφg(t)P{X + Y < -t} dt

= b+ I αφg(-t)P{X + Y <t}dt
JRn

= b+ (-l)n / αg(t)P{X + Y <t}dt
JW1

>b+(-l)n I αg(t)L(t)dt,
JW1

where the inequality follows from (2.5).

The other inequality can be proven in a similar fashion.
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Functions g of the kind discussed in Theorem 4.2 are studied in Mosler

and Scarsini (1991).

Using Theorems 2.1, 2.2, 3.3 and 3.4 we can also obtain bounds on

E[φ(X + Y)] for functions φ which are increasing with respect to the compo-

nentwise order in Rn (rather than just Δ-monotone). We need the following

definitions.

DEFINITION 4.3. A set function M : Bor(Mn) —* [0,1] is called a capacity

if

(i) M(0) = 0,

(ii) M(Rn) = 1,

(iii) A,Be Bor(Mn), A C B =* M(A) < M(B).

DEFINITION 4.4. Given a measurable function φ : Mn —> R, the lower

Choquet integral of φ with respect to the capacity M is defined as

ίφ dM = ί°°[l - M({t: φ(t) < α})} dα - I M({t : φ(t) < α}) dα,
J Jo J—oo

and the upper Choquet integral of φ with respect to M is defined as

ίφdM = I M({t : φ(t) > α}) dα - I [1 - M({t: φ(t) > α})] dα.
J Jo J-oo

For definitions and properties of the Choquet integrals see, e.g., Choquet

(1953-54), Gilboa (1989) and Denneberg (1994).

Now let X and Y be as in Theorem 2.1 and denote the joint distribution

of X + Y by K. Then, from Theorem 2.1, we have that for all t G Mn,

L(t) < K(t) < U(t). (4.3)

Note that L and U are increasing functions such that for i = 1,2,..., n,

l im L(t\,..., /t—l?^t?^t+i? J^n)

= ^ Um^C/^i,...,^-!,^,^!,...,^) = 0,

and
Urn Lit) = lim tf(i) = 1.

t —>• oo ί -> oo

Let P be the probability measure on (M n ,Bor(M n )) associated with J ί ,

let Q be the class of lower orthants
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and let Q* be the class of complements of lower orthants

Q* = {]R n \(-oo,ί):tGM n }.

Clearly Q, Q* C Bor(Mn). For B = (-00, t) G Q define

M*(B) = X(t) and M*(5) = Z7(t).

Extend M* and M* to Bor(En) as follows. For A G Bor(Mn),

= sup M*(5) and
BCA

M*(A) = inf M*(B).
BGC2

Clearly, M* and M* are capacities.

For any lower set A we have

M*(A) = sup
5 C Λ

< sup P(J5)
B£Q

<P(A)

< inf
~ ACB

< inf M*(B) = M\A),
B£Q

where the first and the last inequalities follow from (4.3). Therefore (Dycker-
hoff and Mosler (1993), Scarsini (1992)), for all increasing functions φ : Rn —>

ίφ dM* < ίφdP< ίφ dM*. (4.4)

Since [φ dP = / φ dP = E[φ(X + Y% (4.4) provides bounds for E[φ(X + Y)}
for all increasing φ.

Similar bounds can be obtained by defining, for B = (Mn\(—00,ί)) G Q*,

JV»(5) = 1 - J7(t), and iV*(β) = 1 - X(t).

Now extend TV* and TV* to Bor(Mn) by defining

N*(A) = sup 7V*(5) and 7V*(A) = inf N*(B),
BCA AQB

BEQ*
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for A € Bor(Mn). Again N* and N* are capacities, and for all upper sets A, a
similar argument yields

< P{A) < N*(A),

which implies that for any increasing function φ

fφdN*< ίφdP< ίφdN*.

In summary, for all increasing φ,

ί ίφ dM*, fφ dNm) < E[φ(X + Y)]

ft 7 λ
<min ί φdM*, φ dN* ) .

max φ , φ m) [φ( + )]

( 4 ' 5 )

Bounds on E[φ(X + V)], for all increasing 0, the analogues of those in
(4.5), can be obtained in a similar fashion using Theorem 2.2 (rather than
Theorem 2.1 ). We omit the details.
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of the contents and of the presentation of this paper.

References

CAMBANIS, S., SIMONS, G. and STOUT, W. (1976). Inequalities for
when the marginals are fixed. Z. Wahrsch. verw. Gebiete 36 285-294.

CHOQUET, G. (1953-54). Theory of capacities. Ann. Inst. Fourier 5 131-295.

DENNEBERG, D. (1994). Lectures on non-additive measure and integral. Kluwer
Academic Publishers, Boston, Massachusetts.

DYCKERHOFF, R. and MOSLER, K. (1993). Stochastic dominance with nonad-
ditive probabilities. Z. Oper. Res. 37 231-256.

FRANK, M. J., NELSEN, R. B. and SCHWEIZER, B. (1987). Best-possible bounds
for the distribution of a sum — a problem of Kolmogorov. Probab. Theory
Related Fields 74 199-211.

GILBOA, I. (1989). Duality in non-additive expected utility. Ann. Oper. Res.
19 405-414.

MAKAROV, G. D. (1981). Estimates for the distribution function of a sum of
two random variables when the marginal distributions are fixed. Theory of
Probab. Appl. 26 803-806.



212 BOUNDS ON MULTIVARIATE SUM DISTRIBUTION

MOSLER, K. C. (1984). Stochastic dominance decision rules when the at-

tributes are utility independent. Management Sci. 30 1311-1322.

MOSLER, K. and SCARSINI, M. (1991). Some theory of stochastic dominance.

In Stochastic Orders and Decision Under Risk (edited by K. Mosler and M.

Scarsini). Institute of Mathematical Statistics Lecture Notes — Monograph

Series, Hayward, California, 261-284.

RACHEV, S. T. (1991). Probability Metrics and the Stability of Stochastic

Models. John Wiley & Sons, New York, New York.

RϋscHENDORF, L. (1980). Inequalities for the expectation of Δ-monotone func-

tions. Z. Wahrsch. verw. Gebiete 54 341-349.

RϋscHENDORF, L. (1982). Random variables with maximum sums. Advances

in Applied Probability 14 623-632.

RϋscHENDORF, L. (1991). Frechet-bounds and their applications. In Advances

in Probability Distributions with Given Marginals (edited by G. DalΓAglio,

S. Kotz and G. Salinetti). Kluwer Academic Publishers, Boston, Mas-

sachusetts, 151-187.

SCARSINI, M. (1992). Dominance conditions in non-additive expected utility

theory. J. Math. Econom. 21 173-184.

SCHWEIZER, B. (1991), Thirty years of copulas. In Advances in Probability

Distributions with Given Marginals (edited by G. DalPAglio, S. Kotz and

G. Salinetti). Kluwer Academic Publishers, Boston, Massachusetts, 13-50.

STRASSEN, V. (1965). The existence of probability measures with given marginals.

Ann. Math. Statist. 36 423-438.

TCHEN, A. H. (1980). Inequalities for distributions with given marginals. Ann.

Probab. 8 814-827.

DEPARTMENT OF PURE AND APPLIED MATHEMATICS

WASHINGTON STATE UNIVERSITY

PULLMAN, WA 99264-3113

lihOhai jun .math. wsu. edu

DLPARTIMENTO DI SCIENZE

UNIVERSITA DΆNNUNZIO

VlALE PlNDARO 42
1-65127 PESCARA, ITALY

scarsini@unich.it

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ARIZONA

TUCSON AZ 85721

shakedOmath.arizona.edu.




