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Abstract

A sequential allocation rule based on an optimal strategy for
a two-armed bandit problem is proposed for use in the problem
of identifying the better of two treatment alternatives in clinical
trials. The purpose of the rule is to ensure more ethical alloca-
tion of patients while retaining a given probability of correctly
selecting the better treatment at the close of the trial. The be-
havior of the bandit rule is compared with two other commonly
proposed allocation rules: play-the-winner and vector-at-a-time.
It is found that, in general, the bandit rule performs as well as,
and usually remarkably better than, both of the other allocation
rules. All comparisons are based on exact computations using
forward induction algorithms carried out on desktop worksta-
tions.

1. Introduction. Medical research is often complicated by the
inherent dependence of biological experimentation on living subjects.
Moral conflicts are invariably generated by the obligation of a researcher
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to balance the well-being of subjects who participate in clinical tri-
als with that of future patients who stand to benefit from new ad-
vances in medical treatment. This longstanding dilemma has received
considerable attention in both the statistical and medical literatures,
where discussions pit utilitarian ideals against the individualistic ethic
[see Anscombe (1963); Bartlett, Roloff, Cornell, Andrews, Dillon and
Zwischenberger (1985); Byar, Simon, Friedewald, Schlesselman, DeMets,
Ellenberg, Gail and Ware (1976); Weinstein (1974)]. As a consequence,
the problem of determining the better of the treatment alternatives
must encompass the consideration of ethical factors as well as the costs
of incorrect population selection and sample size.

Classical randomized clinical trials in which patients are allocated
in approximately equal proportions to different treatment regimens rep-
resent an extreme of the utilitarian goal. The individualistic goal, on
the other hand, is exemplified in trials employing myopic allocation,
in which patients are assigned to the treatment that has the highest
current expected probability of success.

Allocation rules in which patients are adaptively assigned to com-
peting therapies offer a compromise between the two extremes. In the
early stages of sampling, adaptive schemes emulate proportional rules,
and later, if the data suggest that one of the treatments is superior, the
rules adjust themselves in the direction of myopic allocation.

Frequently, a main objective of a clinical trial will be to determine
whether a new treatment is better than a current favorite or a compet-
ing new treatment. In particular, the ability to make decisions based
on classical frequentist arguments seems to be part of accepted clinical
trial methodology. Adaptive sampling strategies are not designed to
collect information that leads naturally to these types of inferences. A
reasonable question, then, is whether investigators can attain their re-
search goals while simultaneously promoting the welfare of the patients
within the trial. In this paper, we show that, when applied in appro-
priate research settings, an adaptive clinical trial design can not only
provide information commensurate with that in a balanced design, but
also reduce costs to patients associated with the trial.

2. The problem. Consider data collected within the framework
of a controlled trial into which patients are entered sequentially and
assigned to one of two treatments. An upper bound is placed on the
number of subjects in the trial, JV, but, because one may stop before
N patients have been entered, the actual sample size for a trial is a
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random variable, n. With regard to the patient responses, we assume
the following:

• The outcome measures are z<} i = 1 , . . . , where Zi = and Xji, j =
1,2, are independent Bernoulli random variables with success pa-
rameters P i5 (Pi, P2) € Ω = (0,1) x (0,1).

• The outcome for patient i is known before assignment is made for
patient i + 1.

• The success parameters, Pi and P2, remain constant throughout
the trial.

2.1. Error probabilities. As stated, the research goal for the trial
is to determine the better of the two treatments, so a primary concern
in the design of the trial is that there be a high probability of arriving
at a correct terminal decision. Even if there were no other concerns or
costs associated with the trial, it would be impossible to choose a single
design that would optimize the probability of correct selection, P(CS),
for all (Pi,P 2) G Ω. Thus, to make the problem tractable, we restrict
the class of designs that we consider to include only those that satisfy
the following constraint: We must have

(1)
P{CS) > P* whenever \P2-P1\= A < A\

The constants P* and Δ* are chosen in advance to satisfy the needs of
the medical researchers and are known in the selection literature as the
(P*,Δ*) requirement [see, for example, Bechhofer, Kiefer and Sobel
(1968)]. Other parameters of the selection design are chosen to satisfy
the (P*,Δ*) requirement along with all other design criteria.

2.2. Other criteria. We consider designs with three components
here - an allocation rule, a stopping rule and a terminal decision rule.
Our main interest, however, is to isolate allocation rules so that com-
parisons may be drawn among them. To this end we fix the form of
the stopping and terminal decision rules.

A terminal decision rule for the two-population selection problem
has three possible outcomes: select one of the two treatments as bet-
ter or declare no meaningful difference between treatments. Here, we
focus primarily on the two outcome decision rule that specifies a single
'better' treatment at the trial's termination. However, since selection
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procedures have often been criticized for disallowing the reasonable con-
clusion that there exist times when one should not differentiate based
on the available data, we include results for the three decision model as
well. We believe the general behavior of P(CS | Pi, P^) for this model
provides some extra insights regarding the allocation rules of interest.

We base our stopping and terminal decision rules on the criteria
used in Kiefer and Weiss (1971, 1974), as theirs were among the rare
studies that allowed the 3-way rule and it is useful to have an external
basis for comparing some of our calculations.

For Bernoulli outcome variables, it is common to use a stopping
rule that depends on the number of accumulated successes, S^, and/or
failures, F^, for the two treatments, i = 1, 2 at Stage k < N. Following
Kiefer and Weiss (1971, 1974), we consider stopping rules based only on
the number of observed successes. The main component of our stopping
rule calls for termination whenever the difference between the observed
number of successes equals a predetermined constant, r, that is, stop
at Stage k if
(2)

\Slk-S2k\=r, r<k<N.

A secondary feature of the rule is curtailment To curtail a trial means
that we stop it as soon as there is sufficient information to guarantee
that the treatment selected as better could not be altered by the re-
maining number of observations - regardless of their outcomes. Thus,
as soon as we reach a curtailment point or (2) occurs, the trial is stopped
and the treatment with the greater number of successes is declared the
winner. If S\N = S2N, then a fair coin is tossed to determine the better
treatment.

To incorporate a decision of no difference for the three way decision
rule, we again consider curtailed rules. That is, we stop and select a
better treatment if we encounter the event (2); but if, at some stage
fc, N — r < k < JV, the difference | Su — S2k | cannot possibly reach
r in the remaining trials, we stop and declare no meaningful difference
between the treatments. For both stopping and decision structures, the
parameters r and N are chosen to satisfy the (P*,Δ*) requirement.

2.3. Ethical criteria. Clinical trials involve multiple costs, so a
good trial will be designed to diminish whatever combination of costs
seem to be most critical. In some instances, the primary costs may
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be financial. In others, time may be the major concern. Here, we are
interested in ethical costs. There are a variety of ways to measure the
ethical costs associated with a clinical trial, and we do not argue here
for the usage of any particular cost function over another. That is
a different discussion entirely, and we refer readers to Bather (1985),
Anscombe (1963), Berry and Eick (1987), Chernoff and Petkau (1985),
and Hardwick (1989), among others.

In this study, the goal is to achieve some sort of fair comparison
among allocation rules. In general, such comparisons entail the study
of the number of patients who do poorly during the study, the number
of patients required to carry out the study, and the number of 'extra'
patients who do poorly in the future as a result of an 'incorrect' terminal
decision. In the present set-up, the latter factor is addressed mainly by
the (P*,Δ*) requirement. As for the former two criteria, we consider
the following measures:

• Expected Successes host[E(SL)]: Consider a design A and
let NH > N be an extended fixed horizon size for the problem.
For this measure, we carry out the trial as usual, but when a
terminal decision is made at time n < N, we allocate the patients
from Stage n+1 to Stage NH to the treatment declared as better at
Stage n. IfE(S | A, NH) is the total expected number of successful
patient outcomes in the trial ofNH observations (using design A),
then the expected successes lost is given by

E{SL I A,NH) = max(P1;P2) x NH - E(S \ A,NH).

• Expected Failures[E(F)]: The number of failures that one ex-
pects to observe before arriving at a terminal decision.

• Expected Inferior Treatment[E(I)]ι The expected number of
patients allocated to the inferior therapy during the trial

• Expected Sample Size[E(ή)]: The expected study length.

Given two designs, A and B, with given stopping and terminal de-
cision rules, we define design A to be superior to design B with respect
to criterion C in a region TZ of the parameter space if

• A and B both satisfy the (P*,Δ*) requirement, and
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Note that the parameters that allow different procedures to satisfy the
(P*,Δ*) requirement may differ among procedures.

3. Play-the-winner and vector-at-a-time allocation rules.
Two allocation rules that have received significant attention in the lit-
erature are Play-the-winner (PW) and Vector-at-a-time (VT). As orig-
inally described by Robbins (1952), the PW rule is an adaptive proce-
dure whose strategy indicates that the investigator follow a successful
trial outcome by another trial from the same population, and follows an
unsuccessful outcome by a trial from the opposite population. There
are many variations of the PW rule [see, for example, Zelen (1969),
Hoel, Sobel, and Weiss (1975), and Wei and Durham (1978)], but we
concentrate on the above version because of its intuitive appeal and
tractability.

Vector-at-a-time (VT) sampling is the usual balanced setup for
matched pair studies in which trials are carried out two at a time with
one observation being made from each of the two treatments at each
stage of the trial. Equal allocation strategies such as VT are used often
in practice because they have excellent decision making properties, cir-
cumvent objections to unbalanced allocation, and are well understood
analytically.

For two-population dichotomous outcome problems, numerous stud-
ies have been carried out under the constraints (1), and studies of the
Play-the-Winner and Vector-at-a-Time rules have dominated this liter-
ature. In their book, Buringer, Martin, and Schriever (1980) compile
and discuss a large number of these studies noting repeatedly that there
are certain regions of the parameter space in which one or the other
of the rules PW or VT consistently outperforms the other. They also
point out that under virtually no circumstances will either rule behave
better uniformly for (Pi,P2) > Δ*, let alone for all (Pi,P2) € Ω. We
are interested in finding an allocation rule that mimics the behavior of
each of these two rules in the region of the parameter space in which
they perform the best.

4. Bandit allocation rules. Much of the early work in the area
of adaptive allocation was done in the context of what are termed as
Bernoulli two-armed bandit (TAB) problems. In such problems, the
investigator observes, at each stage, a Bernoulli random variable from
either Population 1 (with unknown success rate Pi) or Population 2
(with unknown success rate P2), with the goal of maximizing the sum
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of an infinite sequence of observations that are discounted according to
some sequence B — {βi.β^.βz, -- -), 0 < β <1.

Originating with Thompson (1933) and finding early application in
research on adaptive learning, TAB problems pose a significant chal-
lenge to investigators who wish to understand the tradeoffs inherent
in problems where information may lead to reward. Since the 1930's,
numerous researchers have studied properties of the TAB. Berry and
Fristedt (1985) provide a summary of key results in their book Bandit
Problems: Sequential Allocation of Experiments. Their book also con-
tains an annotated bibliography offering a broad and excellent overview
of bandit related literature.

Interestingly enough, even in its first incarnation, the TAB problem
was posed as a problem of allocating patients within a clinical trial [see
Thompson (1933)]. Thompson considered a finite horizon trial with
N patients in which each response carried the same weight. This is
equivalent to using a uniform discount sequence of length N : B =
(1 ,1 , . . . , l } 0,0, . . . ) . By placing independent uniform priors on Pi and

N

P2, he then studied the TAB problem within a Bayesian framework.
Bayesian formulations of bandit problems are now the norm; and,

while the choice of prior distribution may vary according to the in-
vestigator, we follow Thompson and use independent uniform priors.
These priors are useful for initial comparisons among allocation rules
because 1) they contain little initial bias, 2) the prior information is
rapidly overcome by the information from incoming data, and 3) the
parameters of the beta posterior distributions concisely summarize the
relevant information from the study to date. It is certainly the case,
however, that there may be situations in which the prior distributions
should reflect a greater amount of information or even a bias in fa-
vor of one of the therapies. In such cases, a beta prior with carefully
chosen parameters can often provide a reasonable representation of an
investigator's prior knowledge without increasing the complexity of the
problem [see Hardwick (1986a)].

We refer to the bandit problem with uniform discount sequence and
independent uniform priors as the uniform TAB (UTAB). While more
or less inaccessible in 1933, optimal solutions for the UTAB do exist,
and with currently available computers, can be obtained via dynamic
programming.

In the UTAB problem, an optimal strategy will, in the early stages,
emphasize the gathering of information, possibly at the expense of the
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gathering of immediate reward. The effect will be that the initial pa-
tients will be treated like patients in a VT design, in which it is assumed
until the end of the study that the treatments offer the same progno-
sis. Toward the end of the study, when a decision is imminent and the
need for information is diminished, the emphasis on immediate reward
is increased until, at the last stage, the myopic rule is used. During
the middle stages, there is a gradual shifting of emphasis from the ac-
cumulation of information to that of reward. An intriguing feature of
the optimal strategy is that it neither treats trial patients uniformly
nor does it optimize the treatment of each patient individually. Thus,
even a rule that optimizes the treatment of the trial patients on av-
erage retains some conflicting ethical attributes. See Berry (1978) for
applications of the UTAB in clinical trials designs.

In an attempt to duplicate some of the positive ethical features of
the UTAB while alleviating some of the obstacles it poses, we turn
to an allocation rule based on a bandit problem that utilizes a dif-
ferent discount sequence. The rule we examine, the modified bandit
(MB), is an ad hoc rule based on optimal strategies for a TAB with
geometric discount (GTAB). In the GTAB with discount sequence,
B = {I,/?,/?2,/?3,.. .},0 < β < 1, the goal is to maximize the expecta-
tion of the discounted sum of observations, Έ™βι~1Zi, over an infinite
horizon, rather than the finite sum, T^Zi encountered in the UTAB.

The optimal strategy for this bandit problem has a special appeal for
clinical trial applications since it can be viewed as offering an ethically
equitable mechanism for balancing outcomes of present and future pa-
tients: the relative weight of the result of each patient is constant when
compared to the sum of the weights of all future patients. In the GTAB,
one assumes that there will always be more patients, so the need for
information is never completely absent as it is in the last stage of a fi-
nite horizon problem. However, as more and more patients are treated,
information accumulates, and thus, the need to sacrifice immediate re-
ward to gain information is diminished. Note that, while here again,
the allocation rule does not attempt to treat each patient optimally, it
does seek to treat them all the same, while simultaneously seeking to
maximize the cumulative well being of the patients.

As mentioned, bandit allocation strategies are not designed to be
used for statistical inference, so there is no inherent (inferential) deci-
sion making structure that arises from using such rules. To account for
the fact that the geometric bandit has an infinite horizon, we overlay
it with the stopping rules relevant to the problem. Further, to accom-
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modate the need to make a decision, we append the design with the
terminal decision corresponding to the stopping rule selected.

Thus, the rule that we study here is a finite horizon rule that be-
haves as an optimal allocation rule for a geometric TAB until either the
stopping rule or the truncation rule is invoked. Because the eventual
forced stopping is not incorporated into the decision process as initial
information (as it would be in a non-modified finite horizon TAB prob-
lem) the MB continues to seek information even during the final stage
of the trial, just as physicians are never finished learning from their
patients. Thus, while the modification of the bandit rule is due to the
practical constraint of eventually having to draw a conclusion regarding
the two treatments, it is actually a rather realistic tactic.

5. Computational methods and results. Ethical attributes
aside, an experimental design must be straightforward to carry out if it
is to be useful. PW and VT are trivial procedures to define and follow,
and we know optimal solutions for the UTAB can be obtained with a
great deal of computation. The GTAB problem, however, is an infinite
horizon problem, and such problems cannot be solved via the dynamic
programming methods used for finite horizon TAB problems. In fact,
exact solutions to GTAB's would be all but impossible were it not for
a remarkable result due to Gittins and Jones (1974).

According to the Gittins and Jones theorem, in a bandit problem
with geometric discount and independent arms, there exists for each
arm separately an index with the property that, at any given stage,
n, it is optimal to allocate the next patient to the treatment with the
higher index. The index for an arm, the Gittins Index, may be defined
in terms of a one-armed bandit [see Berry and Fristedt (1985)].

In the one-armed bandit problem, there is an arm with unknown
success probability, Po, competing against an arm with known success
probability, Pfc. Let the prior distribution of PQ be fixed. If Pk is suf-
ficiently small, it will be optimal to use the unknown arm at the next
stage. If Pk is sufficiently large, it will be optimal to use the known
arm at the next stage and for all successive stages. The Gittins Index,
associated with the arm with unknown success probability, is defined
to be the value of Pk such that one would be indifferent if one had to
choose between the known and unknown arms at the next stage. The
index is a function of the posterior distribution and the discount factor

β
While the existence of the Gittins Index removes many computa-
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tional difficulties associated with the GTAB, actually computing the
index for any but the most trivial of bandit problems remains problem-
atic. Furthermore, the number of operations involved in the computa-
tion of the index increases drastically as β approaches one. Since we
have found that the most effective values of β for our application are
those that approach one rapidly as the horizon size increases, we use
approximations for the index that are far easier to compute.

The approximations that we use, due to Berry and Fristedt (1985),
are actually lower bounds for the Gittins Index. Since we are interested
only in the relative values of the indices, the fact that these approxi-
mations are everywhere lower bounds is an asset. Furthermore, while
the lower bounds are close to the true index [see, for example, Table
5.2 of Berry and Fristedt (1985)], it is not clear that using the index
itself would improve performance for our application. From the general
expression for the lower bound given an arbitrary prior distribution
[example 5.4.6 of Berry and Fristedt (1985)], Hardwick (1986b) derives
the lower bound for the special case in which the prior distribution is
beta. This bound with geometric discount, {/?*}, and beta prior with
parameters (A,B) is given by Λ* = sup{Λr : r = 1,2,...}, where

= T(A + 1)/T(A + B + 1) - BΣ^βΎjA + i)/T(A + B + J
T(A)/Γ(A + B)- BΣίpΓiA + i - 1)/Γ(Λ + B + i)

Since {Λr : r = 1,2,...} is unimodal, we may let r* = min{r : Λr+i <
Λ r}, and then set Λ* = Λr*.

Aside from the extra computational work associated with defining
certain adaptive procedures, there is also the problem of determining
the characteristics of such procedures. With a rule as simple as PW,
one can often obtain design characteristics analytically, as was done
by Kiefer and Weiss (1974). More frequently, however, investigators
find it necessary to simulate or otherwise approximate the performance
of adaptive procedures in order to examine properties of the rules for
an interesting range of parameter configurations. While such studies
have been critical to our developing understanding of adaptive designs,
the advent of better computing algorithms and faster, more powerful
computers allows us to compute exactly many of the results that in the
past, we could only approximate. In particular, the results presented
here have been obtained using forward induction or path counting algo-
rithms as described by Hardwick (1991) and the paper by Hardwick and
Stout in this volume, and were carried out on a desktop workstation.
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As mentioned in Section 3, there exist no rules that perform uni-
formly best (over all Ω) with respect to P(CS). Furthermore, even
after restricting the class of rules to those satisfying the (P*,Δ*) re-
quirement, it is difficult to locate families of rules that are uniformly
best with respect to a second criterion such as E(SL),E(F),E(I) or
E(N). Since our goal here, however, has been to study the dynamics
of the rules with respect to all of the specified criteria, we have sought
design parameters (r, n) and β that perform well in general. Naturally
one could emphasize a single criterion, as did Kiefer and Weiss (1971,
1974) with £"(/), tuning the design parameters for that criterion alone.

Regarding the general behavior of the VT, PW, and MB rules, our
comments are based on data from numerous (P*,Δ*) combinations.
The tables and figures included here are drawn from data sets chosen
to exemplify the trends we observed.

5Λ. The two-decision problem. The first data set was computed
for the two decision problem with (P* = 0.9, Δ* = 0.1), and Fig-
ures 1 through 9 provide graphical representations of the results. The
parameter configurations for the designs displayed in the figures is
(P* = 0.9, Δ* = 0.1), with β = 1 - 10"11 and

V T : r = 13 N = 164
P W : r = 20 N = 165
M B : r = 23 N = 177

Each of the Figures 1 to 4 compares the designs on one measure of
ethical quality by indicating the values of the relevant measure at rep-
resentative points along the line (P2 = Pi + Δ*). The lines dashed with
V's, P's and M's depict the data for the VT, PW and MB rules, re-
spectively. In this example, the horizon JV# for the measure E(SL) is
taken to be 250 for all three rules.

First we consider VT, a design whose attributes are largely foreshad-
owed by our knowledge of its fixed sample size properties. We know,
for example, that even though there is a stopping rule in the present
design, we should expect symmetry in Figures 1, 2 and 4. Naturally,
this rigidness has both disadvantages and advantages. One advantage is
simplicity. The characteristics of VT are fairly simple to compute ana-
lytically. Furthermore, no computations are required to determine how
to allocate the next patient. With respect to performance, however,
VT is the least good of the three rules. It offers marginal improve-
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Figure 1.
Expected Successes Lost
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Figure 3.
Expected Failures
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Figure 4.
Expected Sample Size
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ment for the variables E(N) and E(F) when P 2 < .2, but otherwise it
is uniformly worse (and in many cases markedly so).

The PW rule also performs as expected based on our knowledge
from other studies [for example, Buringer, Martin, and Schriever (1980)].
It offers the lowest values for all four criteria whenever P% is greater than
about 0.9. While VT may improve on PW for P% < .2, the relative dif-
ference is very small compared to the improvements made by PW over
VT in the upper regions of the parameter space. Still, with PW looking
more or less like VT for small parameter values, we find that this rule
doesn't really have the overall performance that we desire.

As we had hoped, the MB performs the best of the three rules over
the majority of the parameter space displaying truly superior behav-
ior for E(SL) and E(I) in the regions between 0.2 < P 2 < 0.9. On
another positive note, something we have not seen in these data are
longer expected study lengths than one typically associates with adap-
tive designs. The MB rule requires a substantially smaller sample size
on average than does VT.

While the results for the case studied here are typical of our more
general findings, the precise intervals on P 2 = P\ + Δ* on which the
three designs distinguish themselves will vary according to the (P*, Δ*)
requirement. A couple of other trends that we noticed were that, for
a given value of P*, the relative amounts by which the MB procedure
improves on the others increases with both N and Δ*. See Hardwick
(1986a,b) for more detailed comparison of the rules as (P*,Δ*) and N
are varied.

So far, we have focussed on the behavior of the characteristics of
our three procedures along the line P 2 = Pi + Δ*. It is also of interest,
however, to study the behavior of the criteria over the entire parameter
space. While all procedures may satisfy the global (P*, Δ*) restriction,
the actual values each procedure exhibits pointwise for each variable is
likely to be quite different and can be highly informative.

In Figure 5 we show the behavior of the P(CS) for all three rules
along the line P 2 = P\ + Δ* for the same situation as was used for
Figures 1 through 4. In this case, the three rules look pretty much the
same. As an example of the behavior of P(CS) over the entire parameter
space, however, we show P{CS | Pi, P2) for a single rule, PW, in Figure
6. This figure indicates that whenever Δ increases beyond 0.2 or 0.3, the
P(CS) increases rapidly to one and remains there. The corresponding
figures for MB and VT look almost identical and are not shown here.

Sometimes, it is more useful to see pictures of differences between
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Figure 5.
Probability of Correct Selection

1.0

Figure 6.
P(CS) for PW over Ω
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Figure 7.
E(SL]VT) - E(SL]MB)

Figure 8.
E(SL]VT) - E(SL]PW)
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Figure 9.
E(SL]PW) - E(SL]MB)

the values on given ethical criteria for the rules paired up two at a time.
Due to space constraints, we only show one set of such pictures here:
differences for the variable E(SL). In Figure 7, E(SL|VT) - E(SL|MB)
is plotted over the upper triangular portion of Ω. (In all of the three
dimensional pictures, the half of the plot not printed is symmetric to
the part shown.) From this picture we see that VT is never better than
MB for this variable, and that in some regions of Ω, MB is expected
to 'lose' as many as 11 fewer patients. Figure 8 offers similar insights
for the difference E(SL|VT) - E(SL|PW) except that there appears to
be a small region of Ω in which VT improves slightly over PW. In the
third difference picture, Figure 9, which shows E(SL]PW) - E(SL]MB).
we find that in the average trial with total horizon 250 MB loses signif-
icantly fewer patients than PW, but that PW has a minor advantage
when one of the parameters is close to one.

5.2. The three-decision problem. For the three-decision problem,
we work with the data set in which the (P*,Δ*) requirement is set
at (0.8,0.1). The data for this example are exhibited in Tables 1 and
2. In Table 1, we have the values for three ethical criteria, E(I),
E(F), and E(N), for fixed values along the line P 2 = -Pi + Δ*; P 2 =
0.15,0.25,..., 0.95. Table 2 shows the probability of arriving at a termi-
nal decision of no difference, P(ND), when Pi = P 2 .

We should note that we have restricted the parameter space for the
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Pi

0.15

0.25
0.35
0.45

0.55
0.65
0.75

0.85
0.95

P
Table 1.

* = 0.8,Δ* = 0.1
Three-Decision Problem

Vector-at-a-Time
(r = 6, N = 180)

E(I)
55.3

51.0
47.7

45.8

45.1
45.8
47.7

51.0
55.3

E(F)
99.5

81.6
66.8
54.9

45.1
36.6
28.6

20.4
11.1

E(N)
110.6

102.0
95.5

91.5

90.2
91.5
95.5

102.0
110.6

Play-the-Winner
(r = 10,ΛΓ = 240)

E(I)
79.0

67.7
57.2

46.7

36.5
27.1
18.9

12.0
6.0

E(F)
149.9

114.7
85.5

60.3

39.7
24.0
12.9

5.7
1.5

E(N)
167.0

143.9
122.7

101.2

80.2
60.9
44.0

29.9
18.0

Modified Bandit
(r = 13,N= 170)

β = 0.999999
E(I)
34.7
34.6
31.2
27.0
23.0
19.2
15.4
11.7
8.7

E(F)
109.9
78.1
56.5
40.4
28.1
18.7
11.4

5.9
2.2

E(N)
125.3
99.5
82.1
68.5
57.3
47.9
39.4
31.6
26.4

three-decision version of the problem. Here we take Ω* = (0.05,0.95) X
(0.05,0.95). We have done this because the larger r value of the adap-
tive designs tends to create extreme results as Pi —> 0.0. In this neigh-
borhood, the probability of reaching the decision of 'no difference' is
virtually 1.0, and with P(ND) so high, P(CS) is extremely low - forcing
the trials to utilize unrealistic numbers of patients.

Note also that if one desired a more typical hypothesis testing design
(with both type 1 and type 2 errors), one would not want to use PW
or MB rules without making some adjustments, since it is not possible
to guarantee a type I error rate, a = 1 — P(ND | Δ = 0), that never
exceeds a specified constant, P', over all Ω. Using the present stopping
rules, for example, if we consider the point Pi = P^ = 1, we would
have P(ND) = 0, because whichever treatment we began with would
ultimately be declared the winner. This alone does not concern us too
much because we don't think it would be wise to carry out a clinical
trial using the current designs when either Pi or P 2 is thought to be
outside of Ω*. In such cases it often makes more sense to use other
functions of the parameters such as ratios or the like.

The bottom line here really is that it seems that the no difference
outcome is not an acceptable option for the particular combination of
allocation and stopping rules in the designs discussed here. For VT,
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Table 2.
= 0.8, Δ* = 0 . 1 ; A = 0.0

Probability of Concluding No Difference when Pi = P%

Pi

0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85
0.95

Vector-at-a-Time
( r = 6,iV = 180)

0.92

0.58
0.40
0.31

0.27
0.27
0.31
0.40

0.58
0.92

Play-the-Winner
(r = 10,7V = 240)

0.99

0.76
0.49
0.28

0.14
0.10
0.01

0.00

0.00
0.00

Modified Bandit
(r = 13, N = 170)

β = 0.999999

0.99

0.49
0.21
0.10

0.03
0.01
0.00

0.00

0.00
0.00

we would need significantly larger sample sizes to ensure that both
the (P*,Δ*) requirement and an a < Pf requirement were met. For
the adaptive designs, we would need both larger sample sizes and minor
adjustments to the rules. Some of these adjustments are outlined below,
but there are also a variety of others that one could look into.

First, note in Table 1 that the large values of E(F) for PW in the low
range of the parameter space are due to the design's excessive value of
E(N) in the region. This latter trait can be attributed to the large value
of the stopping parameter r needed to achieve at least P(CS) > P*
in the upper parameter ranges. In practice, for small (P1,P2), PW
sampling is quite similar to VT sampling, switching treatments after
each failure. Sampling goes on longer for PW only because the optimal
choice of r is higher for this rule than it is for VT. There are a couple of
ways to circumvent this problem. To begin, one could utilize a stopping
rule such as the present one, but which also incorporates the total
number of failures or depends on likelihood ratios. It is known that PW
performs better on the average when such stopping rules are used [for
example, see Fushimi (1973) and Simon, Weiss and Hoel (1975)]. Since
neither type of adjustment to the stopping rule would reduce r, PW
would retain its positive features in the upper region of the parameter
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space without diminishing P(CS). In the lower region of the space,
however, the trial would be stopped once a certain number of failures
had been observed. This would guarantee a stopping time more similar
to that of VT. For the same reasons, we would expect improvement for
the MB, which has problems similar to, but not as extreme as those
of PW. Less improvement would be expected for the VT designs since
there is symmetry between the numbers of successes and failures for
the two treatments.

Another possible approach would be to try a two stage process in
which r could depend on current estimates of (Pι,P2). In this case, one
might begin with the value of r defined in the present design. Then,
part way through the trial, one could estimate the success rates, and
if they both appeared to be below, say 0.5, one could determine a
new values of r (and N) that would guarantee only that P(CS \ Pi <
0 . 5 , P 2 < 0 . 5 ) > P * .

We have not studied any of the above rules, and recognize that
a number of adjustments would need to be made to ensure that the
design's overall performance was not diminished. We do believe, how-
ever, that it is of interest to see if there's anything simple one can
do to the adaptive rules to guarantee their good performance for the
three-decision selection problem before abandoning them permanently.

6. Discussion. Our intent has been to show that one can use
adaptive allocation schemes to improve the treatment of patients dur-
ing a clinical trial without interfering with the ability to make correct
terminal decisions. Our approach has been to consider a binomial se-
lection model in which patients are assigned to treatments according to
strategies derived from optimal solutions to TAB problems. We judge
the ethical quality of a procedure in terms of the various criteria out-
lined in Section 2.3. Depending on the research setting, there may be
reasons to prefer one of these criteria to another.

For the two-decision problem, the behavior of the MB is, in gen-
eral, favorable. When compared with two other frequently proposed
allocation rules, it exhibited the best performance on all of the ethical
criteria over a majority of the parameter space. For the three-decision
problem, the MB again had the best performance in general [excepting
its abysmal performance with respect to P(iVD)], but the regions over
which it improves on the others is not as large - this due to the added
study length enforced by the large values of the stopping parameter r.

With this proposal of the MB rule, we have worked with a sim-
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pie model. While there are bona fide applications for the MB as it
now exists, the areas of application would be broadened if some of the
following extensions could be developed.

1. Allow a distribution on the time required to response.

2. Allow for incorporation of at least one or two prognostic factors.

3. Allow for more general distribution of the response variable.

4. Allow for different measures of discrimination between treatments.

5. Allow more than 2 treatment alternatives.

Some of these extensions (3-5) are fairly straightforward, but the others
could prove to be quite difficult if they are to be made functional.

While there remain questions regarding the appropriate usage of
adaptive sampling methods, it seems worthwhile to continue to study
their behavior, with the goal of gradually increasing their adoption in
real life. Ethical dilemmas will never disappear, but designs such as
that proposed here may offer a partial easing of the conflicts.
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