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Abstract

A brief review of biased coin designs is presented. Some
asymptotic properties of the adaptive biased coin designs of Wei
(1978) and Eisele (1994) are given. Applications of biased coin
designs to estimation and testing problems axe also given.

1. Introduction: biased coin designs. In designing a clinical
trial, the method of treatment allocation is a primary consideration.
Because patients arrive sequentially from a population that may be
very heterogeneous it is only in completion of the study that the char-
acteristics of the patient population are known. In addition, the size of
the study cannot be determined in advance. Because of this, much of
the traditional experimental design methodology is inapplicable. Ran-
domization has been used in treatment allocation due to the following
advantages. First, it minimizes the possibility of selection bias which
may occur if the experimenter is aware of which treatment the next
patient will receive. A second advantage is freedom from accidental
bias which could result, for example, if time trends are present in the
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data. Finally, randomization can serve as a basis for inference. For a
more detailed discussion of these advantages see Efron (1971). Another
possible method for treatment allocation is the deterministic design
ABABAB..., where Ά ' and Έ ' are two treatment groups. This design
results in perfect balance but maximizes the possibility of selection bias.

In small sized experiments or interim analyses the use of complete
randomization might result in a severe imbalance in treatment alloca-
tions. In fact, Pocock (1979) recommends using complete randomiza-
tion only in trials with over 200 patients. Because of this, restricted
randomization allocation schemes have been proposed which offer a
compromise between complete randomization and the perfect balance
guaranteed by a deterministic design. In this paper, the restricted ran-
domization designs of Efron (1971), Wei (1978), and Eisele (1994) will
be discussed. More detailed reviews of treatment allocation methods
can be found in Pocock (1979), Simon (1979), and Kalish and Begg
(1985). For a discussion of randomized clinical trials see Royall (1991).

In Section 2, the biased coin designs of Efron, Wei, and Eisele are
presented. Some asymptotic properties of the Wei and Eisele coins are
given in Section 3. Applications to estimation and testing problems are
presented in Section 4.

2. Biased coin designs.
2.1. Efron's biased coin design. Efron (1971) introduced the biased

coin design, BCD(77), to force an experiment to be balanced yet retain
some randomization. The BCD(77) can be described as follows: Suppose
that after (k > l)patient assignments there are mk patients assigned to
treatment A and n^ patients assigned to treatment B. Let Sk = τnk—nk.
If Sk = 0, assign the next patient to treatment A with probability 1/2; if
Sk < 0, assign the patient to treatment A with probability 77; if Sk > 0,
assign the patient to treatment A with probability 1 — 77, η > 1/2. A
criticism is that this design does not discriminate between large and
small differences in treatment assignments or between large and small
sized experiments. Pocock (1979) discusses guidelines for the selection
of η.

2.2. Wei's adaptive biased coin design. Wei (1978) introduced the
adaptive biased coin design to force an extremely unbalanced or a small-
sized experiment to be balanced yet tend toward complete randomiza-
tion as the size of the experiment increases. The adaptive biased coin
design can be described as follows: Let qbe a nonincreasing function
from [-1,1] and [0,1] for which q(0) = 1/2. Then the (A; + l)th patient
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is assigned to treatment A with probability q^ = q(Sk/k) and to treat-
ment B with probability 1 — qk> Wei recommends using q(x) = (1 — x)/2
for its simplicity. Simon (1979) recommends the designs of Efron and
Wei for stratified studies in which limited numbers of patients are ex-
pected in each stratum.

2.3. Doubly adaptive biased coin design. In many problems balance
is not desired. This is the case especially in phase II clinical trials where
estimation of response is of primary interest; see Pocock (1979). In fact,
the desired allocation proportion may be unknown. Eisele (1994) in-
troduced the doubly adaptive biased coin design for the case where the
desired allocation proportion is unknown. The design is doubly adap-
tive in the sense that it takes account of both the current proportion
of patients assigned to each treatment and a current estimate of the
desired allocation proportion.

2.4- General model. Suppose patient responses Xι,X2,... to treat-
ment A and Yi, I2, . . . to treatment B are independent random variables
from rf-dimensional standard exponential families. More formally, as-
sume that

* i , * 2 , ~ fθ(x) = exp{θ x - φ(θ))

and
Ή,*2, • ~ 9ω(y) = exp(ω • y - ψ{ω)))

where

θ = ( 0 i , . . . ,0dy, x = {xu . . . ,xd)
f, ω = (ω1}... ,ωd)'} y = (y1}.. .,yd)';

t denotes transpose and denotes the inner product. Let

μ = ΈΘX = V</> (θ) and v = ΈωY = Vφ (ω),

where Vt/> and Vψ denote the gradient vectors, that is

= (dφ/dθ1}..., dψ/dθdy and Vψ = {βφ/dωu ..., dφ/dωd)'. Let

i and Ynk = (n*)-
i=l i=l

be the sample means. If the families are steep and the allocation rule
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is noninformative, then the MLE of μ is Xmk and the MLE of v is YUk-
Brown (1986) is recommended for more background on exponential
families.

The goal of the allocation scheme is then to have mk/k — p, where
rrik/k is the proportion of patients assigned to treatment A at time k
and p = p(μ, v) : R 2 d —* [0,1] is the desired allocation proportion. To
accomplish this, the allocation scheme is designed to sample the X pop-
ulation with probability less than (respectively, greater than) βk when
™>k/k > βk (respectively, mk/k < βk), where βk = p ( Z m f c , F n f c ) G [0,1]
is the current maximum likelihood estimate of p. This employs the same
idea as Wei's adaptive biased coin design except that Wei fixes p = 1/2.

In addition, let

σ2 = p'lo (μ, v) V V iβ) p10 (μ,i/),

and

τ2 = Pbi {μ, v) V V (^) Poi (μ, ̂ ) ,

where V2ψ (θ) = Cov^X and V2ψ (ω) = Cov^y, respectively, denote
the Hessian matrices

and

and pio and poi a^e first partial derivatives of p.

2.5. The allocation rule. Let q be a function from [0,l]2 —• [0,1]
such that the following four conditions hold:

(i) q is jointly continuous,
(iij q(r,r)=r,
(iii) q (p,r) is strictly \ inp and stήctly / inr on [0,1] , and
(iv) q has bounded derivatives in both arguments and

) = dq(x,y)/dx \x=p,v=pφ 0.
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Let δ\ = = <5no = 1, <5no+i = = 02n0 = 0, and

δk = l\uk < q

where the Uk are independent identically distributed uniform[0,1] ran-
dom variables and are independent of XχΊ X<ι,... and Yj, Y2 Then

<$i + *' + δk and Πfc = k —

3. Properties of adaptive biased coin designs. In this section
asymptotic properties of the Wei and Eisele biased coins are presented.
For Wei's biased coin, asymptotic normality of the difference between
the number of patients assigned to each treatment group is established.
In the proof it is shown that the difference may be magnified by appro-
priate constants so that the magnified difference is nearly a martingale.
The approach is technically simpler than that given in Wei (1978) and
delivers an invariance principle with little additional effort. In addi-
tion, the asymptotic distribution of the number of correct guesses for
the assignment of the next patient, using the obvious strategy, is given
as an application. The results presented are a summary of those given
in Eisele and Woodroofe (1990). Smith (1984) obtained an invariance
principle using similar methods.

For the Eisele biased coin, a strong law of large numbers and a
central limit theorem are stated. An invariance principle follows from
the central limit theorem with little additional effort. The results pre-
sented are a summary of the main results in Eisele (1994) and Eisele
and Woodroofe (1994).

3.1. The Wei coin. Let X^ = +1 denote assignment of the fcth
patient to treatment A and —1 for an assignment to treatment B and let
ί/i, ί/2,... denote i.i.d. uniformly distributed random variables. Then

Xk = 2/ {Uk < q (1^1-) } - 1 Vfc = 1,2,...,

where Sk = X\ -\ \- Xk = mk — nk, Vfc = 1,2, —

THEOREM 1. (Central Limit Theorem) Let a = - 2 ^ (0). Then

S ί 1 \
—£==Φ>ΛΓ(0, 1 asn
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REMARK 1. a is a measure of the steepness of the g-function near
zero. A steeper ^-function forces balance faster and thus the asymptotic
variance of Sn/y/n decreases as a increases.

OUTLINE OF THE PROOF. The idea is to magnify Sn by the
appropriate sequence of constants so that the magnified value is nearly
a martingale. Let m = [a] + 1, where [x] denotes the greatest integer
which is < x for —oo < x < oo; let ck = 1 for k = 1,... m; and let

n

< £ ' - Π
k=m+l

For n= 1,2,..., let

Yn = Σ,ck(Xk-μk),

where μ^ — E(Xk/Fk_i) and Tk = θ"{Uι,... }Uk} is the σ-algebra
representing the natural history. Then {Yn, Tn, n = 1,2,...} is a mar-
tingale. Now use cn as the sequence of magnifying constants and write

n = cmSm + Yn-Ym + Rn\/n>m,

where Rn is a remainder term of order o (na^1^2j. Then

Sn cnSn 1

\fncn \/ncn

{Yn -Ym + Rn + CmSm}.

Asymptotic normality now follows from the martingale central limit
theorem. •

Let B denote a Brownian motion with drift 0 and variance 1 per
unit time and let

9>n (t) = -τ=S[nt]
V n

for 0 < t < 1 and n = 1, 2,... and where [x] denotes the greatest integer
which is < x. Then S>n, n > 1, may be regarded as random elements in
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THEOREM 2. (Invariance Principle) As n -»• oo, $n =*• $ in D[0,1],

S(t) = .E(tα+) o < t < l.
/(2 + l)t«

Using Theorem 2.5 of Durrett and Resnick (1978), the invariance prin-
ciple follows from Theorem 1.

If an experimenter attempts to guess the assignments of patients to
treatment and control, then an obvious strategy is to guess Xk = +1 or
— 1 accordingly as S^-i < 0 or Sk-i > 0. Denote by Nn the number of
correct guesses among the first n assignments. The following corollary
follows from Theorem 2.

COROLLARY 1. Hm E { ^ } = (j(l + 2α))V 2

As an application of Corollary 2, if a = 1 (e.g. q(x) = (1—x)/2) and
n = 100, then an experimenter can expect to make about 63.8 correct
guesses with a biased coin design and 50 with complete randomization.

3.2. The doubly adaptive biased coin. In addition to conditions
(i)-(iv) imposed on q, the following two conditions on p are needed.

(v) There are positive constants C and r for which

(vi) For sufficiently small e > 0, p is twice continuously differentiate
on the set

THEOREM 3. (Strong Law of Large Numbers) Let Sk = mk

kp, V k = 2n0 + 1,2n0 + 2, Under conditions (i)-(υi),

lim — = 0 w.p.l.
n->oo n
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Complete details of the proof of Theorem 3 are given in Eisele (1994).
A different proof is also given in Eisele (1990) for the case of normally
distributed patient responses.

THEOREM 4. (Central Limit Theorem) Let Sk = mk - kp,\/ k =
2n0 + 1, 2n0 + 2.... Under conditions (i)-(vi),

Sn _ 1

-P) , 2 7 * (σ2 , τ2 \\
N

' 2a + 1 (α + l)(2α + 1) V P 1-pJ/ '

where a = — qio(p,ρ), 7 = φn(p,p), αrcd goi flwd 9io are ί/ie partial

derivatives of q.

SKETCH OF THE PROOF. The basic idea is the same as for the
Wei coin although difficulties arise because there are two terms in the
conditional expectation of Sk. The additional term is due to estimating
p. In order to get a martingale, each of these terms must be magnified
by different sequences of constants. This requires looking at a vector
of these two terms and then magnifying this vector by a matrix of
constants. D

THEOREM 5. (Invariance Principle) Let$n(t) = ^ S [ n t ] . Then, as
n —* oo

where $(t) is a one dimensional Brownian motion with variance

2α + l (a + l)(2a + l)\p 1-pJ

per unit time.

Complete details of the proofs of Theorems 4 and 5 are given in Eisele
and Woodroofe (1994).

4. Applications.
4-1. Estimation: Behrens-Fisher problem (Robbins, Simons, and

Starr, 1967). Suppose it is desired to design a sequential procedure,
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with a randomized allocation scheme, for the fixed width interval esti-
mation of the difference of the means of two populations. Minimizing
the total size of the experiment can be accomplished by designing the
sequential procedure so that patients are allocated to the two treat-
ments in the correct proportions.

More formally, assume that X\,X2,... and Yi, Y2,... are indepen-
dent random variables for which

where the four parameters μ, z/, σ and r are unknown. Here, X\, Xi,...
denote responses to treatment A and Yί,Y2,... denote responses to
treatment B. These could be, for example, blood pressure readings.
Then, the correct allocation proportions for minimizing the total sample
size and retaining preassigned coverage probability and interval width
are [see Robbins, Simons, and Starr (1967) or Eisele (1990)] σ/(σ+τ)xk
to treatment A and τ/(σ + r) X k to treatment B. Thus,

Taking

i=l

and

to be the usual estimates of σ2 and r 2 gives

Pk =
+ τ.nk

The sequential procedure can now be described as follows: to start,
take no > 2 observations on X and on Y. Then, if at any stage there
are rrik observations on X and Πk on Y, with k = rrik +rik> 2no, take
observation k + 1 on X if

< Qk+i = q\—,ι
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Otherwise, take observation k + 1 on Y.
If the desired width and coverage probability of the confidence in-

terval /, for θ = μ — v, are 2/ι and α, respectively, and if the constant a
is defined by 2Φ(α) — 1 = α, where Φ denotes the 7V(0,1) distribution
function, then a possible stopping rule for the sequential procedure is:
stop after N observations, where

mk nk \ak

and {ak} is a given sequence of positive constants such that ak —> α as
k —* oo. Three other variations of this stopping rule are also given in
Eisele (1990).

THEOREM 6. Under conditions (i)-(iii) on q, as h —> 0, for all
μ, ι/, σ and τ,

(i) !
\h) \σ^τ)

1M 1

-»1 (asymptotic efficiency),

(iii) P (θ G I) —»- α (asymptotic consistency).

The simulation results given in Table 1 illustrate the asymptotic
properties of the doubly adaptive biased coin design for the case of
normally distributed patient responses. The values

( k + 4\
7 — - lα 2 ,

were selected. For these values, the optimal sample size, for normally
distributed data, becomes

The q-function, q(x, y) = [1—(1/y—l)rc]+, was selected for its simplicity.
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Table 1.
Simulation Results for 2,000 Trials for Normally Distributed Subject
Responses: Expected Sample Sizes, Allocation Ratios, and Coverage

Probabilities for σjr — \,\jΊ, and 1/4.

n*

10
20
30
4 0
50
60
7 0
8 0
90

100
125
150
175
200

mN

7.6
12.1
17.0
22.0
27.0
32.1
36.9
42.4
47.2
52.7
65.0
77.8
90.1

102.8

σ/τ

nN

7.8
12.6
17.4
22.4
27.4
32.5
37.5
42.7
47.6
52.8
65.2
77.8
90.2

103.9

= 1
mN
npj

.974

.960

.977

.982

.985

.988

.984

.993

.992

.998

.997
1.000
.999
.989

CP

.979

.957

.950

.948

.947

.949

.948

.950

.950

.951

.951

.951

.952

.952

6.1
8.4

11.3
14.3
17.6
20.7
24.2
27.9
30.9
34.2
42.7
51.1
59.3
67.9

σ/τ =

nN

9.7
16.5
22.9
29.6
36.5
43.7
49.7
56.6
63.9
70.5
87.2

103.8
120.5
137.1

1/2
mN
nv
.629
.509
.493
.483
.482
.474
.487
.493
.484
.490
.490
.492
.492
.495

CP

.979

.958

.950

.948

.947

.948

.947

.950

.950

.950

.951

.951

.951

.951

5.1
5.8
7.1
8.6

10.2
12.0
13.7
16.1
17.8
19.9
25.0
30.1
35.3
40.2

σ/τ

nN

11.2
19.4
27.8
35.9
43.9
51.6
60.2
68.8
76.3
83.8

104.4
124.5
144.7
164.6

= 1/4
HLQL
n w
.455
.299
.255
.240
.232
.233
.228
.234
.233
.237
.239
.242
.244
.244

CP

.975

.960

.954

.951

.950

.947

.949

.951

.949

.949

.950

.950

.951

.951

REMARK 2. Although the q-function selected is not strictly in-
creasing in the second argument on (0,1)2, the proof of the strong law
of large numbers given in Eisele (1990) for the case of normally dis-
tributed patient responses only requires q to be strictly increasing near
the diagonal.

REMARK 3. For normally distributed observations,

CΓ I T

Estimates of the coverage probabilities are found by estimating the
above expectation using the simulated values of N.

REMARK 4. In terms of allocation proportions, the doubly adap-
tive biased coin appears to be performing as desired for the three ex-
amples given. The total sample size is roughly between 4 and 6 obser-
vations larger than the optimal total sample size. This results in high
coverage probabilities for small values of n* where there is oversampling.

REMARK 5. For more details on this sequential procedure, includ-
ing derivations, other stopping rules, and simulation results, see Eisele
(1990).

4.2. Testing: Sequential probability ratio test (Robbins and Sieg-
mund, 1974)' Suppose in a clinical trial where patients can be assigned
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to one of two treatments A and B, it is desired to design a sequential
procedure to minimize the number of patients assigned to the inferior
treatment. Robbins and Siegmund (1974) derived a sequential proce-
dure for which the error probabilities are essentially independent of the
allocation rule used. In the application presented here, two allocation
rules are proposed for the Robbins-Siegmund procedure using adaptive
biased coin designs.

Let ΛΊ, X2, and Yί, Y2,... denote independent random variables
for which

X1,X2,...~N{μ,l)sD.dY1,Y2,...~N{v,l),

where μ and v are unknown parameters. Here, Xk and Yk denote
responses to treatments A and B, respectively. Let θ = v — μ denote
the mean difference in response. It is desired to test the hypothesis
H o : θ > 0 vs. Hi : θ < 0. Let ik = mknk/k, θk = Ynk - Xm f c, and
Zk=ikθk.

With these definitions, a sequential probability ratio test for HQ VS.
H\ is as follows: for a given a > 0, let

ίo = inf{ fc>2: \Zk\ > a}

and accept Ho or Hi according as Zt > a or < —α, respectively.
For a given sequential design and α > 0, one expects to find Zk = ikθ

for k = 1, 2,. . . and Z\ = a2 on \Zt\ > a. Therefore, one expects to find
i\ ^b2 = a?/θ2 on the event {\Zt\ > a}.

Suppose the cost of allocating to the X population is g{θ) and to the
Y population is h(θ). Then the total cost is C = g(θ)mk + h{θ)nk and
the following minimization problem arises: given b,g,h > 0 minimize

C = g(θ)m + h(θ)n

subject to
run

= 6.
m + n

The solution to the minimization problem is to let

m = b(l + y/h(θ)/g(θ)\ and n = b (l +

Thus, the desired proportion of patients allocated to treatment A is
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Two allocation rules are presented; they differ in the nature of the
^-function. The first allocation rule (Rule 1) uses a discontinuous allo-
cation function and the second (Rule 2) uses a doubly adaptive biased
coin. Let

qi,k[Pk-i,τ—- - p*-i 1 = < 1/2

and

where

Allocate the fct/ι patient to the treatment A if

Uk < q^k-i for i = 1,2 and k > 3,

where the Uk are independent identically distributed uniform random
variables that are independent of (Xk,Yk)>

The simulation results given in Table 2 were obtained for the error
probability, the expected sample size on the inferior treatment, and the
expected total sample size for allocation Rules 1 and 2 stated above, the
allocation rule of Robbins and Siegmund (RS) and complete random-
ization (CR). The value a = 6 was selected giving an error probability
of approximately 0.05 for θ = 0.25. The cost functions

/m ί 1 i f # < 0 , , , m ί 1 i f0>O
9 ^ = { i + i k θ i ί θ > o a n d h^ = \ i - i k θ ϋ θ < o

were selected. In the simulations, θk is substituted for θ.

REMARK 6. See Remark 2.

REMARK 7. The functions g(θ) and h(θ) were selected so that the
allocation probabilities would stay within reasonable bounds.

REMARK 8. The error probabilities appear to be approximately
independent of the allocation rule used.

60



Table 2.
Simulation Results for 2,000 Trials for Normally Distributed Subject

Responses: Expected Sample Sizes and Error Probabilities for
Allocation Rules 1 and 2, the Allocation Rule of Robbins and

Siegmund (RS), and Complete Randomization (CR).

θ

0.05

0.10

0.15

0.20

0.25

0.30

0.40

0.50

0.75

1.00

m

77.4

67.2

56.0

46.9

38.1

32.4

25.3

19.1

12.2

9.4

Rulel

m+n

162.7

153.2

134.7

118.1

100.9

89.6

72.5

57.2

38.0

29.3

error

0.366

0.219

0.124

0.0S6

0.047

0.020

0.009

0.002

0.000

0.000

m

73.0

63.4

54.9

45.0

37.5

31.8

24.6

18.8

12.5

9.3

Rule 2

m4-n

163.2

151.8

137.8

116.8

102.2

89.1

71.8

56.8

39.2

29.6

error

0.344

0.207

0.121

0.080

0.036

0.024

0.007

0.002

0.000

0.000

m

94.2

75.7

60.0

45.9

37.1

30.0

20.3

15.6

9.7

7.2

RS

m-f n

211.2

197.8

181.7

167.2

154.1

143.1

121.5

107.9

84.6

70.6

error

0.345

0.231

0.142

0.078

0.041

0.025

0.004

0.002

0.000

0.000

m

76.0

71.7

61.8

53.6

45.8

40.8

31.8

25.3

17.3

13.1

CR

m+n

152.2

143.1

123.6

107.0

91.6

81.5

63.S

50.6

34.5

26.1

error

0.350

0.242

0.127

0.070

0.049

0.021

0.007

0.001

0.000

0.000

error1

0.354

0.231

0.142

0.083

0.047

0.027

0.008

0.002

0.000

0.000

1 Wald approximation.
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REMARK 9. For small 0, Rule 2 appears to have smaller allocations
to the inferior treatment than Rule 1. Otherwise, their performances
are similar. Both Rules 1 and 2 have smaller total sample sizes than
the Robbins-Siegmund rule and for small θ allocate fewer observations
to the inferior treatment.

REMARK 10. For all but some small values of 0, the decrease in
the number of patients on the inferior treatment using allocation Rules
1 and 2 in comparison to complete randomization is roughly the same
as the increase in the total sample size over complete randomization.

REMARK 11. Recent papers by Melfi (1992,1994) have developed a
renewal theory to approximate error probabilities and expected sample
sizes using Efron type biased coins which might be useful in analyzing
designs using Rule 1.

REMARK 12. For discussions of adaptive treatment allocation
methods which incorporate accumulating information for allocating the
best treatment to the most patients see Simon (1977) and Ware (1989).

Although the presentation of the doubly adaptive biased coin de-
sign given here suggests applications in clinical trials, more realistic
applications may be in manufacturing.
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