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Abstract

There have been many papers on biased coin designs and
their use in balancing the numbers of patients allocated to dif-
ferent treatments in a clinical trial, without increasing the risk
of selection bias. Less attention has been given to the corre-
sponding risk when sequential allocations depend on the previ-
ous responses and the aim is to reduce the number of patients
on inferior treatments. The ethical requirements may produce
a substantial imbalance in the treatment groups. This paper
gives a number of examples where selection bias is a serious
possibility.

1. Introduction. Selection bias can occur in an experiment de-
signed to compare medical treatments if the experimenter knows, before
deciding whether or not to admit a particular patient to the trial, which
treatment will be administered next. Blackwell and Hodges (1957) in-
troduced a measure of the bias in a design based on the maximum
expected number of correct guesses that an experimenter can achieve
when attempting to predict the successive treatment allocations. Their
paper and later investigations by Efron (1971), Smith (1984) and many
others were concerned with the need to balance the experiment while
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retaining the principle of randomization. Efron introduced biased coin
designs to achieve approximate balance between the numbers of pa-
tients allocated to two treatments within a randomized design. More
recently, Smith extended this work to a more general class of designs,
obtaining further results on the degree of balance achieved and the
measure of selection bias.

In his (1984) paper, Smith drew a distinction between biased coin
designs and response adaptive designs. In the former, the allocation
procedure depends on previous treatment allocations, but not on the
patient responses. In what follows, we shall be concerned with adap-
tive designs where the allocation probabilities at each stage depend on
previous responses and the aim is to reduce the number of patients on
inferior treatments. This ethical principle is quite different from the
statistical one which aims towards equal allocations at the end of the
experiment. The danger of selection bias appears to be much greater
for response adaptive designs and this will be illustrated by several
examples.

We shall restrict attention to experiments for comparing two treat-
ments. Let {1;} denote the sequential allocation rule: fort =0, 1, ...,
1) is the conditional probability that the next patient will receive treat-
ment 1, given the information available at time t. This information is
represented by a g-algebra ¢ which is assumed to include the previous
patient responses 1, T3, ..., Tm and ¥y, Y2, ..., Yn for treatments 1
and 2, respectively, m +n = t. Now suppose that the experimenter has
some control over the selection of patients. We shall introduce a simple
strategy for biasing the results towards a terminal decision in favor of
treatment 1, rather than treatment 2. In order to measure the effect
of this selection bias, it will be assumed that there is no real difference
between the two treatments, but that patients may differ in their mean
responses. The experimenter can choose patients with means in the
range p 6. More precisely, suppose that 1), is known at each time and
that the experimenter always chooses a “strong patient” with mean
w6 if iy > % or a “weak” patient with mean p — 6 if ¥ < % When
Y = %, the choice is immaterial, but let us assume that the mean is
i. Thus 26 represents the range of patient means and we shall be in-
terested in evaluating g (6), the probability of a terminal decision that
favors treatment 1, for values of 6 > 0.

Let S; = 3% z;— 3"}, ¥; and suppose, for convenience, that p = 0.
Then it is easy to see that, under the above strategy,
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(1)
E{Sis1— S| S0} = |20, — 1/6

for all t > 0. The sequence {S;} is a submartingale and this gives some
indication of the bias. In Example 4 we shall consider the special case
when 1y = 0 or 1 — 0 always, for some fixed 6, % < 6§ < 1. Then the
expression on the right of (1) reduces to a constant (260 — 1) > 0.
The next section is concerned with two-stage designs where it is
feasible to evaluate g (8) explicitly. It starts with a very simple illus-
tration using Bernoulli trials. Example 2 involves normal data and
unequal samples in the second stage. In Section 3, we shall investigate
two sequential designs, one of which is based on the ECMO studies,
that have been widely discussed from an ethical point of view. Exam-
ple 4 relies on a remarkable result of Robbins and Siegmund (1974) for
sequential probability ratio tests with normal observations. Simulations
show that selection bias can have a serious effect on terminal decisions.
The final section contains a brief discussion of the advantages of early
stopping clinical trials, with or without data-dependent allocations.

2. Two-stage procedures.

EXAMPLE 1. The response to treatment 7 is success (s;) or failure
(f:) , and we denote the probability of success by p;, i = 1, 2. Suppose
that p; = ps = p and consider just three possible values: p = %, % +6
or 1 — 6, where 0 < 6 < % The first stage of the experiment uses two
patients, one allocated to each treatment. If the results are (sy, fa),
indicating a preference for treatment 1, the second stage consists of
3 patients on treatment 1 and 1 patient on treatment 2. Similarly,
(f1,82) in the first stage leads to allocating 1 patient to treatment 1
and 3 patients to treatment in the second stage. However, if the initial
results are (sy, $2) or (f1, f2), the second stage has two patients on each
treatment, allocated with appropriate randomization.

The experimenter uses “average” patients with p = % in the first
stage and also in the second, if the results are equal. Patients with
p= % +éorp= % — 4 are used throughout the second stage when the
allocations are 3 + 1 or 1 + 3, respectively.

At the end of stage 2, when six patients have been treated, the
“winner” is the treatment with the higher proportion of successes. The
possible numbers on treatments 1 and 2 at the end of stage 2 are (3,3),

(4,2) and (2,4) depending on whether the results from the first stage
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are the same, (s1, f2) and (f1, $2), respectively. Let us make the con-
vention the 2 successes out of 4 beats 1 success out of 2 and determine
the winner by tossing a fair coin if, for example, 2 successes out of 3
are obtained from both treatments. It is a straightforward matter to
evaluate the probability that treatment 1 emerges as the winner:

(2)

9(8) =35 +36(1-45°),

for 0 < 6§ < 1. The value of g () cannot exceed 0.5241 in this simple
example and the maximum occurs when § = 0.2887.

EXAMPLE 2. Let w; (t) be independent random variables with dis-
tributions N (ust, t), i = 1, 2. We can think of diffusion processes in
continuous time or regard each w; (t) as the sum of ¢ independent obser-
vations from N (;, 1). Consider a first stage with two equal samples
of size a and suppose that the second stage has unequal samples with
sizes band ¢, b > ¢. If wy (a) = =, w, (a) = y and = > y, then treatment
1 receives the larger sample in the second stage. In the second stage, we
observe u = ws (a + b) — wy (@) and v = wy (@ + ¢) — wy (a). Similarly,
if z <y, we observe u = w; (a + ¢) —w; (a) and v = wy (a + b) — w, (a)
in the second stage.

As before, we assume that the two treatments are equivalent, with
mean scores ji; = fig = (. For convenience, let 1 = 0 in the first stage
and suppose that selection bias produces a mean score § or —6 for both
treatments in the second stage, according as £ > y or z < y.

The winner is determined by comparing average scores at the end
of stage 2. Thus, the event that treatment 1 wins is

(3)

rT+u _ Yy+v [m+u y+v }
= > > > .
A {["B"y]ﬂ[a+b_cz—i—c]}L'l{[m<y]m a+c  a+bd

In fact, g (6) = P (A) has a simple expression in terms of the standard
normal distribution function ®:

(4)
g(6)=2(6/2),
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where
_ (a+b)(a+c)(2a+b+c).

)\2
a? (b— c)2

A proof of this formula is outlined in the Appendix.

The expression for g (6) can be compared with the corresponding
probability, given that there is a real difference between the treatments
but no selection bias. Suppose that p; = v and py = —v throughout
the experiment. In this case, it can be shown that

(5)
P(4)=3(/p),

where

9 (2a +b+c)

(a+b)(a+c)

This result is an extension of one obtained by Coad (1992) for the
case ¢ = 0. Note that (5) is exactly what would be obtained in the
case that samples of sizes a + b and a + c are assigned to the two
treatments in advance, without regard to the results of the first stage.
The earlier result (4) is also equivalent to one for prescribed sample sizes
and allocations. For example, the same formula holds if p; = uy =0
in the first stage and p; = pe = § in the second, with sample sizes b
and c, respectively. It is also worth remarking that g (§) can be close
to 1 even when § is small. In particular, this holds if ¢ = a and both
b/a and aé? are large.

3. Sequential allocation. The next illustration is based on an
adaptive design used by Bartlett, Roloff, Cornell, Andrews, Dillon and
Zwischenberger (1985) to study a treatment called extracorporeal mem-
brane oxygenation (ECMO) for babies with respiratory failure. A ran-
domized play-the-winner rule was used to allocate patients between this
and a control treatment: see Wei (1979 and 1988) and Wei and Durham
(1978). In fact, only one out of ten patients was allocated to the con-
trol and this led to a further investigation and much discussion in the
literature: see Ware (1989) and Royall (1991). The original clinical
trial prescribed a sample of size 10 and a non-Markovian decision rule,
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so it will be easier to evaluate the effect of selection bias for a slightly
different procedure.

EXAMPLE 3. Consider an urn containing balls of two types, rep-
resenting treatments 1 and 2. The state (j,k) denotes j balls of type
1 and k of type 2. In general, a ball is drawn at random to give the
treatment for the next patient and then it is replaced, together with an
additional ball of the same type if the result is a success. In the case of
failure, an extra ball of the other type is added. The initial state is (1,1)
and we suppose that the experiment ends as soon as 10 further balls
of type 1 or 10 balls of type 2 have been added. The terminal states
(11,1), (11,2), ..., (11,10) produce a decision in favor of treatment 1.
A slightly different decision rule would be to prefer the treatment that
achieves the higher proportion of successes, but this is more awkward
to evaluate.

We suppose that the two treatments are equivalent, with a common
probability of success depending on the state (7, k) because of selection
bias. Let the probability of success be p + § when j > k, p — § when
j<k,andpif j =k, where 0 < p—§6 < p+6 < 1. The result from the
next patient leads to a transition (j,k) — (j + 1,k) or (j,k+1). Let
I1, be the probability of reaching (j + 1,k) next. Then

© G—k) (p£8)+k
"
I="=Gm

where the term +6 applies if j > k and it is replaced by —§6 if j < k.
The expression (6) reduces to % if 7 = k. Now consider the probability
of a terminal decision in favor of treatment 1. This can be evaluated
as g (6) = 11, where yj; is the probability of eventually reaching one
of the appropriate terminal states from (j, k). We have

(7)

jk

Yik = H7j+1,k + (1 - H) Vik+1
ik

for j,k =1, 2, ..., 10 with the boundary conditions that ~y;x = 1 for
j=11,k=1,2,...,10,and vy =0for j =1,2,...,10, k = 11.
Table 1 gives values of g (6) = 11 obtained from relation (7).
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Table 1.
Example 3: probability of deciding in favor of treatment 1.

6 0.025 0.050 0.100 0.125 0.167 0.250
p=0.3 0.511 0.522 0.543 0.554 0.572 0.608
p=04 0.512 0.524 0.548 0.559 0.579 0.618
p=0.5 0.513 0.526 0.551 0.564 0.585 0.626
p=0.6 0.514 0.527 0.554 0.568 0.590 0.633
p=0.7 0.514 0.528 0.556 0.570 0.593 0.638

EXAMPLE 4. We return to normal responses for our final illustra-
tion. Let 1, Ty, ..., Tm and Y1, ¥2, ..., Yn be independent observations
from the distributions N (p1,1) and N (g, 1), respectively. Let Zand
Jn be the sample means at time m + n =t and define

(8)

mn ,_ _
Zm,n=m+n($m—yn).

Consider sequential allocation rules {1:}, where the conditional proba-
bility 1; depends only on the differences between responses up to that
time: in other words, the o-algebra 3 is generated by x5 — 1, 3 — 1,

y Im —Z1, Y1 — T1, Y2 — X1, - -+, Yo — T1-

Robbins and Siegmund (1974) investigated sequential probability
ratio tests defined by stopping the sequence {2, »} at the point (M, N),
which is the first time that 2, ¢ (—b, a) for some fixed a and b. They
showed that, for a large class of allocation rules, the error probability
of the test is approximately independent of the rule used. Their result
involves neglecting any overshoot at the stopping barriers, but it yields
good approximations when a and b are large. We shall confine our at-
tention to the symmetric case a = b. Let p; = v, us = —v and suppose
that v > 0. The error probability for the sequential probability ratio
test based on (8) with barriers at & b is given by Wald’s approximation
as 1 — h (v), where

©) B
h(v) ~ {1 +exp (—4bv)} .
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Thus, h (V) corresponds to stopping at the upper barrier. In particular
(9) holds for the following allocation rule:

Yo

"/’t = 0 if zm,n Z 0)

N =

)

Yy = 1-0if 2,, <O0.

The constant # must be chosen in the range 1 < § < 1. We shall
examine the effect of selection bias when this rule is applied.

N

Now consider the situation when p; = po always and suppose the
experimenter favors treatment 1 by choosing patients with mean re-
sponse f; = pg = 6 whenever 9y = 0 and patients with mean —6 when
Py = 1 — 6. Under this strategy, the behavior of the random process
{Zmn} is more complicated and it is difficult to extend the results of
Robbins & Siegmund. However, we can obtain a rough bound on the
probability of selecting treatment 1 as the winner at the end. The
heuristic argument given below indicates that

(10)
g(6) < {1+exp(—4b6(20—1))} .

Comparison with (9) suggests that, at worst, selection bias may be
equivalent to a true mean difference p; — g = 2v, where v = § (20 — 1) .

For the moment, let us imagine that there are no barriers (b = 00)
and consider the situation when t is large. Write m = m* + m~ and
n = nt 4+ n~, where for example, n~ is the number of patients with
mean response —6 receiving treatment 2 before time t. It is reasonably
clear that all the numbers m*, m~,nt n~ will grow without limit as
t — o0o. Then the law of large numbers will ensure that
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when t is large. However, not much can be said about the limiting
behavior of the ratio ¢, = (m* +n*) /(m+n). We have

T L

and this is not difficult to express in terms of 6 and ¢ = ¢;. Some
rearrangement leads to
E{a_"m —Yn | m+)m_,n+7n_}

- 26(20 -1)p(1 - )
{0+ (1-0)(1-p)}{0(1-p)+(1-0)p}

This quantity is non-negative, for all possible values 0 < ¢ < 1. We can
obtain a simple upper bound by noting that the denominator on the
right is decreasing in 0, attaining its minimum value ¢ (1 — ¢) when 0 is
replaced by 1. Hence, the unconditional expectation has approximate
bounds

0L E{Zm —9n} <26(20-1).

The corresponding expectation under the original conditions of (9) is
E {Zm — §n} = 2v and the inequality (10) is obtained on replacing the
process {2mn} by a Brownian motion with constant drift 26 (20 — 1).
Of course, this argument is plausible for finite barriers only when b is
large.

Table 2 gives estimates of g (6) based on 10,000 simulations for a
stopping rule determined by b = 6. In each case, the upper figure is the
proportion of decisions in favor of treatment 1 and the lower figure is
the bound obtained from (10). In general, this is a useful guide. It is
also clear from the table that g (6) can be close to 1.
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Table 2.

Example 4: proportion of terminal decisions in favor of treatment 1
and upper bound (lower figure).

6 0.010 0.025 0.050 0.100 0.250

6 =0.5 0494 0499 0496 0.503 0.517
0.500 0.500 0.500 0.500 0.500

6 =0.6 0.511 0.528 0.553 0.593 0.721
0.512 0.530 0.560 0.618 0.769

60=0.7 0.518 0.544 0.600 0.674 0.843
0.524 0.560 0.618 0.723 0.917

0=0.28 0.527 0.565 0.629 0.742 0.904
0.536 0.589 0.673 0.809 0.973

6=0.9 0.532 0.571 0.643 0.763 0.921
0.548 0.618 0.723 0.872 0.992

0=095| 0524 0.585 0.666 0.789 0.935
0.554 0.632 0.747 0.897 0.996

4. Discussion. The examples we have considered show that selec-
tion bias can have a substantial effect in distorting the results of com-
parative experiments. The assumptions made here about the strategy
of the experimenter are rather artificial: bias is not easy to model. How-
ever, the difficulty of detecting it is much more important and this is a
strong argument for avoiding the possibility. It seems that this is best
done by avoiding data-dependent allocation of treatments altogether.
In the present context, this means restricting to allocation rules with
Yy = % always. Alternatively, we can rely on group sequential designs
where the patients are arranged in small groups, before randomization.

There are disadvantages in restricting allocation to randomization
with unbiased coins. As we mentioned earlier, one consequence is loss
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of balance in the treatment allocations, but this seems minor in com-
parison with the ethical cost associated with patients receiving inferior
treatments. The ethical cost is worth examining further.

Sequential methods can be based on random stopping, without us-
ing data-dependent allocation, and it is arguable that most of the pos-
sible gains in efficiency can be achieved in this way. Procedures for
comparing several medical treatments have been studied recently from
this point of view: see Bather and Coad (1992). The procedures there
rely on eliminating treatments at suitable stopping times until only
the winner is left. Allocations at intermediate times are always based
on equal randomization between the surviving treatments. The paper
shows that such procedures can achieve a pattern of error probabili-
ties equivalent to the obvious fixed-sample procedure for a much lower
level of expected successes lost. Coad has also shown (in a manuscript
found in this volume) that the results obtained by Robbins and Sieg-
mund for sequential probability ratio tests can also be extended to
experiments with more than two treatments. His simulations of several
data-dependent allocation rules and procedures with equal randomiza-
tion indicate that the extra reductions in expected successes lost can
be as high as 20 — 25%. This gives some idea of the advantages to be
set against the unknown risk of selection bias.

APPENDIX

It remains to sketch the proof of (4). We have to show that P (A) =
® (6/A), where A is the event defined in (3), @ is the standard normal
distribution function and A is given by (4). Let f be the density of
the distribution N (0,a). In the notation of Example 2, let II (z,y) be
the conditional probability of A given x and y. It is easily verified, for
z 2y,

[[@y) =2 {(=(+c)-yla+b)+&o'},

where £ =a(b—c)6 and 0% = b(a +c)®+c(a+b)*. Given any z > y,
we can evaluate II (—z, —y) in a similar way and this leads to

[I(~z,-y) =2{@@+c)-z(@+b)+&oc}.
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Hence

9) =P = [[{TT@v)+T](-2.-)} f (@) f () dody.

>y

We now transform the integral of the second term I (—z, —y) by writing
=19, y=1.It becomes

J[e{@@+a-y@+n)+80'} 1 @) f () da'ay

z'<y’
and we can now express g () as an integral over R?2:

g(6) = //@ z(a+c)—yla+bd)+¢&)ao }f(:c ) f (y) dzdy.

Finally, we can evaluate this integral as the probability that

yla+b)—z(a+c)+o2<¢

when z, y and 2 are independent normal random variables with common
mean zero and variances a, a and 1 respectively. It is a straightforward
matter to verify that g (6) = @ (6/)), as required.
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