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We suppose a Brownian motion with drift and linear stopping bound-
aries, possibly truncated, is observed. The maximum likelihood estimate
of the drift, upon reaching a boundary, is known to be badly biased, while
the uniformly minimum variance unbiased estimate of Liu and Hall (1998,
Sequential Analysis 17: 91-107) is difficult to compute. A bias-adjusted
estimate of Whitehead (1986, Biometrika 73: 573-581) is also complex
computationally and may still have substantial bias. We propose a modi-
fication of the maximum likelihood estimate, a segmented estimate, which
has a simple explicit formula. Computation shows the estimate to have
little bias and to have a competitive mean-square-error. The results apply
to various sequential testing problems through asymptotic approximation
and adjustment for discrete-time observation.

1. Introduction. We consider observation of a Brownian motion X{t), ob-
served in continuous time ί, with a stopping boundary. The boundary is typically
chosen to provide a test of hypotheses about the drift parameter. But the test
is unimportant here; we focus on estimating the drift once a boundary has been
reached, and without regard to the conclusion of the sequential test.

We assume a linear stopping boundary, consisting of an upper boundary (a line
with a positive intercept), a lower boundary (a line with a negative intercept), and
possibly a vertical boundary. The boundary forms a closed region with one possi-
ble exception: parallel upper and lower boundaries without a vertical boundary are
allowed. These boundaries include Wald's sequential probability ratio tests (SPRTs)
[20], Anderson's triangular designs [1] (see also [17, 10, 22]), and Armitage's [2] re-
stricted designs; these are the only fully-sequential designs (continuously distributed
stopping times) for which the distribution of the stopped Brownian motion along
the boundary is explicitly available. Formulas were derived by Anderson [1]; we use
the simpler versions of [11].

This Brownian motion paradigm serves as an asymptotic approximation to many
sequential analysis problems, including random sampling from a parametric model
and a proportional-hazards survival analysis staggered-entry two-arm clinical trial
model; see [22, 13]. Whitehead [22] includes a boundary adjustment to allow for
observation in discrete-time. Recently, sequential tests with triangular boundaries
have been utilized in clinical trials, e.g., [18], [19], and [3], in AIDS, cardiology and
pediatrics, respectively.

Whitehead [21] considered estimation of the drift upon hitting the stopping
boundary, at (£,#), say, with x = X(t). The maximum likelihood estimate (MLE)
is xjt. He found it to have considerable bias (noted earlier by Cox [5]; see his Figure
1, snowing the bias function for a symmetric SPRT and a symmetric triangular test
(2-SPRT).
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He proposed a bias-adjusted estimate (defined in Section 2 below), designed to
reduce the bias, and he provided some computational comparison of his estimate
with the MLE. However, his estimate still retains some bias (see Section 4), and its
computation is rather complex.

Ferebee [7] showed how to construct an unbiased estimate of the drift. Liu and
Hall [16] applied Ferebee's general method to the case of linear boundaries, and
went on to prove that the resulting estimate is the uniformly minimum variance
unbiased estimate (UMVUE)—that is, it has uniformly (in the drift) minimum
variance among all unbiased estimates based on the Brownian path from the origin
to the time of hitting the boundary. However, the UMVUE is computationally
somewhat complex, and hence there is need for a simple estimate that will remove
much of the bias. One specific use could be by a data monitoring committee while
a sequential trial progresses.

Here (Section 2) we first approximate the bias function by a segmented curve,
starting and ending with horizontal linear segments with a slanted linear segment in
between (see Figure 1). We then apply Whitehead's bias-adjustment method, with
this approximate bias function replacing the true bias function, yielding the seg-
mented estimate. This not only results in a simple estimate compared with White-
head's; computations (Section 4) show that it may do a much better job of reducing
the bias! More accurately stated, some complex computation may be required to
find an optimal choice among segmented estimates for any given design, but appli-
cation of the formula, once obtained, is simple and explicit. Moreover, we provide
an optimal (minimax absolute bias) choice for many popular linear designs (Sec-
tion 3)—including those provided by PEST software of Brunier and Whitehead [4].
A variety of alternative optimality criteria axe suggested; however, a sub-optimal
choice may still be useful.

In Section 3, we consider in detail two special cases: symmetric SPRTs and
symmetric triangular designs (2-SPRTs). These are the designs featured in PEST
software. Computations for these cases (Section 4) show that the precision of the
new estimate, as measured by the root-mean-squaxe (RMS) error, is comparable to
that of Whitehead's and to that of the UMVUE; all three estimates are much more
precise than the MLE.

One of these triangular designs was used in the MADIT clinical trial [19]; data
from that trial axe used for illustration in Section 5.

We recognize that, in practice, observation is not done in continuous time. Sim-
ulations (not detailed here) confirm, however, that the segmented estimate (5) con-
tinues to have substantially reduced bias when using Whitehead's 'Christmas tree'
[22] boundaxy adjustment for discrete-time observation.

For the popular group-sequential designs—with relatively few well-spaced pos-
sible stopping times in contrast to a discrete-time modification of a continuous-
boundary design—a segmented approximation may not be so appropriate or effi-
cient; see [9] for a simple low-bias method for this case.

2. Derivation of the segmented estimate. We consider sequential tests
based on observation of a Brownian motion X(t) with drift θ, determined by stop-
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ping boundaries

αi +bχt for t < to upper
(1) α2 + M for t < to lower

for t = to vertical

with α2 < 0 < αi and 0 < to < oo; however, to < (αi — α2)/(&2 — &i) if 62 > &i, and
ίo < oo if 62 < 61 These assure that the stopping time T is finite a.s.

The MLE of 0, upon termination of the Brownian motion, is

X(T) ί α i / ^ + δi if th e uPP^ r boundary is reached,

τ

 = { CI2/T + b2 if the lower boundary is reached,
[ X {to) I to if the vertical boundary is reached.

This estimate is biased and often substantially so. There is a tendency for it to
over-estimate the drift when reaching the upper boundary and under-estimate when
reaching the lower boundary; bias tends to be small when reaching a vertical bound-
ary or when stopping near the apex of a triangular boundary. Whitehead [21] and
Liu [15] investigated the behavior of its bias function 6(0), which may be computed
using the density formulas in Hall [11]; see Appendix A. Except in the case of the
untruncated SPRT, the formulas involve infinite series with integrals in each term.
For a symmetric horizontal SPRT, the formula is quite simple; see Appendix A

Figure 1 (similar to Figure 1 in Whitehead [21]) reveals the general pattern of
the bias function: approximately linear for 0 in an intermediate range (between the
hypothesized values) and approaching asymptotes quickly in either direction. The
asymptotes are known to be the reciprocals of the upper and lower boundary in-
tercepts, respectively ([5]; see also [15]). Such bias curves can be well-approximated
by a segmented curve, as illustrated in Figure 1, using the asymptotes for extreme
0-values and connecting linearly over a suitable intermediate range:

{ l/α2 for 0 < 02,
cθ-dίoτθ2<θ<θu

1/αi for 0 > 0i

for some 02 and 0i and with

/«x qi + |θ2| ft Λ 1
( 3 ) c = 7Ϊ /> \ 1 1 a n d d =

(0i-0 2 )αi |α 2 |

to maintain continuity at 02 and θ±. We call bs(θ) a segmented approximation to
the bias function 6(0) of the MLE. It is determined by 02 and 0i or by c and d.

When the boundaries are symmetric around the ί-axis (possibly after shifting
the drift parameter), 6(0) = 0. Setting 6s(0) = 0 likewise, d = 0 and 02 = —0i; bs

is then determined by a single parameter 0i or c = l/(0iαi). For an example, see
Figure 1.

Whitehead [21] defined an adjusted estimate θa as the solution (in 0) to the
equation

(4)
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Figure 1. Bias of MLE and a segmented approximation thereto, for symmetric
SPRT of drift = =F§ with α = β = 5%.

If the bias function were linear—which it clearly is not—this would eliminate the
bias. We now define a segmented estimate θs similarly, simply replacing b in (4) by
the approximation bs in (2). While Whitehead needed to solve (4) for θa iteratively,
we find a simple explicit solution:

(5)

• ̂  for ΘML < θ2 + ^

ΓL + d) for 02 + ^ < ΘML

ΘML — -^ for ΘML > ^i + ^

with r = 1/(1 + c). For symmetric boundaries, note that θs shrinks ΘML towards
the origin, and otherwise towards — d.

There is yet need to choose θ\ and #2, or equivalently choose d and c or r. In the
symmetric case, there is but one constant to choose, namely θ\ or c or r. We define
an optimal choice as one for which the maximum (over θ) of the absolute bias of
θs is minimal—a minimax bias criterion. This requires computation of the bias of
^ s, as a function of the free parameter(s); this can be evaluated numerically using
density formulas in Appendix A, and the minimax task carried out numerically. We
provide the solution for some important cases in Section 3.

Other optimization criteria could be applied, informally or precisely: (i) Sketch
the bias function b(θ) and choose a good-fitting bs(θ) empirically; (ii) solve bs(θ*) —
b(θ*) and b's(θ*) = b'(θ*) for some intermediate θ*-value; (iii) minimize (formally)
some distance measure between the functions b(θ) and bs(θ), or (iv) between the
UMVUE and θs, or (v) between the bias function of θs (see Appendix A) and 0, as
in the minimax criterion.

3. Symmetric SPRT and 2-SPRT designs. First consider horizontal par-
allel boundaries with intercepts ±α, and untruncated. For testing θ = =F| with
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equal error probabilities a and a = log[(l - α)/α], these are SPRT boundaries.
Since ΘML = ±Q>/T, segmented estimates have the form

(6) ±{f~Ϊ) ίorT^ts a n d ± r | ίoτT>ts

with ts = a2(l — r) ( 0 < r < l ) . Thus ts (or r) defines a segmented estimate θs.
Next consider triangular boundaries with intercepts ±a and slopes q=|, and un-

truncated. These are 2-SPRT boundaries for testing θ = =F| with equal error proba-
bilities a and a = -21og(2α) ([17, 10, 22]). Now ΘML = ±(α/T-1), and segmented
estimates have the form

(7) ± U - 7 - - forΓ<ίs and ± r - - - for T > t

with ts = α2(l - r)/[l + α(l - r)/4] (0 < r < 1). Again, ίβ (or r) defines a
segmented estimate θs.

We consider these as canonical versions of equal-error-probability tests of two
simple hypotheses about θ. To test θ = θ\ versus θ2 ? first transform from X(ί) to
JT(t') = Δ[X(*)_- 0f] with A = Θ2-ΘUΘ = (θ2 + ίi)/2 and ί = ί'/Δ2; X'(f) has
drift 0' = (θ — Θ)/Δ, = =F| at 0i and 025 corresponding boundary constants are
o!i — Adi and b[ — (bi — Θ)/Δ. Moreover, such symmetric designs can be adapted
to unequal error probability designs (α, β) for testing θι versus 02 by choosing θ[
and θ'2 so that an equal-error-probability (a',af) design for testing θ[ versus θ'2
has the desired error probabilities a and β at θ\ and θ2i respectively; this requires
calculation and inversion of the OC function. Whitehead [22] and his PEST software
use this technique with θ[ = θι and a1 — a. Thus, the parallel-line and triangular
designs of PEST are covered by these two general cases.

In each case, it remains to specify ts (or r) in (6) or (7). To compute r for a
given α, we may first plot b(θ) and make two initial guesses at suitable values for
r. Then determine (numerically) the maximum of the absolute bias of (6) or (7)
for each initial guess and iterate until a minimax r, and hence £s, is determined.
We use the sub-density of T on a particular boundary to find the bias of θs and to
minimax it; see Appendix A. We omit the details.

We carried out this algorithm for symmetric SPRTs and 2-SPRTs, for several
commonly used a-values, finding minimax ts values and the corresponding maximal
absolute bias m. We call these optimal segmented estimates. Results are in Table 1.

To deal with other α-values, the following approximate formulas were developed
empirically from Table 1:

ta = 5.7α -9.1 and £ s =3.1α-4.9

for symmetric SPRTs and symmetric 2-SPRTs, respectively. Use of these empiri-
cal formulas will yield nearly optimal segmented estimates for reducing bias while
avoiding complex computations.

For discrete-time observation (with small increments), we revert to (5)—that
is, actual MLEs should be used on the right in (5), rather than values exactly on
stopping boundaries as in (6) and (7). An adjustment for overrunning, due to lagged
data after reaching a boundary, appears in Section 5.
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Table 1: Optimal segmented estimates (ts) and their maximal absolute bias (m) in
symmetric SPRT and 2-SPRT designs. Boundaries for SPRT are ±a; for 2-SPRT,

±(a — \t). Tests have error probabilities a at drift = =F§

a
0.010
0.025
0.050
0.100

Symmetric
a

4.595
3.664
2.944
2.197

ts
17.483
11.14
7.196
4.007

SPRT
m

0.0012
0.0015
0.0019
0.0026

Symmetric
a

7.824
5.991
4.605
3.219

ts

19.094
13.123
8.889
5.081

2-SPRT
m

0.0002
0.0003
0.0004
0.0008

* To test 0i versus θ2 = 0i + Δ, divide ts by Δ 2 and multiply m by Δ the SPRT
boundaries are ±(α/Δ) + θt the 2-SPRT boundaries are ±[(α/Δ) - (Δί/4)] + θt.

4. Comparison with other estimates. We shall see that the segmented
estimate θs not only has a simple explicit expression, but also reduces the bias
greatly and has competitive RMS error, compared with alternative estimates.

For a = 5% and a limited range of θ values, Tables 2 and 3 compare the bias and
RMS error of θs to those of the MLE ΘML, Whitehead's [21] bias-adjusted estimate
0α, and the UMVUE θu of Liu and Hall [16], for the case of symmetric SPRTs and
2-SPRTs. Computations were done using density formulas of Hall [11] in Appendix
A and, for the bias-adjusted estimate, approximations given in Appendix B.

Table 2: Bias and RMSE of drift estimates in a symmetric SPRT for testing
θ — τ l/2* with a — β — 5%. Entries, except θ's, have been mutiplied by 1000.

θ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.5

000
082
154
212
256
286
306
319
327
332
335
339

Bias
θa**
000
055
103
136
148
141
120
094
069
049
033
004

θs
0.0
1.3
1.9
1.6
0.7
-0.4
-1.3
-1.8
-1.9
-1.8
-1.5
-0.2

Root-Mean-Square

ΘML

827
824
815
804
795
791
792
798
809
822
837
926

θa**
452
460
481
515
553
592
630
664
695
723
749
860

θu
609
611
618
628
642
658
676
696
717
737
758
861

: Error

θs

609
611
617
627
641
658
677
697
718
739
760
861

* To test 0i versus θ2 = 0i + Δ, multiply bias and RMSE by Δ.
** Based on approximations (10) and (11).

These numerical results show that, in these two cases, θs reduces bias more ef-
ficiently than does Whitehead's bias-adjusted estimate, and has precision (as mea-
sured by the RMS error) almost equal to that of Whitehead's bias-adjusted estimate
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Table 3: Bias and RMSE of drift estimates in a symmetric 2-SPRT for testing
θ = =f 1/2* with a = β = 5%. Entries, except θ's, have been mutiplied by 1000.

θ

0.0
0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8

0.9
1.0

1.5

ΘML

000
053

101

140
170

189
202

209

213

215

216
217

Bias

θ
a
**

00
28

53

71
79

75
62

45

29

17

05

00

θ
s

0.0
0.2

0.3

0.3
0.1
-0.2

-0.3
-0.4

-0.4

-0.3
-0.2

-0.0

Root-Mean-Square

ΘML

617
615

608

600
594

592

596
604

615

629

645
722

θ
a
**

402
405
417
434

458
484

511

537

561

583
605

689

θ
u

468
470

477

487
501
517
534

551

569

587
605

689

! Error

θ
s

468
470

477

487
501
517
534
552

570

588
606

689

* To test 0i versus θ2 = 0i + Δ, multiply bias and RMSE by Δ.
** Based on approximations (10) and (11).

and the UMVUE. The MLE is uniformly the poorest among these, both in bias and
in precision; however, the bias-adjusted estimate appears to have uniformly smaller
RMS error, especially between the hypothesized values for 0, but its tabulated val-
ues are based on approximations. This observation of apparent superiority in RMS
error agrees with that of Emerson and Fleming [6], where group sequential designs
are the main focus. To choose an estimate, a trade-off between bias and variance
may be needed; but if reducing the bias is the main concern, or if simplicity of
computation is deemed valuable, then the segmented estimate is surely a strong
candidate.

We now consider how close alternative estimates are to the UMVUE. The values
of various estimates when stopping on the upper boundary for the symmetric SPRT
and the symmetric 2-SPRT designs considered in Tables 2 and 3 are plotted against
stopping time in Figure 2. These curves indicate that the optimal segmented esti-
mate is much closer to the UMVUE than is Whitehead's bias-adjusted estimate,
consistent with the fact that the segmented estimate has smaller bias than the
bias-adjusted estimate.

5. The MADIT example. In this section, we apply various methods of esti-
mation discussed in the previous sections to data collected in the clinical trial MA-
DIT [19]. It was a fully-sequential trial (weekly analyses for two-and-a-half years)
with triangular boundaries.

MADIT (Multicenter Automatic Defibrillator Implantation Trial), a multicen-
ter randomized clinical trial, was conducted to evaluate the effectiveness of an im-
planted automatic defibrillator, compared with conventional drug therapy, to reduce
mortality associated with ventricular arrhythmias. Monitoring was based on the
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Figure 2. Various estimates in the symmetric SPRT and 2-SPRT designs
for testing θ = =F| with α = β = 5%.

log-rank statistic plotted against its estimated variance (with linear interpolation
between plotting points). This behaves like a Brownian motion with drift θ equal to
the negative of the logarithm of the hazard ratio (HR) for the two treatment groups
(see [22, 8]). The trial was designed to have a one-sided significance level at θι = 0
of 2.5% and power at θ2 = 0.622 (HR = 0.537) of 90%. A triangular test was de-
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signed for the trial, using the early part of the lower boundary along with the upper
boundary for rejection of the null hypothesis, thereby yielding a two-sided signifi-
cance level of 5% (as described in [22]). Using PEST software, we find that a 2-SPRT
of θ = 0 versus θf

2 = 0.755 with a = β = 2.5% has power 90% at Θ2 The stopping
boundaries are x = 7.935 + 0.189ί and x = -7.935 + 0.566*. Correspondingly, the
canonical hypotheses are =F| with canonical boundaries x = ±(5.991 — \t).

The upper boundary was reached at (t,x) = (12.145,10.230) (= (6.923, 4.259) in
the canonical design). After some late data came in, a final Overrunning' position
was at (t°,x°) = (13.277, 13.167). This information is now used to estimate the
treatment effect parameter θ.

We first ignore the overrunning. We find the MLE of θ is x/t = 0.842, the
UMVUE is 0.7163 and Whitehead's bias-adjusted estimate from PEST is 0.743.
Using Table 1 and (7), the optimal segmented estimate of drift in the canonical
design is 5.991/6.923 - 1/4 - 1/5.991 = 0.448. Converting this value to obtain the
segmented estimate of 0, we find θ8 = 0.7157, close to the UMVUE (and identical
if rounding to the nearest thousandth).

Incorporating overrunning, the MLE is found to be MLE° = x°/t° = 0.992.
Note that MLE° = (t MLE + Δx)/t° with Ax being the increment in X(t) af-
ter hitting the boundary. We therefore define a segmented estimate by replacing
MLE in this formula by the segmented estimate upon reaching the boundary. This
yields (12.145 x 0.7157 + 2.937)/13.277 = 0.876 as a segmented estimate incor-
porating overrunning. Simulations (not detailed here) support our conjecture that
this segmented estimate continues to have reduced bias compared with the MLE.
No UMVUE is available when there is overrunning (but see [12]). These overrun-
ning estimates are somewhat higher than those at the boundary crossing since the
sample path rose slightly more steeply in the overrunning phase; see Figure 1 in
[19]

Acknowledgement. The segmented estimate concept originally appeared in the
author's PhD dissertation [14], under the supervision of Jack Hall. Jack has been
a wonderful academic mentor and dear friend to me ever since I enrolled into the
graduate program in statistics (biostatistics) at the University of Rochester in 1993.
I am grateful to Jack for his valuable help in preparing this paper, for his precious
guidance in my career development and, much more, for his warm friendship that
the author values most. Thank you, Jack, and happy birthday!

APPENDIX A: Bias and Precision of the MLE. Consider boundaries in (1).
Let

α = (αi+α 2 )/2, b=(b1+b2)/2, c = a1-a2, b=(b2-b1)/2

and

odd
even,{ jc + αi if j even _ ί jc + αi if j

jc - a2 if j odd, Sj ~ \jc — a2 if jand let φt(-) be the density of the normal distribution with mean 0 and variance t.
Then the density of (T,X(T)) upon stopping on the upper boundary at time t is
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([11])

pjf(ί) = Γ1 Σ(-l)ύ exp Άr2 - a2) + aγτ - ^τ2t\ τj φt(rά) , t £ (0,ί0).
j=0 ^ ^ r=θ-bi

The density p^(ί) on the lower boundary is given by p%(t) with (αi,α2,0 — h,rj)
replaced by (-α2, -αi , -β+62,5j). The density on the vertical boundary is p^(a ) =
exp {(0 - 5)x - \{θ2 - b2)t0}pV(x) where

00

Pϊfr) = Φto(z) + y ] [exp{46jθ'c - ά)}0<o(^ - 2jc)

- exp{26(2j - l)(jc - αi)} φφ + 2jc - 2αi)

- exp{26(2j - l)(jc + o2)} φto(z - 2jc - 2o2)

+ exp{46j O'c + a)} φto {z + 2j c)]

The first moment (and thence the bias b(θ)) of the MLE ΘML = X(T)/T can be
evaluated numerically from

J + kWW* + / ( + ̂ ^ W * +

The second moment of ΘMLE, and thence the MSE, may be evaluated similarly.
Moments of other estimates may likewise be evaluated numerically.

For symmetric SPRTs, the first two moments can be greatly simplified. After
considerable mathematical manipulation [15], we find

and

[ l / 1 Z*0 '̂ \

ΘML = 2a"1 sinh(a0) I 71 - - / u sech{u)du j

®Θ \θ2

ML\= 2cosh(α(9) I — \ u sech(u)dn - -±θ2 + 3 ^ | - ^ / u3sech(u)du)
L - l V^^o 2 α 4 y 0 /

with 7 l = Σ^=o(-l) n (2n + I ) " 2 « 0.915966 and 73 = Σ£=o(-l) n (2n + I ) " 4 »
0.988945.

These formulas are used repeatedly for computations of bias and MSE in Sections
3 and 4.

APPENDIX B: Bias and Precision of Whitehead's Estimate. Let e(θ) =

E# \ΘML\ = b(θ) + θ be the expectation of §ML at θ. The bias-adjusted estimate

θa, defined as the solution to (4), satisfies

Suppose the mean function e(θ) OΪΘML is nondecreasing and can be differentiated
infinitely often (which is satisfied for a broad class of stopping boundaries, including
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linear boundaries (1) and any group sequential boundaries). Writing e_i( ) for the
inverse function of e( ), we have θa = e_i(0ML) Expanding e_i(0MZ,) at e(0), we
have

Taking expectations of both sides, and assuming orders of integration and summa-
tion can be interchanged, we obtain an expression for the bias of θa:

(8) Bias [θa] = Έθ [θa] ~Θ = Σ i E* [$***> ~ <θ))j]

Similarly, we have

(9) BΘ [θl] = f ; Cj(θ) Eθ [φML - e(θ)y]
j=o

where

Moments of ΘML can be derived as in Appendix A. Derivatives of β-i(0) may by
expressed in terms of derivatives of e(θ) by repeatedly using the identity e_i (e(0)) =

The first several leading terms in (8) and (9) are often good enough for approx-
imation when numerically evaluating bias and mean squared error of θa. Taking
terms with j < 2 and noting that

^ and e'LM0)) = -

we find

and

E* [θί\ -θ2* j^ψ(e'(θ) - θe"(θ)) Vaxθ [ΘML] .

Prom these we find

(11) MSE [θa] = E [§l] -Θ2-2Θ Bias [θa] « -^^ Var, [θML] .
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