
ON LOCAL POLYNOMIAL ESTIMATION OF HAZARD
RATES AND THEIR DERIVATIVES UNDER RANDOM

CENSORING

JlANCHENG JlANG KjELL DOKSUM

Peking University University of California at Berkeley

The Dirac function is used to define an empirical hazard rate λn( ) whose integral up
to time t equals to the Nelson-Aalen estimator. This empirical hazard rate exists only in
space of Schwartz distributions, so we introduce a local polynomial approximation to λn( )
which provides estimators of the hazard rate and its derivatives. Consistency and joint
asymptotic normality of the local polynomial estimators are established. The estimators
have favorable properties similar to those of local polynomial regression estimators, that is,
the hazard rate estimator is boundary adaptive and under certain smoothness conditions
the rate of convergence can be made arbitrary close to root n. The estimator is boundary
corrected even if a local constant smoother is employed. Asymptotic expressions for the
mean squared errors (MSE's) are obtained and used in bandwidth selection. A data-driven
local bandwidth selection rule is proposed and is illustrated on the Stanford heart trans-
plant data. We use Monte Carlo methods to show that the proposed estimator compares
favorably with the Muller-Wang estimator.

1. Introduction

Assume that Γi,.. ., Tn are i.i.d. lifetimes (that is, nonnegative random vari-
ables) with distribution function F, and that CΊ, . . . , Cn are i.i.d. censoring
times with distribution function G. The C*, Ti are assumed to be inde-
pendent, and the actual observations are (JQ,^), for % — l , . . . ,n, where
Xi = min(Γi, d) and δ{ = I{Xχ — Ti) is an indicator of the censoring status
oΐXi.

Let L denote the distribution function of Xi, then L = F G, where for any
distribution function £", E = 1 — E is the corresponding survival function.
Let A(x) = — log(F(x)) be the cumulative hazard function. We consider the
problem of estimating X(x) = Af(x) = f(x)/F(x) and \(k\x) for k > 0 on
the interval [0,Γ], where Γ < Γ* = inf{x : L(x) = 1}.

Ramlau-Hausen (1983), Tanner and Wong (1983), and Yandell (1983)
studied the asymptotic properties of kernel estimators of hazard functions
based on the idea of convolution. Mϋller and Wang (1990) considered local
bandwidth choice for convolution-type kernel estimators with fixed higher
order kernels, and Muller and Wang (1994) proposed to estimate hazard
functions with varying kernels and data-adaptive bandwidths in order to
remove boundary effects. Hess et al. (1999) reviewed various kernel-based
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estimators for hazard functions and advocated the use of boundary correction
and locally optimal bandwidths.

Here we consider local polynomial (LP) estimators of hazard rate func-
tions and their derivatives that are approximations to Dirac derivatives of
the Nelson-Aalen estimator and show that the LP estimators share some
favorable properties with local polynomial regression estimators. In partic-
ular, the LP estimators can reduce the bias according to the degree of the
polynomial without increasing the variance and automatically correct the
left boundary effect. Moreover, the finite sample bias of the LP estima-
tors is zero when the estimated hazard rate is a polynomial up to order p,
where p is the order of the polynomial used in smoothing (see (2.3) below).
The pointwise asymptotic normality of the LP estimator enables one to find
the asymptotically optimal variable bandwidth, and allows one to develop a
data-driven optimal local bandwidth selector by using the ideas of Fan and
Gijbels (1995). In this paper, we present a simple data-driven method for
choosing the local bandwidth.

The outline of this paper is as follows. In Section 2, we introduce the
LP estimators. Section 3 concentrates on the asymptotic properties of the
proposed estimators, including pointwise strong consistency and joint asymp-
totic normality. In Section 4, the data-driven local bandwidth selection rule
is proposed. Numerical illustration is given in Section 5. Technical proofs
are given in the appendix.

2. Estimation

In order to introduce the estimators, we will use the following notation:

(1) L\{x) = P(Xi < x,δi = 1), the subdistribution function for the uncen-

sored observations.

(2) L\n{x) = Σ™=ι I(Xi < x,δi = l)/(ra + 1), the modified empirical distri-
bution function of L\{x).

(3) Ln{x) = Σίi=i I(Xΐ — x)/(n + 1)? the modified empirical distribution
function of L(x).

Note that \{x) = L'ι{x)/L{x). We will use the Nelson-Aalen's estimator
of Λ(x),

(2.1) An(x)= Γ(l-Ln(u))-1dLln(u)=
J° i:X{i)<x

where X^ are the order statistics of X^ and δ^ is the concomitant of X(φ
i.e., Sty and Xφ are from the same observation.

For a given point xo G (0,Γ), the following assumptions and notations
are needed.
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(Al) The hazard function X(x) has a continuous (p + 2)th derivative at the
point #o

(A2) The sequence of bandwidths bn tends to zero such that nbn —• +00 as
n —> +00. Let B = diag(l, bn,..., 6&).

(A3) L(x) is continuous at the point XQ.

(A4) The kernel function K is a continuous function of bounded variation
and with bounded support [—1,1], say. Let S£ = J_1K(u)u£du, V£ =

f^vt&^du, Cp = O p + i, . . .,S 2p+l)T, Cp+i = (5p+2,...,52p+2)T,
S = (si+j) and V* = (υi+j), (0 < i < p; 0 < j < p).

Muller and Wang (1990, 1994) considered the following kernel estimator,
which is a convolution of the Nelson-Aalen estimator Λn with an appropriate
kernel function Kv\

(2.2) Ψ\x) = - L ! Kv{^
On J °n

where K^ is a kernel of order (z/, k) with k > v (see (2.5) in Muller and
Wang, 1990). For the estimation of derivatives or reduction of bias, the es-
timator needs higher order kernels, which can lead to a negative hazard rate
estimator. The practical advantages of using higher order kernels can be
quite small for moderate sample sizes as demonstrated in Marron and Wand
(1992). When estimating at a point x near 0 or T, most kernel estimators in
the density estimation and regression setting will encounter boundary effects.
The estimator (2.2) suffers from boundary effects near the endpoints of the
support of the hazard rates. Muller and Wang (1994) proposed to solve the
problem by employing boundary kernels and a data-adaptive varying band-
width selection procedure. Hall and Wehrly (1991) studied a geometrical
method for removing edge effects from kernel-type nonparametric regression
estimators, which may be useful in density estimation. Here we introduce a
simple and intuitive approach to the problem, which does not employ higher
order kernels or boundary kernels while automatically correcting the bound-
ary effects.

Let us consider the following optimization problem: for p = 0,1,2,...,

(2.3) min / — κ( —-) \λ(u) - V o 7 (u - x)λ du.

* Jb V K L p J*,

By Taylor expansion, the solution of the optimization problem, denoted by
a*(x) = (αj, . . . , α*) τ, approximates a(a ) = (λ(x),..., \^p\x)/p\)τ.
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Note that the Nelson-Aalen's estimator An(x) is the empirical estimator

of Λ(x), thus we can define the following generalized empirical hazard rate:

(2-4) K() Σ

where D(x) is the Dirac function with the following property:

/ g(u)D(u -x)du = g(x)

for any integrable function g(x). Then f£ \n(t)dt = Λn(x), however, λn( )
exists only in space of Schwartz distributions and is not computable, which
is why we call λn the generalized empirical hazard rate.

Because integrals involving λn( ) exist we can obtain computable estima-
tors of a(x) for x fixed by using an empirical version of (2.3). That is, we
define the LP estimator of a(x) as

(2.5) a(x) ΞΞ (α o , . . . ,α p )

= argmin
p ) i / _ \Γ p I 2

in / — K( ^ — ^ J \n(u) - V aj(u - x)J du.
3 Ju>0 bn \ 0n J L ~^ J

In estimation of distribution and density functions without censoring,
similar ideas have been used. Lejeune and Sarda (1992) considered esti-
mation of the distribution function by local linear fitting to the empirical
distribution Fn. Jones (1993) considered a locally linear estimator and
established its link with the generalized jackknife boundary correction for
p = 1 by smoothing the generalized empirical density function. Nielsen and
Tanggaard (2001) used the counting process approach to construct estimates
similar to our locally constant and locally linear estimates.They also provide
a number of useful references. Here we will consider the local polynomial
estimation of hazard functions and their derivatives, a(x), in the case of
censoring. We will show that the above LP estimators for hazard rates au-
tomatically correct the boundary effect even if a local constant smoother is
used.

Taking the derivative with respect to the a's of the integral in (2.5), we
obtain the LP estimator a(x) as the solution to the linear equations: for

n-i + 1
p
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It follows that the LP estimator at an interior (XQ G [bn,T)) point satisfies
the following closed form

(2.7) Ba(xo) = S-^nίxo),

where S n (x 0 ) = (Snθ(xo), - ' •> Snp(xo))T, and

(2.8)

When XQ is an interior point, p = 0 and so = 1, (2-8) gives

1 X(i)-xo δ(i)

which is the same as the estimator of Mϋller and Wang (1990, 1994) for
the hazard rate, so that Mϋller and Wang's estimator with v = 0 at an
interior point xo coincides with the LP estimators with p = 0. However, this
equivalence does not hold for boundary {x G [0,6n)) points.

We will show in the next section that the LP estimator shares nice prop-
erties with the local polynomial regression estimator, in particular, the esti-
mator automatically corrects the left boundary effect, which contrasts with
the results for other hazard rate estimators. Asymptotically, when L(T) < 1
and bn —> 0, we will not encounter boundary effects at T.

3. Asymptotic properties

In this section, we will establish the consistency and joint asymptotic nor-
mality of the local polynomial estimators.

Theorem 3.1. Under conditions (A1)-(A4),

B(a(x0) - a(x0)) - ^ 0, n —> oc.

Theorem 3.2. Under conditions (A1)-(A4),

(3.1) ^ ( B [ a ( * o ) - a(xo)] -

L(xo)
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Remark 3.1. When estimating a hazard rate which is a polynomial of order
p on an interval, the finite sample bias of the LP estimators on the interval
is zero (see the proof of Theorem 3.2). This contrasts with the methods of
Muller and Wang (1990, 1994) based on higher order kernels, for which the
respective zero bias only holds true asymptotically.

Remark 3.2. Consider the left edge effect on the estimator. A convenient
mathematical formulation of the edge effect problem is given by Gasser and
Muller (1979). Assume that we estimate a(a ) at xn = dbn in the left bound-
ary region for some positive constant d e [0,1]. Then similar to (2.7), a(x n )
in (2.6) has the following closed form, for p = 0,1,2,... ,

(3.2) Ba(x n ) = S ^ S n ( : r n ) ,

where S^ defined as S but with Si replaced by s^d = J__du
ιK(u)du. Let

Vi,d — J_dulK2(u)du. Then the joint asymptotic normality (3.1) continues
to hold with c p, c p +i, S, and V* replaced by c p ^, Cp+i^, S^, and V£, respec-
tively, where cPid = (sp+i,d,.. , s2p+i,d)T> c

P+ι,d = (sp+2,dj > s2P+2,d)T,
and V^ = (vi+jtd) is (p + 1) x (p + 1) matrices. This property is similar to
that of local polynomial regression estimation, which is not shared by other
kernel estimators of hazard rates (see for example Hess et al., 1999). The
LP estimators are automatically boundary adaptive in the sense of Fan and
Gijbels (1996). Note that the above property holds even for p = 0, which
contrasts with the cases of local polynomial regression.

Note that when #o is an interior point and K( ) is symmetric, some

of the entries in S " 1 ^ are zero and Theorem 3.2 is not very informative.

We now take a closer look at this issue. Let \(k\x) = fc!άfc(x), and e& =

(0, . . . , 1, . . . , 0 ) τ , where e& has one in the (k + l)th component and zeros in

the others. Then

Theorem 3.3. Suppose K(-) is symmetric. Under conditions (A1)-(A4),

(i) For p — k odd

(ii) For p — k even
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Remark 3.3. Prom Theorem 3.3, the asymptotic mean squared error MSE
for estimating χ(k\x0)/k\ (k = 0,... ,p) can be defined as

MSEk(bn,x0)

= <
if p — k is odd;

L(xo)'

otherwise.

Therefore, the optimal local bandwidth for estimating the A th derivative of
X(x) at XQ, in the sense of minimizing MSΈk(bn,xo), is

(3.3)

n V 2(p+l-fc)[λ(P+1)(a:o)]2(eT1s-icp)2

if p — A: is odd;

otherwise.

In parallel to Theorem 3.3, consider the estimation of \(k\x) on the
boundary point xn = dbn for d G [0,1). Since β^S^1cp?ί/ does not vanish, we
have the following theorem from Remark 3.2:

Theorem 3.4. Suppose K( ) is symmetric. Under conditions (A1)-(A4),

Remark 3.4. Prom Theorems 3.3 and 3.4, the LP estimator of the hazard
rate λ( ) (for p — 1) is boundary adaptive in the sense that it automat-
ically achieves the same convergence rate O(n~2/5) on boundary points
as in interior region if a symmetric kernel and the optimal bandwidths
bo,opt = 0{n~ι/b) in (3.3) are employed. For p = 0, the estimator is also
consistent, but the bias at the left boundary is of order O(bn). This con-
trasts with the case of local constant regression.

4. Data-driven local bandwidth choice

Local bandwidth choice for the estimation of hazard functions and their
derivatives is an important problem, especially in practice where one would
like to have a data-driven approach to bandwidth choice. Patil (1993) studied
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least squares cross-validation bandwidth selection in hazard rate estimation,
Gonzalez-Manteiga et al. (1996) studied smoothed bootstrap selection of the
global bandwidth for estimation of the hazard function. Miiller and Wang
(1994) studied the local bandwidth choice for kernel estimators of the hazard
functions. Hess et al. (1999) advocated locally optimal bandwidth estimators
with left boundary correction. We will study a data-driven optimal local
bandwidth choice for the LP estimator.

By examining the MSE of the LP estimator a(#o) m the proof of Theo-
rem 3.2, we find, for estimating αfc(xo) — λ^k\xo)/k\, that the exact bias of
the estimator

(4.1) Bk(bn,x0) = e j ^ S - ^ J x o ) - Ba(x0)),

where βn(xo) = (βno(xo), ,βnp(xo))T, and

(4.2) βnk(xo)= / T-κ(—τ ) (—7 YKu)du
J On On On

= ί K(t)tkλ(x0 + bnt)dt.

The asymptotic variance of άk(xo) is

(4.3) Vk(bn, xo) = - ^ e ^ S " 1 VS-^fc,

nbn

where V = (ΰ y ), and v^ = J[K2(t)ti+jλ(x0 + bnt)/L(x0 + bnt)] at. Then we

propose to estimate the MSE of λk(xo) — k\άk(xo) via

(4.4) MSEfc(6n, x0) = Bl(bn, x0)

where Bk(bn^xo) and Vk(bn,xo) are defined similarly to β^(6n,xo)

Vfc(bn,xo) but with λ(x) replaced by a pilot estimator and L(x) replaced by

its empirical distribution function. Let bk,0pt{χo) — argmin^MSE/c(ί), XQ).

For an illustration, consider data-driven optimal local bandwidth choice
for the LP estimator with p — 0. Similar approaches can be developed for
p — 1,2,.... We now introduce an algorithm for estimating λ(x), which is
similar to that in Miiller and Wang (1994) but enhanced via incorporating
our estimator and a local linear smoother for band widths. Similar algorithms
can be developed for estimating the derivatives of λ(x).

Algorithm for estimating X(x)

Step 1 (Pilot estimators of λ(x)). Choose a kernel, such as the Epanech-
nikov kernel, and an initial global bandwidth &o The choice of the initial
bandwidth depends on the specific case. Assume the data are available on
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[0,Γ], then a possible value for &o is T/(8nu ) λ as recommended by Mϋller
and Wang (1994), where nu is the number of uncensored observations. The
pilot estimators X(x) of X(x) are obtained by using bn(x) = 60 and the LP
estimator (2.6).

Step 2 (Minimizing of MSE(b n , &)). Choose an equispaced grid of ml

points ί i , ^ = : 1,... ,ral between 0 and Γ. For each of the gridpoints X{

compute MSE(6n,x^) in (4.4) with k — 0 and obtain its minimizers b(xi) on

the interval [&o/4,4&o]>2 say.

Step 3 (Smoothing bandwidths). Choose another equispaced grid of ra2

points xr, r = 1,... , ra2, over the interval [0, Γ] on which the final hazard

estimator is desired. Running local linear smoother (Fan and Gijbels, 1996)

by employing global bandwidth bo = bo or 2&o 3

ml ml

ί)(xr) = Σ
t = l

where

and

ml
Lnj = ΣK(%i ~ xr)/bo)(xi ~ Xr)3, for j = 1,2.

z = l

Step 4 (Final hazard function estimators). Using (2.6), obtain the
estimators X(xr) by employing the bandwidth 6(x r), for r = 1,... ,m2.
Remark 4.1. The above algorithm may be repeated by using the estimators
X(xr) in Step 4 as pilot estimators in Step 1 and running Step 2-Step 4
again. The pilot estimators of X(x) in Step 1 may also be obtained via
maximum likelihood if one has a plausible parametric model in mind. The
local smoother in Step 3 is employed to yield a stable estimator for the
hazard rate.

5. Numerical studies

In this section, we check Remark 3.2 and assess the effectiveness of our
method in a finite sample situation through simulation studies. We only

xNote that the optimal bandwidth is of order Oijiu1^). Our experience shows that
the suggested 60 = T/(Snl/5) accords reasonably well on average with the chosen optimal
value.

2The interval may be larger or small, but our experience shows it is a viable choice.
3Our experience suggests that the final estimators for λ(x) is insensitive to this choice.
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investigate the performance of the estimator for p = 0, based on the following
two points: (i) the estimator is boundary corrected for p = 0; (ii) there are
fewer parameters for p = 0 than for p = 1 and the simulations for p = 1 can
be made similarly to those for p = 0.

We will use the Epanechnikov kernel

K(x) = 0.75(1 -x2)I(\x\ < 1)

for the LP estimator and its corresponding boundary modification kernel for
the M&W estimator (see Mϋller and Wand, 1994) throughout this section.
In our simulation studies, three models were used: Uniform, Weibull, and
Bathtub, which have different hazard curve structures and are important
in practice. The Stanford heart transplant data set was analyzed via our
method. In order to control the amount of censoring in the simulation, we
use the proportional censorship model, which means that F and G satisfy
the Lehmann model G = F77 for some η > 0 (e.g., see Koziol and Green,
1976; Gonzalez-Manteiga et al., 1996). This gives a probability of censoring
ξ = 77/(1 + η). Here ξ = 0 corresponds to no censoring. Note that the use
of boundary correction and locally optimal bandwidths in Miiller and Wang
(1994) (or M&W's for short) were advocated by Hess et al. (1999). For simple
comparison, we report the Monte Carlo results for the LP estimator with
p = 0 and M&W's estimator based on their data-driven local bandwidths,
respectively.

Example 5.1. We generated 400 samples, each of size n = 200 from the

uniform distribution model: Tj ~ F(x) = UniformfO, 1]. The proportional

censorship models for censoring are Cj ~ G{x) = 1 — F^fa) for η = ^ and
^ so that the probabilities for censoring are ξ = 1/10 and | , respectively,
where Tj is independent of Cj. Then the hazard rate is a strictly increasing
function on [0,1] with range [0, +00).

Figure 1 presents the median performance of our estimator and M&W's,
together with the envelopes formed by pointwise 2.5% and 97.5% sample
percentiles, among the 400 simulations under 1/10 and ^ censoring. The LP
estimators (left panels) do well on the left boundary and compares favorably
with the M&W's estimators (right panels).

Example 5.2. We simulated 400 samples of size n — 200 from the Weibull
distribution: Tj ι~ 1 - exp(-Vt) = F(t), Cj ' - 1 - F ( t ) (for η = i and
| ) , and Tj independent of Cj. Then there are about 1/10 and ^ censored
observations. The hazard rate is a strictly decreasing function on [0,1] with
range [0,+oo).

Figure 2 shows that the performance of the LP estimator (left panel)
and M&W's (right panel) in the 400 simulations. The LP estimator sue-
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Figure 1. Simulation results for Example 5.1. (a)-(b): 10% censoring; (c)-(d): 30% censor-
ing. Left panels—LP estimator; right panels—M& W's estimator. Solid line—true hazard
rate, dashed line—pointwise median curve among 400 simulations, dotted lines—envelopes
formed via pointwise 2.5% and 97.5% sample percentiles.

ceeds better in capturing the structure of the real hazard rate near the left
boundary, in term of the 5% empirical confidence bands.

Example 5.3. Note that bathtub hazard rate is often encountered in prac-
tice in reliability. See Nelson (1990) and Hoyland and Rausland (1994). We
simulated 400 samples of size n = 250 from the bathtub-shaped model, the
"quadratic concave up" hazard considered in Hess et al. (1999):

λ(ί) = 0.1277
2500 25 + te [0,100].

The constant 0.1277 was chosen to leave about 10 units at risk at t = 90,
i.e., P(Γ > 90) = 0.04. Figure 3 presents the median performance of the
LP estimator and M& W's among the 400 simulations, together with their
envelopes formed by pointwise 2.5% and 97.5% sample percentiles under
1/10 and ^ censoring based on the Lehmann model. The performance of the
LP estimator is satisfactory.
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Figure 2. Simulation results for Example 5.2. (a)-(b): 10% censoring; (c)-(d): 30% censor-
ing. Left panels—LP estimator; right panels—M& W's estimator. Solid line—true hazard
rate, dashed line—pointwise median curve among 400 simulations, dotted lines—envelopes
formed via pointwise 2.5% and 97.5% sample percentiles.

Table 1. Average of the estimated squared bias, variance and MSE under 10% censoring

Exl

LP
M&W

Ex2

LP
M&W

Ex3

LP
M&W

Bias2

1.80

3.34

Bias2

0.032

0.083

Bias2

1.22e-006

2.26e-006

Variance

2.62

4.76

Variance

0.074

0.063

Variance

6.53e-005

7.550e-005

MSE

4.42

8.10

MSE

0.106

0.146

MSE

6.65e-005

7.78e-005
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Figure 3. Simulation results for Example 5.3. (a)-(b): 10% censoring; (c)-(d): 30% censor-
ing. Left panels—LP estimator; right panels—M&W's estimator. Solid line—true hazard
rate, dashed line—pointwise median curve among 400 simulations, dotted lines—envelopes
formed via pointwise 2.5% and 97.5% sample percentiles.

Table 2. Average of the estimated squared bias, variance and MSE under | censoring

Exl
LP

M&W

Ex2

LP
M&W

Ex3
LP

M&W

Bias2

2.15

1.51

Bias2

0.035
0.090

Bias2

2.03e-005
2.90e-005

Variance
3.41
7.53

Variance
0.104
0.100

Variance

1.78e-004
2.25e-004

MSE
5.56
9.04

MSE

0.139
0.190

MSE

1.98e-004
2.54e-004
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EX4: Estimated curves

Figure 4. The LP estimator of the hazard rate for the Stanford heart transplant data.

To understand more about the performance of LP and M&W's estima-
tors, we computed pointwise bias, variances and MSE's for the two estimators
over certain grid points. Tables 1 and 2 report the average of the estimated
squared bias, variances and MSE's for the LP and M&W's estimators over
the grid points we considered for the above three examples, under 1/10 and
^ censoring, respectively. It shows that for these models the LP estimator
compares favorably in terms of its MSE's to M&W's estimators.

Example 5.4. In this example, we use the Stanford heart transplant data
from Kalbfleisch and Prentice (1980). We estimate the hazard function by
the data-driven method mentioned in our algorithm. Figure 4 gives the
estimated curve of hazard rate function. Our nonparametrically estimated
curve clearly suggests a Weibull model to be appropriate for the data, which
is consistent with most parametric analyses of the data, say, in Kalbfleisch
and Prentice (1980).

Acknowledgements. The work of J. Jiang is supported by the Chinese
NSF grants 10001004 and 39930160. The work of K. Doksum is supported
in part by NSF grant DMS-9971301.

APPENDIX

Proofs of Theorems 3.1 and 3.2. (i) Note that by (2.1) and (2.8)

(A. ,
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β +Ίnί-

Let /?n(^o) = (βno, , /?np)T and 7n(^o) = (7nθ, , 7np)T- Then

(A.2) Sn(:ro) - ^n(^o) + 7n(zo).

Prom (2.7), we know

(A.3) B[a( 0̂) - φo)} = S-^Jzo) - Ba(x0) + S-^JXQ)

We will show that otn(xo) contributes to the bias term of the LP estimator,
and S - 1 7 n (xo) to the variance term.
First, by (A.I), change of variable for integration, and a Taylor expansion,
we get, for I = 0 , 1 , . . . ,p,

βni(xo) = ί K(t)teX(x0 + bnt) dt

Then

(A.4)

in particular, if λ(α ) is a polynomial up to order p in a neighbourhood of xo,
then the exact bias α n(xo) of the LP estimator is zero.
Second, we know by Lo et al. (1989)

(A.5) An(x)-A(x) = -
ni=i

where for z > 0, x > 0, and δ = 1 or 0,

sup r n ίx) = U[ , a.s.
o<χ<τ \ n
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ξ(z,δ,x) = g{rmn{z,x)) -I(z<x,δ =

and

g(x)= Γ[L(tι)]-2dLi(u).
Jo

Note that

(A.6) Eξ(Xuδi,x) = 0,

and

(A.7) Cov(ξ(Xΰδhs),ξ(Xi,δi,t)) =g(mm(s,t)).

Let Ki(t) = K(t)t£. Using the definition of ηn^ (A.5) and integration by
parts, we obtain the following almost surely representation of

(A.8)

where

/ bnt)dKέ(t)

is the stochastic component of SnJβ(xo) and contributes to the variance of the

LP estimator, and en^(xo) is the negligible error of the approximation which

satisfies

(A.9) sup |en,(*o)| = O ( ^ ) , a.s.
o<χo<τ n

for 0 < £ < p. Note that E(σnt(x0)) = 0 and

= —r- / / —g(min(x0 + bnu, x0 + bnυ)) dK^(u) dKm(v)
non J J On

-i p+oo rx

= ^fi //
+o°

= 4-1
nbnj

L(x0 + bnt)

\(xo)

nbn L(XQ)
υe+m(l + o
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Let σn(x0) = ( σ n 0 , . . . , σnp)
τ and en(x0) = (en 0, , enp)

τ. Then by (A.8)
and (A. 10)

(A.ll) λA&nS"17n(a;o) = \fnb~nS

and

(A.12) Cov{σn(x0),σn(x0)) = -

By the central limit theorem, we get

(A.13) y/nb^σn(x0) ± Λf(O, ^\V*).

By (A.9), we know

sup IS^oίxoJ^Op^ , a.s.
0<χo<τ \ n J

Then by (A.12), (A.13) and (A.14)

Combination of (A.3), (A.4) and (A.15) completes the proof of Theorem 3.2.
(ii) Note that σn^(xo)? for ^ = 0,... ,p, are i.i.d.'s sums. By the SLN,

we know σni(xo) -^» E(σn£(xo)) — 0. Then σn(xo) -^> 0. This combined
with (A.8) and (A.9) yields 7 n (x 0 ) - ^ 0. Therefore, by (A.3) and (A.4),

B [ a ( z o ) - a ( z o ) ] ^ O . D

Proof of Theorem 3.3. Note that (a) Sj = 0 for j odd, (b) (S)^ = (S"1)^-
for i + j even. Simple algebra gives that e ^ S - 1 c p = 0 for p — k even, then
the theorem follows from Theorem 3.2. D

Proof of Remark 3.2. Remark 3.2 follows by the same argument as in (i). D
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