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Abstract

In this paper, we develop a simple test procedure for comparing the
cause-specific hazard rates of a competing risks model based on a right
censored (competing risks) data. Asymptotic distributions of the test
statistic under both the null and alternative hypotheses are shown to
be normal by expressing the statistic in terms of counting processes and
using martingale central limit theory. These results enable us to assess
the power of the test analytically rather than through simulations.
The power comparison of the test with some existing tests shows that
the proposed test performs better in the presence of censoring. An
application of the test for comparing the risks of two types of cancer
mortality (thymic lymphoma and reticulum cell carcinoma) in a strain
of laboratory mice is illustrated.

1 Introduction

The term "competing risks" applies to problems in which a system or an
organism is exposed to two or more causes of failure or death, but its even-
tual failure or death can be attributed to precisely one of the causes. These
problems arise quite frequently in reliability life testing, public health, de-
mography, and experiments in medical therapeutics.

In reliability life testing, to compare the quality of two types of com-
ponents, by testing them in pairs (cf. Froda, 1987), an experimenter may
identify the weak component early on, thus saving valuable time and ac-
celerating the experiment. An epidemiologist trying to assess the benifit of
reducing exposure to an enviromental carcinogen, may analyze not only the
reduced incidence rate of cancer but also effects on other competing causes
of death. Benichou and Gail (1990) considered time to recurrence in patients
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with surgically resected cancer. In deciding whether to give a toxic therapy

in the hope of preventing cancer recurrence, one would like to compare the

cause specific hazard rate from the death due to cancer recurrence, with the

cause specific hazard rate for death from other causes. Hoel (1972) reported

the times until death of male mice which were given radiation dose of 300

rads and followed for death incidence. The causes of death were classified

into thymic lymphoma, reticulum cell sarcoma and other causes. One would

be interested in comparing the cause specific hazard rate due to thymic lym-

phoma with that due to reticulum cell sarcoma in the absence of risk from

other causes of death.

In this paper, we consider the competing risks model with two causes of

failure or a series system with two components. Denote the lifetimes of these

two components by TΊ and Γ2. In general, T\ and T2 are dependent. Upon

the system failure, we observe only the pair (X,£), where X = min(Γi,T2)

is the lifetime of the system and δ = j , j = 1,2, is the cause of the system

failure. Define the cumulative incidence function for failure corresponding

to cause j (Kalbfleisch and Prentice, 1980) by

Fά(t) = P(X<t,6 = j).

Let F(t) = Fι(t) + F2(t) be the distribution function of the system failure
time X and let S(t) = 1 — F(t) be the survival function. The cause specific
hazard rate (CSHR) (cf. Prentice et al., 1978) of cause j is defined by

where fj(t) are the subdensities of Fj with respect to the Lebesgue measure.

Assume that Fj are continuous and that P(T\ = T2) — 0. We present a

simple test for comparing the cause specific hazard rates g\ and #2- We test

for the null hypothesis

#0 : flfiOO = 92(t), t > 0 (1.1)

against the ordered alternative

# 1 : gi(t)<g2(t), ί > 0 (1.2)

with strict inequality for some t. The proposed test can be easily applied
to test against general alternatives, e. g. g\ φ (72- Note that Fj(t) =
$lS{u)gj(u)du, and hence the null hypothesis Ho is equivalent to Fι(t) =
F2(t), t > 0.

In the absence of censoring, various authors have studied the problem
of testing the equality of two CSHRs in competing risks framework, as-
suming that the two causes of failure are independent. Among them are
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Bagai, Deshpande and Kochar (1989a, b), Neuhaus (1991) and Yip and
Lam (1992). Recently Aras and Deshpande (1992) considered the case when
the two causes are dependent.

Right censoring arises when an item is removed from observation before
its failure, or when the failure of a system is due to other causes. Specially in
medical studies, right censoring is an important subject that we have to deal
with. Recently for the first time, Aly, Kochar and McKeague (1994) devel-
oped some test procedures comparing CSHRs based on randomly censored
data, not assuming independence of the two causes.

Let C be the censoring time and Sc be its survival function. Assume
that C is independent of (X, δ). Under right censoring we observe only
X = min(X, C) and δ = δI(X < C), where I (A) is the indicator function of
the event A. The right censored risks data consists of n i.i.d. copies (Xz , ^ ),
i = l,...,n,oί(XJ).

Aly et al. proposed the following test statistics

D3n= sup Φn(*), D4n= sup {Φn(*) - Φn(θ)},
0<ί<oo 0<s<ί<oo

based on an estimator Φn(ί) of the function Φ(ΐ) = /Q SC (u-)d(F2(t) —
Fi(t)). These tests are designed for differently ordered alternatives, rejecting
Ho in favor of the alternatives for large positive values of _D3n and D4n. They
showed that the asymptotic null distributions of D%n and D4n when suitably
normalized converge in distribution to sup 0 < a : < 1 W(x) and sup0 < a 7 < 1 |W^(z)|
respectively, where {W(x), 0 < x < 1} is the standard Wiener process.

The supremum type test is usually designed for detecting general alterna-
tives. Appropriately designed supremum test can have at least some power
for detecting any form of departure. But it may not have good power against
some specific departures. Also, it is very difficult to derive the asymptotic
distribution of the supremum test statistic under alternatives. With the or-
dered alternative Hi in mind, We shall give a simple normal test based on
an estimator of the parameter

D = Γ(F2(t) - F1(t))dF(t).
Jo

More importantly, we are able to study the power of the proposed test analyt-
ically rather than through simulations for some selected alternative models.

In section 2, we derive the asymptotic distributions of the proposed test
statistic under both the null and alternative hypothses. In section 3, we
compare the power of the proposed test with the D3n and D4n tests studied
in Aly et al. (1994). An application of the proposed test to HoePs (1972)
mice data is also presented. The proof of main theorem is given in the
Appendix.
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We close this section with the remark that even though throughout this
paper only two causes of failure are considered, the results extend to the case
of multiple competing risks in which any two of the cause-specific risks are to
be compared. No restrictions need to be imposed on the dependency between
the multiple risks except that the censoring time must be independent of the
component lifetimes.

2 Development of the Test Statistic

Let Nj(t) = #{i : Xi < ί, δ{ = j}, j = 1,2, and N(t) = Nt(t) + N2(t) be
respectively the number of observed system failures due to cause j and the
number of observed system failures by time t. Let Y(t) = #{i : X{ > t} be
the number of systems still at risk just prior to time t.

The Aalen estimator of the cumulative CSHR function Aj(t) — /J gj(u)du
is given by

1 2

Y(u) ' J - 1 ' 2 '
where by convention J Ξ O . The estimator Λj is the special case of an esti-
mator discussed by Aalen and Johansen (1978) in connection with inference
for the transition probabilities of a non-homogeneous Markov chain with
finitely many states.

To derive the test statistic, first note that we can write

D = / [S(t)]2d(A2(t) - Λ!(t)).

Thus a natural estimator for D is given by

(2.1)= /
Jo

where

is the product-limit estimator of S proposed by Kaplan and Meier (1958).
Here, AN(t) = N(t) - N(t-), and N(t-) and 5(ί-) are the left-hand limits
of N(t) and S(t), respectively.

Under no censoring the test statistic Dn in (2.1) reduces to

poo

Dn = / (F2n(t) - Fln(t)) dFn(t), (2.2)

where Fn(t) = F2n(t)+Fln(t) and Fln(t), F2n(t) are the empirical cumulative
incidence functions of i*\ and F2, respectively.
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We introduce some notations: T = maxκ t <n Jft , H(t) = 1 — S(t)Sc(t),
τH = sup{< : H(t) < 1}, τF = sup{ί : F(t) < 1}, F τ ( ί ) = F(t Λ T),
5 τ(ί) = S(t Λ Γ), M^ί) = Ni(t) - J* Y(s) dAjis), M(t) = Mλ(t) + M2(ί),
and A(t) = Λi(ί) + Λ2(t). By Aalen and Johansen (1978), Mi and M2 are or-
thogonal square integrable martingales with predictable variation processes
(Mj.Mj^t) = f^Y(s)dAj(s), j = 1,2.

In the reminder of this paper, for convenience, we assume that Sc is
continuous. This condition is however not necessary. The following lemma
will be used in proving our main result.

Lemma 2.1 For any r such that H(τ-) < 1, we have

n(S(t) - S(t)) = -S(t) ί S'U ^' + op(l) uniformly for t e [0,r]

(2.3)

sup \y/n(S(t) - S(t))\ = Op(l). (2.4)
0<ί<τ

Moreover, if

Sc(t) < °°« ( 2 5 )

then

ι:
sup \\/n(S(t) - S(t))\ = Op(l). (2.6)

0<ί<τ H

Proof By lemma 2.4 of Gill (1983), we have

ST(t) - S(t) _ /' S(u-) dM(u)

J
_ /' S(u-) dM(u)
" Jo ST(u) Y(u) 'Y(u)

Since for r < r # , P ( Γ > r) —• 1 as n —»• oo, we have, for any 6 > 0,

P( sup \/n|Sτ(*) - 5(ί)| > e) < P{T < r) -+ 0 as n ̂  oo.
0<ί<τ

That is,

sup y/n\Sτ(t)-S(t)\-£+Q as n ̂  oo. (2.8)
0<t<τ

Note that $Qy/ndM(u)lY(u), t 6 [0,τ], is a square integrable martin-
gale, for T < TH' By the Lenglart's (1977) inequality, for any n > 0, η > 0,
we have

I sup /
\0<ί<τ ^0

y/ndM(u)
>
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Now, since Y(τ)/n—>S(τ)Sc(τ) > 0 for r < τ#, we obtain

(u)
sup

0<ί<τ
Jo Y(u)

(2.9)

By (2.7), (2.8) and (2.9), the result (2.3) in lemma 2.1 follows provided we
show that

Jo Sτ(u) Y(u) Jo Y(u) + o*>(1)' f o r 0 ^

The result (2.4) follows immediately from (2.3) and (2.9).
Applying Lenglart's inequality again, for any e > 0, η > 0,

r, ( ί is(u~) Λ y/ndM(u) \
r sup / τ - 1 — — - — > e

\o<t<τ Jo \Sτ(u) J Y(u) J
Γ (S(u-) V ndλju) ^

S(U)

<l
S(u)

dA(u) > η

By lemma 2.8 of GiU (1983),

sup \S(t) - S(t)\-^0 asn^oo.
0<ί<τ

By the bounded convergence theorem,

n rfS(u-)-S(u)V „. P
dA(u)—i O as n -*• oo.

S(u)

Since 7/ can be chosen so that η/e2 is arbitray small, we have

P
oo.

This gives (2.10) and completes the proof of lemma 2.1. D
The main result is given by the following theorem.
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Theorem 2.1 Under the assumption (2.5), we have

y/n(Dn - D)-^7V(0, σ2) as n -> oo, (2.11)

where

See the Appendix for the proof.

Remark 2.1 Under the null hypothesis Ho,

Remark 2.2 When there is no censoring (i.e. Sc = 1,), (2.1C) becomes

O
= I + 4 f - Fι(t))S(t) d(F2(t) - Ft(t)) - 4 Q H S(u) d(F2(u) - JΊ(tt)))'

= \ + 2Γ(F2(t)-F1(t))dF(t)-4(Γ
o Jo Jθ

In particular, σ2 = \

A consistent estimator σ2 of σ2 in (2.12) can be obtained by replacing
Λi, Λ2 by Λi, Λ2 and S and Sc by their consistent product-limit estimators
S and SCj respectively.

The test for Ho is based on the test statistic y/nDn/a, which converges
to a standard normal distribution under the null hypothesis by Theorem 2.1.
The approximate power of this test of size a is equal to

za) = P(V^(Dn - D)/σ > za -

« 1 - Φ(za - y/n

where Z is a standard normal random variable and zQ is the upper a per-
centile of the standard normal distribution Φ.
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3 Numerical Studies

?.l Power Comparison

The finite sample properties of the test statistic Dn will be compared
with those of Z?3n, the test statistic proposed by Aly et al. For this com-
parison, we use the same simulation model as used by Aly et al., namely
we generate (TΊ,T2) from Block and Basu's (1974) absolutely continuous
bivariate exponential (ACBVE) distribution with density

/(*1,<2) = :
6 ^ i f t i < , 2

= Λ 2 Λ ( Λ 1 + Λ o ) e _ Λ 2 t 2 _ ( Λ l + Λ o ) f s . f h > ^
Ai + A2

where (λo, λi, λ2) are parameters and λ = λo + λi + λ
For the ACBVE model, we have,

Al + A2 Ai •+- Λ2

S(t) = e~Xt, F(t) = 1 - e " λ ί .

The CSHRs gj(t) are proportional and the alternative hypothesis # 1 is
equivalent to λi < λ2 The parameter λo controls the degree of dependence
between X\ and X<ι, with independence if and only if λo = 0. As in Aly et
al., we set λi = 1 and considered various higher values of λ2 corresponding
to increasing departures from i/o

The censoring random variable was generated from exponential distri-
bution with parameter 7. Two values of 7, namely 7 = 1 and 7 = 3, were
taken. These choices correspond to "light" and "heavy" censoring (about
25% and 50% censored, i.e., P(C < X) = ^ = 0.25, if λ = 3, 7 = 1; and
= 0.50, if λ = 3, 7 = 3).

For the ACBVE model, and the above censoring model, calculations yield

+ λ2

σ2
A / /A2-AΛ2\

3 λ - 7 ^ Uα + λ J ) '

Further, following the power discussion at the end of last section, we obtain
that the approximate power of the test of size a based on normalized Dn is

- Φ (za - (λ2 - λ i ) v / n ( 3 λ ^ 7 ) / 4 ^ λ i λ 2 λ ) . (3.2)

Table 1 gives the observed levels and powers of the tests based on Dn and

%n at the significance level a = 5% for the sample size n = 50, 100 and 500.
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For uncensored data the test based on Dn appears to have less power than
the one based on D 3 n . But for censored data the test based on Dn has more
power than the one based on Z) 3 n. In fact, as the censoring becomes more
severe and the departure of H\ from Ho increases, the Dn test out performs
Dsn and withstands the loss of information due to censoring. Note that the
simulation results of Aly et al. show that their test jD4n is more conservative
than Όzn in the presence of censoring. Furthermore, our test based on Dn

is simple. We can easily evaluate the power of the test analytically rather
than through simulations. For the model (3.1), under the same exponential
censoring distribution, Table 2 gives the approximated levels and powers of
tests based on Dn calculated from (3.2). The approximated values in Table
1 are quite close to their corresponding values in Table 2.

Table 1. Observed levels and powers of tests based on Dn for testing equal-
ity of two CSHRs at an asymptotic level of 5%. The values in brackets
correspond to

uncensored

lightly censored

heavily censored

uncensored

lightly censored

heavily censored

uncensored

lightly censored

heavily censored

λo = 0

λo = l

λχΓΛ
λo = 0

λo = 0

λo = l
λo = 0

λo = l

λo = l

λo = l
λo = 0

λo = l

λ o - 1

λ2 = 1.0 1.5 2.0 2.5

n = 50

5.4 (4.90) 34.0 (39.46) 66.3 (74.95) 87.1 (91.96)

5.3 (4.90) 36.7 (39.46) 68.5 (74.95) 87.3 (91.96)

6.3 (3.64) 29.4 (27.64) 62.4 (60.52) 83.8 (82.91)
6.0 (3.87) 32.9 (30.00) 64.9 (63.64) 84.7 (84.80)

4.7 (2.29) 21.8 (16.02) 51.2 (39.76) 73.6 (63.73)
5.1 (2.82) 26.2 (19.79) 55.8 (46.75) 78.5 (70.27)

n = 100

4.8 (4.44) 55.9 (61.05) 90.9 (95.11) 99.1 (99.78)

5.8(4.44) 55.2(61.05) 90.7(95.11) 98.9(99.78)

3.9 (4.16) 51.3 (47.97) 88.6 (87.64) 98.7 (98.57)
5.1 (4.06) 50.4 (51.22) 88.7 (89.76) 98.4 (98.75)

6.0(2.61) 38.8(29.12) 75.3(68.79) 93.5(91.57)
6.0 (3.64) 43.6 (35.85) 79.0 (76.49) 95.7 (94.72)

n = 500

4.6 (4.63) 98.7 (99.71) 100 (100) 100 (100)

4.9 (4.63) 98.1 (99.71) 100 (100) 100 (100)

4.9 (4.71) 97.6 (97.94) 100 (100) 100 (100)

4.2 (4.64) 97.6 (98.52) 100 (100) 100 (100)

3.8 (3.74) 89.8 (88.78) 100 (99.98) 100 (100)
5.7 (4.27) 94.4 (93.42) 100 (100) 100 (100)
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Table 2. Approximated levels and powers of tests based on Dn calculated

from (3.2).

uncensored

lightly censored

heavily censored

uncensored

lightly censored

heavily censored

uncensored

lightly censored

heavily censored

λo = 0

λo = 0

λo = l
λo = 0

£:!
λo = l
λo = 0

λo = l

λo = 0

λo = l

λo = l
λo = 0

λo = l

λ2 = 1.0 1.5 2.0 2.5

ra = 50
5.00 34.64 69.85 89.61
5.00 34.64 69.85 89.61

5.00 31.51 65.40 86.82

5.00 32.42 66.56 87.49

5.00 24.93 54.89 79.10

5.00 27.81 59.09 82.03

n = 100

5.00 54.86 92.17 99.31

5.00 54.86 92.17 99.31

5.00 50.03 89.28 98.82
5.00 51.46 90.08 98.95

5.00 39.14 80.37 96.61

5.00 44.00 84.29 97.60

n = 500

5.00 98.95 100 100

5.00 98.95 100 100

5.00 97.91 100 100

5.00 98.28 100 100

5.00 92.17 100 100
5.00 95.50 100 100

Γ.2 Application to Real Data

We applied our test to a set of mortality data given by Hoel (1972). These
data were obtained from a laboratory experiment on 99 RMF strain male
mice that had received a radiation dose of 300 rads at 5-6 weeks of age and
were kept in a conventional laboratory enviroment. Causes of death were
classified into thymic lymphoma, reticulum cell sarcoma, and other causes.
As in Aly et al. did, we treat "other causes" as censoring (about 39%), and
take the two types of cancer mortality as the causes of failure that we wish
to compare. According to Hoel, it is reasonable for us to assume that the
two deseases are lethal and independent of other causes of death. But we do
not need to assume independence between the two causes of the death.

Let #1 and #2 be the cause specific hazard rates for death from lymphoma
and sarcoma in the absence of risk from other causes of death, respectively.
Our test for gx = g2 gives y/riDn/a = 8.2322 (p-value < 10~7 ) to indicate
that the difference in the two CSHRs is highly significant. The omnibus test

n of Aly et al. is only significant at about 5% level.
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Aly et al. suggested that up to about 500 days, the CSHR for death from
lymphoma is higher than that from sarcoma and the situation reverses after
500 days. Our test for g\ = g2 against g2 < 9i for survival less than 500
days gives y/nΌnjσ = -4.1783, yielding a p-value 1.47 x 10~5. On the other
hand, our test for g\ = g2 against g\ < g2 for survival over 500 days gives
yJnΌnlσ - 33.8794. Compared to the test based on y/nD3n, the tests based
Dn give more significant p-values for both the cases.

Appendix

Proof of Theorem 2.1

Define Zn and Zrn as

Zn = y/ϋ(Dn ~ D)

Zτn = ̂  QΓ S\t-) d(A2(t) - Ai(t)) - j * S\t) d(A2(t) -

Let Z and Zr be normal random variables with zero means and varainces

σ 2 and

6 (t) (

- 4

respectively. Under condition (2.5), it is straight forward that σ 2 —> σ 2 as

r —• TH' This implies that Z τ—>Z as r —»• r/j. The convergence of Zn—>-Z

follows from the following two results (A.I) and (A.2), and application of

Theorem 4.2 of Billingsley (1968).

Zτn-^Zτ as n -+ 00, for r < 77/. (A.I)

Urn limsup P(\Zτn - Zn\) > e) = 0, for any β > 0. (A.2)
τ ^ τ i ί n-H oo

Proof of (A .1).
Using (2.4) of Lemma 2.1 and the decomposition
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we have for r < r#,

s(t )

S(t)
Γ 2S(t)(S(t-) - 5(ί)) d(Λ2(<) -

J 0

where from (2.3), the second term is,

2S(t)(S(t-) - 5(0) d(A2(ί) - Aχ(ί))

) - A.W) + MD

[ [ 2S\u) d(A2(u) - *,(.)

Hence

+ / \S\t)- I 2S2(u)d(A2(u)-

Let

U(s) = -I \S2(t)+ I 2S2(u)d(A2(u)-.

The process £7(<s),0 < θ < r < TH is local square integral martingale with
predictable variation process

2S\u) d(A2(u) - Λχ(«)

By the Glivenko-Cantelli theorem, Y(t)/n converges to P(T > t) =
S(t)Sc(t) uniformly in t G [0, r] with probability one. Hence, the predictable
variation process < U > (s) converges uniformly in t £ [0, r] with probability
one. In particular,
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Next, we check for the Lindeberg condition as follows. Define

t) + Γ 2S\u) d(A2(u) - Λi(tO))/Γ(t)
Jt

t) - Γ 2S2(u) d(A2(u) - Ai(«)))/y(ί).
Jt

For any e > 0, let

ffe(a) = Γ ^(4)7(1 jff^ί)! > e)dM 1 (*)+ Γ H2(t)I(\H2(t)\ > e)dM2(t)
Jo Jo

be the square integral martingale, containing all the jumps of U larger in

absolute value that c. The predictable variation process of Ue is

<Ue> (s) = Γ H*(t)I(\Hi(t)\ > e)Y(t)dA1(t)+ Γ HJ(t)I(\H2(t)\ > e)Y(t)dA2(t),
Jo Jo

•p

which converges to zero in probability as n —• oo since y/n/Y(t)—> 0 uni-

formly in / G [0,τ] for r < r # . So the Lindeberg condition holds.

Applying Rebolledo's (1980) martingale central limit theorem, we have

d
>Zτ as n —y oo.

Proof of (A.2).

For any e > 0,

P(\ZTn - Zn\ > 2β)

ί-) d(Λ2(ί) - /-) <i(A2(ί) - Λχ(f)) > 2 e

s: Y(t)
>e

(S\t-) - S2(t))d(A2(t) -

For any r' such that H{τ'-) < 1, £ is a square

integrable martingale on [τ,τr\. By the Lenglart's inequality, for any η > 0,

P sup
\T<U<TΆT JT Y(t)

> €

Y(t)/n
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for any β e (0,1), by Lemma 2.6 and Lemma 2.7 of Gill (1983).

Letting τ' f τjj and choosing

dF(t)

Sc(t)

we obtain

g, >

Since JQH

 S >J < oo and β is arbitrary, this leads to

Um li Γ
JT Y(t) •)•*

Now,

> €

< P [y/^

<β

\S(t-) - S{t)\(S(t-) + S(t))dA{t) > e

1 \S(t-) - StyKβ^Sit) + S(t))dA(t) > e

max

for any β € (0,1), by Lemma 2.6 of Gill (1983). By Theorem 2 of Ying
(1989),

±Z2(t), t e D[0, τH)

as n —y oo, where Z2 is a Gaussian process with covariance function

and D[0,TH] is the space of functions which are right continuous and have
left limits, equiped with the Skorohod metric. We have

yfn max \S(t) - S(t)\-1+ max \Z2(t)\
r<t<T τ<t<T
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as n —• oo, and

lim sup P (Vnl Γ (S\t-) - S2(t))d(A2(t) - A1(t)) > e)
n-ί-oo \ \Jτ J

Since /? is arbitrary, we have

lim lim sup P{yfn Γ(S2(t-) - > e) = 0.

Therefore, for any e > 0,

lim l i m s u p P ( | Z τ n - Zn\ > 2e) = 0.
τ - f T J ϊ n—» oo

This completes the proof. D
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