
AFFINE INVARIANT LINEAR HYPOTHESES
FOR THE MULTIVARIATE GENERAL LINEAR MODEL

WITH VARMA ERROR TERMS

MARC HALLIN AND DAVY PAINDAVEINE

Universite Libre de Bruxelles

Affine invariance is often considered a natural requirement when testing hypotheses in a
multivariate context. This invariance issue is considered here in the problem of testing
linear constraints on the parameters of a multivariate linear model with VARMA error
terms. We give a characterization of the collection of null hypotheses that are invariant
under the group of affine transformations, hence compatible with a requirement of affine
invariant testing. We comment the results and discuss some examples.

1. Introduction

Affine invariance/equivariance often is considered a natural requirement in
multivariate statistical inference. The rationale for such a requirement is
that the data at hand, or the noise underlying the model, should be treated
as intrinsically multivariate objects, irrespective of any particular choice of
a coordinate system. This requirement plays a fundamental role in most
recent developments in the area of robust multivariate analysis, where the
concepts of spatial quantiles, spatial signs, spatial ranks, location or regres-
sion depth and contours, . . . , all refer to either rotational or affine invari-
ance/equivariance (see for instance Oja (1999) for a recent review). In such
a context, reasonable testing procedures should be invariant—as soon, of
course, as the null hypothesis itself is invariant.

Robust multivariate inference so far has been developed essentially for
independent observations (location and regression models, MANOVA, prin-
cipal components, . . . ) . However, testing methods based on multivariate
signs and ranks (more precisely, interdirections and the so-called pseudo-
Mahalanobis ranks) recently have been extended (Hallin and Paindaveine,
2002a-c) to time-series problems. More specifically, these papers are treating
the problem of testing linear hypotheses in the multivariate general linear
model with VARMA error terms (equivalently, a VARMA model with lin-
ear trend) described below. As test statistics based on interdirections and
pseudo-Mahalanobis ranks are automatically invariant under linear trans-
formations, a preliminary question naturally arises: are affine invariance
properties in this setting still meaningful? And, in case they are, which are
the invariant null hypotheses?

This question, which is of a purely algebraic nature, is addressed here in
full generality, and the class of invariant linear hypotheses, hence the class of
testing problems that qualify for being treated by means of interdirections
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and pseudo-Mahalanobis rank test statistics, is characterized. It appears
(Propositions 2.1 and 2.2) that the answer relies on the commuting properties
of the matrices characterizing the hypothesis to be tested.

The model under study is the multivariate linear model

(1.1) γ(n> = χ W / 3 + uW,

where

(Yl,l Yl,2 •••

Y ( n ) : = I i i : = ( Y i , . . . , Y n ) '

\Yn,l Yn,2 ••• J

is an n-tuple of fc-variate observations Y ί ? t = 1,..., n,

£1,73

is an n x m matrix of constant regressors (the design matrix), and

βm,l βm,2 βrn,k,

is the m x k regression parameter. We do not make the traditional assump-

tion that the error term

,l Ui,2 ••• Ui,Λ

: : := (Ui, . . . , U n ) '

ψn,l Un,2 ... UnJ

is white noise, but rather assume Ut, t = 1,... ,n, to be a finite realization
(of length n) of a solution of the multivariate linear stochastic difference
equation (a VARMA(p, q) model)

(1.2) A(L)U t = B(L)eu t e Z,

where
p

A(L) := Ijb - J ^ AiL4 and B(L) := Ik

for some k x k real matrices Ai,. . . , Ap, Bi , . . . , B^, {ε̂  | ί G 2} is a fc-
dimensional white-noise process, and L stands for the lag operator. Note
that we do not make any assumption that (1.2) be causal and invertible.
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The same model also can be written as

and is sometimes referred to as a "multivariate ARMA model with a linear
trend."

Denote by

0 := ((vec/3')', (vec Ax)',..., (vec Ap) ;, (vecBi)',..., (vecB,)')' G R x

(vec C, as usual, stands for the vector resulting from stacking the columns of
a matrix C on top of each other) the parameter of the model, with dimension
K := km + k2(p + q).

Writing Λ4(Ύ) for the linear subspace of Έίκ spanned by the columns of a
full-rank K x r matrix Ύ (r < K), we consider the problem of testing the null
hypothesis Ho under which (0 — ΘQ) G Λ4(Ύ) against an alternative of the
form Hi : (0 — 0o) ^ ΛΊ(Ύ), where ΘQ G R/\ Such null hypotheses are usu-
ally referred to as linear hypotheses, since belonging to some r-dimensional
affine subspace in Έiκ is equivalent to satisfying some set of (K — r) linearly
independent linear constraints.

2. Affine invariant testing problems

2.1. A characterization of affine invariant hypotheses

The goal of this paper is to determine the class of affine subspaces #o+M(Ύ)
determining affine-invariant linear hypotheses. More precisely, denote by
GL(fc, R) the group of real (k x k) invertible matrices. Then the affine trans-
formation εt i—• Met, M G GL(fc, R) of the noise induces the transformation

(/3, Ai,..., Ap,Bi,... ,Bg)

H+ (β M', M A i M " 1 , . . . , MApM"1, M B i M " 1 , . . . , MB^M" 1)

of the parameter. In terms of 0, this induced transformation is 01-> g^p+q 0,
where

(ri,r2) _ Λ π ®M 0
g M :

(recall indeed that vec(ABC) = ( C ® A) vecB). Here and in the sequel,
we use the same notation for a group of linear transformations (acting on
some d-dimensional real space), and the corresponding collection of d x d
matrices. Letting g%(k) := {g£1 | Γ 2 ),M G GL(fc,R)} C GL(fcn +
thus, we are investigating under which conditions on 0o and T
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for all ^

As we shall see in the proof of Proposition 2.2, the main task consists

in characterizing the class of vector spaces Λ4(Ύ) that are invariant un-

der G™+q{k), meaning that g^'p+g)M{Ύ) = ΛΊ(Ύ) or, equivalently, that

M(g&p+q)Ύ) = M(Ύ), for all g^'p+q) e Q™+q(k).

Write M m j T l (R) for the set of all real m x n matrices, and let M n (R) :=

MnjTl(ΈV). Also let M m ? r ι (R) stand for the set of full-rank m x n matrices in

M m j f l (R) . Finally, denote by βj G Rfc the zth vector in the canonical basis

of Rfc, that is, the zth column of the k x k identity matrix I& := ( e i , . . . , e&).

The following lemma gives some technical results that will be used later on.

L e m m a 2.1. Let Lk := ( l / f c ) Σ i j = i ( e t e j ® e ^ ) E M f c 2(R), lfc := vecl fc

and Q/c := 1̂ .2 — L^ Then,

(i) L f c = (l/fcjlfci; and l'fclfc = fc;

(ii) Lfc anc? Q^ are symmetric and idempotent;

(iii) Lfc(vec V) = (l/fe)(tr V)lfc for all V G M f c(R);

(iv) M M 7 " 1 ® M) = ( M 7 - 1 (g) M)L f c - Lfc /or aίZ M G GL(fc,R);

(v) QfcίM'"1 ® M) = ( M ' " 1 ® M)Q f c /or aM M G GL(fe,R).

The matrix L^ appearing in this lemma is quite similar to the classical

commutation matrix

1
K k l = k

satisfying the commutation property

(2.1) K f c(A <g> B) = (B ® A)K f c for all A, B G

whereas the commutation property of L& is given in part (iv) of Lemma 2.1.
Note however that (2.1) is not, strictly speaking, a commutation property,
as B ® A stands in the right-hand side, and not A <8> B. On the contrary,
part (iv) of Lemma 2.1 is a strict commutation property. But of course, the
improper commutation property in (2.1) is to hold for all A , B G M&(R),
whereas the strict commutation property in part (iv) of Lemma 2.1 is only
required for A, B of the form M, M ' " 1 , with M G GL(fc, R).

It follows from Lemma 2.1 that Q& and L^ are mutually orthogonal
projection matrices in Rfc . We will denote by P^ := Q/c(Ifc2_1 0/ c2_ l x l)

/

the matrix whose columns are the (A:2 — 1) first columns of Q&. Then the
projection Q& (resp. L&) maps R fc2 onto the hyperplane Λ^Pfc) (resp. onto
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the line M(lk))< Still from Lemma 2.1, we learn that both M(Pk) and
Λ4(lfc) are invariant under Q\(k). In view of this, the following result is not
really surprising.

Proposition 2.1. The vector space Λ4(Ύ) is invariant under the group of
transformations G^\-q(k) if and only if

(Zm®Ik 0 0

where Z m , Vp + g, andWp+q are (possibly void when either rz, rγf orrw are
zero) full-rank matrices with dimensions mxrz, (p+q)*rγ, and (p+q)xr\γ,
respectively, and G G GL(r, R)? with r = rzk + ry(k2 — 1) + rw < K.

Proposition 2.1 characterizes the class of null hypotheses of the form Ho'
θ G M(Ύ) that are invariant under affine transformations. Proposition 2.2
now extends this characterization to the more general case of hypotheses of
the form Ho: θ G θ0 + M(Ύ).

Proposition 2.2. The affine subspace θo + ΛΊ(Ύ) is invariant under the
group of transformations G£+q(k) if and only ifΎ is as in (2.2) and

(2.3) βo

where Wp+9 and ωr denote arbitrary vectors with dimensions p + q and r,
respectively.

Of course, we can assume, without loss of generality, that ωr = 0 in
Proposition 2.2. Condition (2.3) then takes the form

θo := ((vec /3'0)', (vec Ai,0)',..., (vec Ap,0)
;, (vec Bh0)',..., (vec

where β0 = 0, and each A^o and each Bj?o is a multiple of the kxk identity
matrix.

2.2. Some examples

In order to shed some light on the statistical meaning of the somewhat
abstract results of Propositions 2.1 and 2.2, we now discuss and illustrate
some of their consequences. Without loss of generality, we henceforth assume
that G = I r .

Furthermore, note that the block-diagonal structure of the array T in
(2.2) implies that no affine invariant linear hypothesis can mix the "trend
parameters" with the VARMA or serial ones. Therefore, in the following
examples, we treat separately the constraints dealing with the two types
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of parameters. The constraint matrices T accordingly have a block-row of
zeros (associated with the unconstrained parameters) which, for notational
simplicity, we omit in the sequel. For instance, in Examples 2.1 and 2.2, we
write

T = (Z m ® Ik) instead of T = (Zπι ® Ik

2.2.1. Affine invariant hypotheses involving the trend parameters

The situation for the linear model part of (1.1) is rather simple—much sim-
pler than for the VARMA part. A linear constraint of the form (0 — ΘQ) G
ΛΊ(Ύ), with T of the form Ύ := (Z m ® I&) and β0 := 0 indeed yields
a straightforward generalization of the usual univariate linear constraints
(k — 1); these constraints now simply involve the m fc-variate regression pa-
rameters (i.e., the lines of β). Of course, in the model under study, the error
term is the realization of an unspecified VARMA process, the characteristics
of which are nuisance parameters.

Example 2.1. Letting Z m := (Im_i : Om_ixi)'', we obtain the important
particular case of testing the significance of the last λ -dimensional regressor.

Example 2.2. As another example, Z m := ( 1 , . . . , I)7 G R m characterizes
the null hypothesis under which the m lines of β are equal to each other.
Such a hypothesis appears, for instance, in the /c-variate m-sample location
problem (MANOVA), still in the presence of possibly intercorrelated and
serially dependent error terms.

These two important problems thus are affine-invariant.
In the more traditional situation where the errors are i.i.d. normal, the

invariance properties of MANOVA models are well documented; the usual
Gaussian likelihood ratio tests for the hypotheses in Examples 2.1 and 2.2
then also are affine-invariant (see, e.g., Bilodeau and Brenner, 1999, pp. 158-
159).

2.2.2. Affine invariant hypotheses involving the serial parameters

Example 2.3. Note that the matrix Ti := (Vp+q ® P/~ Vp + ρ ® \k) (with
rank(Vp+(?) < p + q) defines the same null hypothesis as the matrix T2 :=
Yp+q® Ifc2. This hypothesis is the multivariate version of the more traditional
univariate linear constraints on the parameters of an ARMA model; the
linear model structure of the trend here plays the role of the nuisance.

Of particular interest is the special case characterized by a matrix Ύ of
the form

/ 1

Oπχpo

\O7rxpo
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This matrix characterizes the problem of testing VARMA(po,̂ o) against
VARMA (po + π,<Zo + π) dependence (p = po + π, q = qo + π, π > 0).
The particular case where π = 1 plays an important role in several model
identification procedures (see, e.g., Potscher, 1983, 1985, or Garel and Hallin,
1999 for the univariate case).

Example 2.4. A matrix of the form T = Vp + 9 ® P^ yields the same linear
constraints as above, but further requires that tr Ai = = tr Ap = tr Bi =
• = trBg = 0. Such "trace constraints" can be limited to specific lags by
considering Ύ matrices of the form

T = ((Vp+q ! Vp+q) ® P f e : Vp+q ® lfc)

or, equivalently,

For instance, V3+o = (1? 0,2)' and V3+0 = (0,1,1)7 yield the null hypothesis
A3 = 2Aχ + A2, trAi = 0.

Example 2.5. A matrix T of the form T = W p + ρ <g) 1̂  characterizes the
same hypothesis as in Example 2.3, but further specifies that all the A '̂s
and Bj's are of the form aj.k and bjlk, respectively. These constraints can
also be restricted to a few specific lags, via T matrices of the form

T -

or, equivalently,

For instance, W 2 + i = (1,0,2)7 and W2+i = (0,1,-1)' yield the null hy-
pothesis Bi = 2Aχ — A2, with A2 = α2lfc for some α2 G R.

Example 2.6. It is also possible to consider linear constraints on the traces
of the A '̂s and Bj's. This can be obtained by letting T = (Ip+g Θ Pfc :
Wp+g (8) lfc), with rank(Wp+ς) < p + q. For instance, the hypothesis that all
traces are equal corresponds to the special case of Wp+(7 = (1,1,... ,1)' G

Example 2.7. Examples 2.3 through 2.6 are dealing with the case ΘQ = 0
covered by Proposition 2.1. Here is an application of Proposition 2.2, with
00 φ 0. Letting for simplicity T be the void matrix (so that M(Ύ) = {0}),
the null hypotheses under which the VARMA coefficients A^o and B^o are of
the form α̂ olfc and bj^Ik, respectively, for some specified constants α̂ o and
6j?0> satisfy the conditions of Proposition 2.2, and thus are aίfine-invariant.
Of special interest is the particular case α̂ o — 0, bjβ = 0 for all i and j , which
corresponds to testing randomness against serial VARMA dependence.
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One should not have the feeling, however, that all hypotheses of practical

interest are invariant under affine transformations. Here are two examples

of non-invariant hypotheses.

Counterexample 2.1. Turning back to the purely non serial case (i.i.d. er-
rors), the most usual problem in analysis of covariance models—that of com-
paring k univariate regression equations, each of them involving m regressors
—is not affine-invariant. Indeed, the corresponding null hypothesis Ho:

00 - 0, and T = I m ® 1*, with lk := ( 1 , . . . , I)7 G Rk

(stipulating that the k columns of β—not the m lines—are equal to each
other), involves a matrix T that clearly fails to satisfy (2.2).

Counterexample 2.2. Considering the purely serial model, i.e., the

VARMA(p, q) model (1.2), assume that k — ds with d G N, d > 2, and parti-

tion \Jf

t = (Z7t,i, , Ut,k) into d s-variate subvectors: XJf

t = (XJf

t l 5 . . . , XJ't d).

Denote by Jj the ds x s matrix

Then the matrix T characterizing the hypothesis under which, after ade-
quate partitioning into blocks of dimension 5 x 5 , the matrices A i , . . . , A p

and B i , . . . , B g are all block-diagonal (with unspecified diagonal blocks) is

' s ® J ( i M ) 0 . . . 0

0 I, (8) j l M ) 0

0 0 ... is®JΓ\

Proposition 2.2 implies that this hypothesis is not affine-invariant.

Counterexample 2.3. Consider again the same VARMA(p, q) model as

in Counterexample 2.2, with the same partition of U^, but assume that

(1.2) is obtained by stacking d independent s-variate models (k = ds). The

corresponding A^'s and Bj's then, after adequate partitioning, are naturally

block-diagonal. Denoting by A^ ' the Ith diagonal block in A^, by B^ the

Ith diagonal block in B J 5 consider the problem of comparing the blocks A^ ^

and B^ for various values of I. For instance, consider the hypothesis under

which Az- ^ = A\* and B^ ̂  = B*- , for all Z — 1, . . . , d, i — 1,... ,p and
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j = 1,..., q (comparison of d s-dimensional VARMA(p, q) models). Again,
Proposition 2.2 implies that this hypothesis, though perfectly relevant from
a practical point of view, is not affine-invariant.

The reason for this lack of invariance with respect to the group of affine
transformations GL(fc,R) is that this group in fact is not adapted to the
testing problems at hand in each of these counterexamples. Mixing the com-
ponents of St by transforming £t into Mε^ for arbitrary M G GL(ds, R)
makes little sense, since this creates cross-correlations between the k regres-
sion submodels or the d time series under study. And, a fully affine invariant
procedure in this case would do a poor job. Full affine invariance in such
situations should be weakened into a lesser requirement of invariance with
respect to some appropriate subgroup of GL(ds, R). In Counterexample 2.2,
the adequate subgroup (making the hypothesis invariant) would be

Γ d Ί
(2.4) I M G GL(ds,R) : M = J^e^e}* ' ® MZ,M/ G GL(s,R) I,

V 7 — 1 Jι=i

where e\ G R d denotes the Zth vector of the canonical basis of Έid. This
subgroup is of course isomorphic to GX(s,R) x x GL(s,R) (d times),
where "x" denotes the direct product of groups. In Counterexample 2.3, the
right subgroup is even smaller, taking the form

(2.5) {M G GL(ds,R) : M = Id ® Mi, Mi G GL(s,R)},

clearly, a subgroup of group (2.4).

3. Conclusions

Affine invariance plays a fundamental role in a variety of robust inference
methods for multivariate observations. Such methods recently have been
considered (Hallin and Paindaveine 2002a-c) for hypothesis testing in the
context of multivariate linear models with VARMA errors. However, not
all linear hypotheses qualify for such methods, which only make sense for
affine-invariant hypotheses. Therefore, an algebraic characterization of the
class of affine-invariant hypotheses is proposed in Propositions 2.1 and 2.2,
and examples of invariant and noninvariant problems are discussed.

Acknowledgements. The research of M.H. was supported by an A.R.C.
contract of the Communaute franςaise de Belgique and a P.A.I, from the
Belgian federal government.



426 M. Hallin and D. Paindaveine

APPENDIX

A. Proofs

We start with the proof of Lemma 2.1.

Proof of Lemma 2.1. (i) Only the first statement needs some proof.

From the definition of L&, we have

j k λ k

Lfc := - ] Γ (eiβ'j <g> e ^ ) = - ^
2 ^ 1 Zjf

fc ( Σ VβC e ^ e y (

(ii) It follows from (i) that L& is symmetric. It is also idempotent, since

( L ) 2 = l ^ l ^ = ^ i = L

(iii) The identity (A <g> B)(vec V) = vec(BVA;) yields

(A.I) Lfc(vec V) = i ] Γ vecieieJVejeJ)

Σ ( ^ ^ ) (
(iv) Prom (A.I), we have

' " 1 ® M)(vec V) =

for all V G M f c(R), which implies Lk ( M ' " 1 ® M) = Lfe, for all M G
GL(fe,R). Taking transposes, one obtains ( M " 1 ® M;)Lfc = L^ for all
M. As for (v), it trivially follows from the previous result. D

As already stressed in Section 2.1, Lemma 2.1 shows that both
and .M(lfc) are invariant under (?i (k). Before turning to the proof of Propo-
sition 2.1, we first establish a couple of further lemmas, the general purpose
of which is to make sure that no proper subspace of Λί(Pfe) is invariant
under Qχ{k). We first recall the concept of centralizer in group theory. Let
H be some subgroup of a group Q. Then, the centralizer Cg(H) of H in
Q is defined as the collection of all elements in Q that commute with every
element in 7ί.
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Lemma A.I. For any V G Mκ,r(R) (r < K), denote by Π(V) :=
V(V/V)~1V/ the matrix of the orthogonal projection in Έίκ on the sub-
space ΛΊ(V). Then M(V) is invariant under G^_q(k) if and only if

Proof. Note that M(V) is invariant under G£+q(k) if and only if V is such

that Π(V)gir+ < ? )V = gίΓ+ < ? )V for all g j ^ > € Q™+q(k), i.e., iff

(A.2) Π(V)g^ ' p + 9 ) V = g^ ' p + 9 ) Π(V)V for all g^'p+<?) G Q™+q(k).

This proves the sufficient condition. To prove the necessary one, assume
that (A.2) holds. Now, for any w G (M(V))±, where (M(V))1~ denotes
the Euclidean orthogonal complement of M(V) in Hκ,

Π(V)w = 0,

for all &M'P € ^.9(fc). It follows that, for some matrix V_L whose

columns form a basis of (M(V))X, we have, for all g^'p+q) G G™+q(k),

Π(V)g^ ' p + 9 ) V ± = 0 = g^'p+g)n(V)Y±. Piecing this together with (A.2)

yields Π(V)g^ p + 9 ) = g^ ' p + 9 ) Π(V), for all g^ ' p + 9 ) G ί^(fc). D

For any couple A, B, where A is a (mi xni) matrix and B a (rri2 x
one, let

J(A B) :_

Lemma A.2. Denote by Vm the set of m x m symmetric and idempotent
matrices. Then, for all rχ,Γ2 G N,

(i) the centralizer ofQ^(k) in Mkri+k2r2(ΈV) is

= {J(C ® Ifc; A ® I fc2 + B ® Lfc), C G Λfri (R), A, B G M r 2(R)}

= {J(C ® Ifc; A ® Q λ + B ® Lfc), C G M n (R), A, B G M r 2(R)};

(ii) CMkri+k2^(R)(g?2(k))nPkri+k2r2 is given by

{J(Π(Z r i) ® Ifc; Π(V r 2) ® Qfc + Π(W r 2) ® Lfc),

Z r i G M n ; r z (R),V r 2 G M r 2, r v(R), W r 2 G Mr2,rM/(R)},

0 < rz < ri and 0 < ry, rv^ < Γ2.
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Proof. (i) It is clearly sufficient to prove that the centralizer of QQ1 (k) in

M f c r i (R)is

(A.3) {C®Ifc,CGM n (R)} ,

and that the centralizer of Gγ2{k) in Mfc2r2(R) is

(A.4) {A <g> lk2 + B <g> L*, A, B e MΓ 2(R)}.

Let us first prove that CMfcr ( R J ^ O 1 W) *s g i y e n by (A.3). Let D belong to

the centralizer of Q^1 (k) in Mfcri (R), with fc x fc block Όmn in position (m, n).

Consider the arrays Ey := e^e^ and My := Ifc + Ey E GL(fc,R), for i,j =

1,..., ft. Then, gi£;0)E> = D g ^ if and only if E « D m n = D m n E y for all
m,n= 1,...,ri and all i, j = 1,...,fc. This yields D m n = cmn Ifc, i.e., D =
C ® Ifc (with C = (c m n )). This shows that the centralizer CMkr ( R ) ^ 1 ^ ) )
is a subset of (A.3). The result follows, since each element in (A.3) clearly
commutes with every element in Q^{k).

Secondly, we prove that the centralizer of CM 2 (R)(ί?r2(^)) *s § i v e n by

(A.4). Let us first establish this result for Γ2 = 1. Using Lemma 2.1, every

element of (A.4) (with V2 = 1) is seen to belong to CM 2 ( R ) ( ^ I ( ^ ) ) > S O ϊh&t

it is sufficient to show that CM 2(R) (<??(&)) is a subset of (A.4).

To achieve this, let D be in the centralizer of CM 2(R) (ί?i (&)) > a n d denote
by D m n the k x k block in position (m, ή) in D. Considering the arrays My,
i,j = 1,... ,fc again, note that M^"1 := Ifc — Ey for i φ j , and M ^ 1 :=

Ifc — \Έiu. Now, D does commute with g ^ if and only if it does with Fy,

where Fy := (Ifc ® Ey) — Ej^ ® (Ifc + Ey) for i φ j , and F ^ := (Ifc ® E^) —

If D is in CM2(R)(δi(k)), the fc x fc block in position (m,m) in F^D -
D F ^ , namely, E ^ D m m — D m m E ^ , is equal to 0 for all m, i = 1,..., fe, which
implies that the matrices D m m are diagonal: write

( λ(m)

.

0

The block in position (m, n), m ^ n, in FyD—DFy is Ey D m n — D m n E y
for all i 7̂  n and j Φ m. All these blocks are 0, so that D m n is of the form

Dmn = λ m n Ifc + μmn E m n , all m φ n,

for some λ m n ,/ i m n E R.

Again, considering the block in position (j, i), iφ j , in FyD - DFy = 0
yields

EijΌji - ΌjiEij - (Ifc + Ey)Du + D^(Ifc + Ey) - 0
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for all i φ j . This implies λf} = λj 1 } for all ϊ = 1, ...,&, λj° - λ^1} for all

i Φ j , and μ^ = λ^ — λ^ for all i ψ j . Finally, the block in position (m, i),
i Φ j , m φ j , in F ^ D — D F ^ = 0 yields

EΐjDmΐ — D m iEi j + Dmj(Ifc + Ey) = 0

for all iφ 2- This implies λ m j = 0 for all m φ j .

Collecting all these results shows that D = λ ^ I ^ + ( λ ^ - λ ^ ) * ; Lfc, for

some \[\Λ2 G R , which proves that C M A . 2 ( H ) ( ^ I ( ^ ) ) ^S included in (A.4)
A ( )

(with V2 — 1).

The result for Γ2 > 1 then follows. Indeed, denote by Gy the k2 x k2 block

in position (z, j) in the /c2r2 x k2r2 matrix G. Then G G CMk2r (R)(^?2(^))

if and only if G ^ G C M f c 2 ( R ) (Qι(k)) for all i, j = 1,. . . , r 2, i.e., iff every G ^

is of the form α^ Î .2 + fo^L^, which yields the desired result.

(ii) Let J(C(g)Ifc; A ^ Q ^ + B ^ L ^ ) in CM fcr i+fc2r2(R)(^r2 (fc)) b e symmetric

and idempotent. Then C 2 = C = C7 and

A <g> Qk + B ® Lfc = A 2 ® Qfc + B 2 ® Lfc = A' ® Qfc + B' ® LΛ,

which yields

(A2 - A) ® Qfc + (B 2 - B) ® Lk = (A ; - A) ® Q fc + (B7 - B) ® Lk = 0.

Linear independence between Q/~ and L^ in Mk2(ΈV) implies that A 2 =
A = A7 and B 2 = B = B7. This shows that C, A, and B are orthogonal
projection matrices, on Λ /ί(Z r i), Λi(Vr2)

 a n d ^ ( W ^ ) , say, respectively.
D

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. Let us first prove the sufficiency part of the propo-

sition. Using the fact that P^l^ = (Ifc2_χ : 0fc2_lxl)Qfclfc = 0, one obtains

that

(A.5) T = J ( Z m ® Iki (Vp+s ® P f c i Wp+q

for some G G GL(r,R),

implies

(A.6) Π ( T ) = J ( Π ( Z m ) ® I fc; Π(V p + ( ? ) ® Π(P f c ) + Π ( W p + ς ) ® Π(l f c))

= J ( Π ( Z m ) ® I fc; U(Vp+q) ®Qk + Π ( W p + g ) ® Lfc),

which, in view of Lemma A.2, is equivalent to

Π(Ύ)eCMκ(R)(g£.q(k)),
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hence also, by Lemma A.I, to the statement that ΛΊ(Ύ) is invariant under
the group of transformations G%+q(k).

The necessity part as usual is more intricate. But we already worked
a lot. It remains to show that the implication from (A.5) to (A.6) can be
reversed. Note first that

π ( τ ) j ( z m ® ik (vp+q ® pk: wp+q ® ιk))

= J ( Z m ® Ifc; (Vp+g <g> P f c i W p + , ® lfc)),

since there exist full-rank arrays Z m , V p + 9 and Wp+g such that Π(T) is
given by (A.6). This yields

(A.7) M ( j ( Z r o ® Ifc; (V p + ς ® P f c \ Wp+q ® l fc))) c Λί(T).

Now,

(A.8) dimM(T)

= rank(Π(Ύ))

= rank(Π(Zm)®I f c) + rank(Π(Vp + q)®Π(P f c) + Π(W p + q)®Π(l f e))

< rank(Π(Zm®I f c)) + dim[ImΠ(Vp+(?®P fc)

where " θ " denotes the direct sum in Rfc2(p+9) of vector subspaces. Noting

that

M((Vp+q ® P f c Wp+q ® lfc)) = M(Yp+q <g> Pfe) θ M(Wp+q ® lfc

(A.8) reduces to

dim(>ί(Z m ® lfc)) + dim(X(V p + ( ? ® P fe) θ M(Wp+q ® lfc))

= dimM (j(ZT O ® Ife; (Vp+(? ® P f c | W p + ρ ® l

> dimM(Ύ).

Comparing with (A.7), we deduce that

Λ/ί(j(Zm ® Ifc; {Vp+q ® Pfc W p + ρ 0 lfc))) = M(Ύ),

so that (A.5) and (A.6) actually are equivalent. •

Finally, we prove Proposition 2.2.
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Proof of Proposition 2.2. The subspace ΘQ + Λ"ί(Ύ) is invariant under the

group gp^k) iff S^
p+q)(θ0 + M(Ύ)) = gS'P+<?)0o +

θ0 + M(Ύ) for all g^ ' p + 9 ) G £ £ , ( * ) , i.e., iff

(A.9)

and

for all g^p+q) E G™+q(k). Condition (A.9) means that M(Ύ) is invariant
under the group G£+q(k), which, in view of Proposition 2.1, holds iff T

satisfies (2.2). Now, (A.10) is equivalent to [lκ-U(Ύ)}(g^pJ"q)θo-θo) = 0,

i.e., using the fact that Π(T) then necessarily commutes with all g ^ ' P ,
to

(A.ll) g^q)[Iκ - Π(T)]0 o = [IK - Π(T)]β 0 ,

for all g^'P + < ? ) e G™+q(k) Clearly, for any (p+<?)-vector wp + ( ?, [1K-U(Ύ)]ΘO

= (0f, (wp+q <S) hYY satisfies (A.ll). Conversely, if condition (A.ll) holds,
M([Iκ- — U(Ύ)]θo) is invariant under G£+q(k), which, still in view of Propo-
sition 2.1, implies that [Iχ — Π(Y)]0o — (0 ;, (wp +^ ® 1^)')' for some (p + g)-
vector w p + ς . Condition (2.3) and the proposition follow. D
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