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Most of the recent results on tests for non-correlation between two time series are based
on the residual serial cross-correlation matrices resulting from appropriate modelling of
the two series. However in the stationary case, test procedures can be defined from the
serial cross-correlation of the original series, avoiding therefore the modelling stage. This
paper aims at describing two such tests that take into account a finite number of lagged
cross-correlations. The first one that is essentially valid for Gaussian time series makes
use of a procedure for estimating the covariance structure of serial correlations described
in Melard, Paesmans and Roy (1991). The second one that is valid for a general class of
mixing processes is based on the property that the cross-covariance at a given lag between
two stationary processes is in fact the mean of the product of the two processes, the
second one being lagged appropriately. For both approaches, the asymptotic distributions
of the test statistics are derived under the null hypothesis of non-correlation between the
two series. The level and power of the proposed tests are studied by simulation in finite
samples and an example is presented.

1. Introduction

The existence of possible relationships between univariate or multivariate
time series is a central question in many applications. Of particular interest
in this context is the problem of testing non-correlation (or independence in
the Gaussian case) between the observed series. It is therefore important to
have methods which are simple both to apply and to interpret for checking
non-correlation of two time series.

Most of the work done in this context is parametric and is based on
the residuals of estimated models. In the case of two univariate time se-
ries {χW(t)} and {X(2\t)}, Haugh (1976) developed a procedure in which
both series are supposed to be generated by stationary ARMA models. Non-
correlation under such an assumption is equivalent to non-correlation of the
two corresponding innovation processes. Denoting ά^^ί) and ά^2\t) the
residuals resulting from fitting ARMA models to each of the two series sepa-
rately and by r^ (fc) the corresponding empirical cross-correlation at lag k,
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it is expected that information on possible linear relationships between the
two series is contained in vectors of the form

where M is a fixed integer with respect to the length of the series. Under the
null hypothesis of independence between the two original series {X^(t)}
and {XW(t)}, Haugh (1976) showed that y/nr£2) asymptotically follows
a multinormal distribution with mean zero and identity covariance matrix
where n denotes the length of the series. This result leads to the definition
of the portmanteau type statistic

M

k=-M

which is asymptotically distributed as a χ^M+i distribution and the hypoth-
esis of non-correlation is rejected for large values of QM-

Haugh's procedure was extended in various directions. Koch and Yang
(1986) introduced a modification of QM that allows for a potential pattern in
the residual cross-correlation function. El Himdi and Roy (1997) proposed
a version of QM for two stationary vector ARMA (VARMA) series that was
recently extended to partially non stationary (cointegrated) VARMA series
by Pham, Roy and Cedras (2001). Hallin and Saidi (2001) have recently
developed a generalization of Koch and Yang procedure for VARMA series.
For univariate time series, a robustified version of Haugh's statistic to outliers
is described in Li and Hui (1994). Hong (1996) proposed a modification of
Haugh's procedure for stationary infinite order autoregressive series in which
a finite-order autoregression is fitted to each time series and the test statistic
is a properly standardized version of the sum of weighted squared cross-
correlations, with weights defined by a kernel function. A robustified version
of Hong's statistic for univariate ARMA series is described in Duchesne and
Roy (2001). Finally, Hallin et al. (1999) introduced a test for independence
between two autoregressive time series, based on autoregressive rank scores.

The main objective of this paper is to develop two distinct nonparametric
(model free) procedures for checking non-correlation of two multivariate sta-
tionary time series. The first is based on the consistent method described in
Melard, Paesmans and Roy (1991) for estimating the asymptotic covariance
structure of empirical cross-correlations. The second one relies on the simple
property that the cross-covariance at lag k between two stationary processes
is in fact the expected value of the product of the two processes, the second
one being lagged by k time intervals. This latter idea was exploited among
others by Brillinger (1978).

In both approaches, test statistics at individual lags QR(ft) and QS(k)
respectively and the corresponding portmanteau type tests QRM and QSM
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that take into account all lags from — M through +M are described. The first
approach relies on the rather strong assumption of linear processes whose
fourth-order cumulants vanish whilst the second one is based on a mixing
assumption extensively used in Brillinger (1975) which avoids the linearity
assumption and the nullity of the fourth-order cumulants. For both ap-
proaches, the asymptotic distributions of the test statistics at individual
lags and of the global statistics are derived under the null hypothesis.

The paper is organized as follows. In Section 2, we introduce the no-
tations and we describe the asymptotic covariance structure of the serial
cross-covariances and cross-correlations between two stationary processes.
The approach based on the estimation of the asymptotic covariance struc-
ture of empirical cross-correlations is described in Section 3.1 and the second
one based on the product of the two series is discussed in Section 3.1.1. In
Section 4, we report the result of a small simulation experiment to study
the exact level of all proposed test statistics. Also, the powers of the two
nonparametric portmanteau statistics are compared to the multivariate ver-
sion of Haugh's test QH^ described in El Himdi and Roy (1997). It is seen
that the loss of power resulting from the use of QRM (with its exact critical
values) in place of QEΓĵ  is rather small with the particular model consid-
ered. However, the test QS M is considerably less powerful than QRM for
the series lengths considered (n = 100, 200). Finally, the procedure based
on the statistics QR(A ) and QRjvf is applied to a set of economic data in
Section 5.

2. Preliminaries

2.1. Definitions and notations

Let X = {X(t) = (Xi(t),.. .,Xd(t))' : t G Z} be a process with values in
R,d, second-order stationary whose mean is μ x . Let

E[(X(t) - μx)(X(t - k) - μ x) '] = Γχ(fe), t, k G Z,

be the autocovariance matrix at lag k. The autocorrelation matrix at lag k
is given by

where Jij(k) is the (z,j)-element of Γχ(fc). Note that for any lag fc, we have
Γχ(-fc) = Tx(k)f and px(-fc) = px(k)'.

When the process X is partitioned into two subprocesses X ^ = {X^ (t) :
t E Έ} and X^2) = {χ(2\t) : t e %} of dimension dγ and d2 respectively
with d\ + o?2 — d-> its autocovariance matrix Γχ(fc) can also be partitioned
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as

where the two diagonal blocks Γ^ (k) and Γ^ (A:) represent the autocovari-
(i\ e?\ (12)

ance matrices at lag k of the processes X ^ and X ^ respectively, Γ^ J(k)
is the cross-covariance matrix at lag k between the two subprocesses and

Γ^ (fc) = Γ̂ - (—&)'. The autocorrelation matrix pχ(λ ) can be partitioned
similarly in p ^ (fc), p ^ (k) and p ^ (k).

Given a realization X(l),.. . ,X(n) of length n of the process X, the
sample autocovariance matrix at lag k (1 < k < n — 1) is defined by
Lχ(«;) — n ^t^kjrl\y^\i)—y^)[^\t—k)—ys.)\i where X. — n Z^t=i -̂ v̂ J —

(-XΊ,... ,Xd)f i s the sample mean. We let Cχ(fc) = Cχ(-fc)' for 1 — n <
k < 0 and Cχ(fc) = 0 for |fc| > n. The sample autocorrelation matrix at lag
k, 0 < |fc| < n — 1, is defined by

(2.1) Rx(fc) = (ry(fc))d x d, ry(fc) =

where cij(k) is the (i, j)-element of Cχ(fe). Equation (2.1) can be equiv-

alently written as Rχ(fe) = D{c^1/2(0)}Cx(A:)D{cT7

1/2(0)} where D{αJ
is the diagonal matrix of dimension d with diagonal elements given by
αi,.. .,α^. When X(ί) is partitioned into two sub-vectors as before, the
matrix Rχ(fc) is partitioned in a similar manner to Γχ(fc). In particular,
the cross-correlation matrix at lag k between the two time series
and (X(2)(*)} is defined by

(2-2) ' ~

with

i n

£=fc+l

X being the sample means of the time series χ w ( i ) , h = 1,2.
Let k\,..., km a sequence of m arbitrary distinct integers independent of

n and such that k{ < n. We define the vectors p x and rx of theoretical and
sample autocorrelations of dimension md2 by

, 2 s) Px = ( v e c Px( fci)', , vec Pχ(fcm)/)/,

rχ = (vecRχ(fci)/,...1vecRχ(fem)/)/,
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where 'vec' stands for the usual matrix operator that transforms a matrix
into a vector by stacking its columns. The vector r^ ^ of sample cross-
correlations of dimension mdγdϊ is defined by

(2.4) Γg
2> = ( v e c R £ 2 ) f a ) ' , . . . , vecR£ 2 ) (*„,) ') ' ,

With an adequate choice of the lags k\,..., A;m, this vector allows us to detect
most of the relationships existing between the two series. Its asymptotic
distribution can be directly deduced from the one of rχ

2.2. Asymptotic distribution of serial correlations and covariances

By the Wold decomposition, the purely non-deterministic and zero-mean
process X admits the representation

3=0

where the Φj are dx d matrices such that Σ°L 0 ll^jll2 < °°> II * II being the
Euclidian norm, Ψo = I is the identity matrix of dimension d and the inno-
vation process {a(t) : t G Έ} is a weak white noise, that is the vectors a(ί)
are uncorrelated with mean 0 and with regular covariance matrix Ω. Let Ft
be the sub σ-algebra (of the σ-algebra with respect to which all the com-
ponents Xi(t) are measurable) generated by Xi(s), s < £, ί = 1,..., d. The
following assumption was made by Hannan (1976) and by Roy (1989) in the
study of the asymptotic distribution of serial correlations and covariances.

Assumption A.I. Suppose that E[αi(ί) | -Ft-i]> Έ[ai(t)a,j(t) \ JF1_I],

Έι[ai(t)aj(t)aι(t) \ -Ft-i] and Έ[ai(t)aj(t)aι(i)am(t)\ \ Ft-ι] exist and are con-
stant (with respect to ί) for all i,j,l,m.

This assumption is satisfied if the a(t) are independent and identically
distributed. Let us write Kijkm — cumulajit{ai(t),aj(t),ak(t),am(t)}. Let

the symbol "—>" stands for "convergence in law." It follows from Roy (1989)

that under Assumption A.I, if all fourth-order cumulants Kijkm a r e z e r o

if the spectral density of each component of X(ί) is square integrable then

where rx and p x are the vectors of correlations defined by (2.3) and Σ
is the asymptotic covariance matrix whose elements are given by relation

(12)

(5) in Roy (1989). The asymptotic normality of the vector r^ of cross-
correlations defined by (2.4) is an immediate consequence. Its asymptotic
covariance matrix Σ = (Σ^. ̂ .)i<ij<m is a block matrix of dimension md\d2
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where each block Σfc.^ represents the asymptotic covariance matrix between

the vectors vecR,χ (ki) and vecR,χ (kj).

Under the null hypothesis of non-correlation Ho: Px (k) = 0, for all
ί GZ, the matrices Σ^fc. take a simple form. Under Ho, only the last term
in relation (5) of Roy (1989) is different from zero and we have

(2.5) Έkuk] =

Therefore, Σfc.^. depends only on the difference of the two lags ki and

and we will write in the sequel Σ / ^ = Σ^-fc, where (with I = h — k)

(2.6) Σ , =

We must note that the asymptotic normality of the vectors of correlations
is established under the assumption that all fourth-order cumulants of the
process X = (X^^X^2)')' vanish and that assumption is satisfied for Gaus-
sian processes. If the fourth-order cumulants are non zero, the asymptotic

(12)

normality of the vectors rx and i χ ; still holds. However, the asymptotic co-

variance structure is more complex since it also depends on these cumulants,

see Hannan (1976). Berlinet and Francq (1997, 1999) studied the estima-

tion of the asymptotic covariance structure under the weaker assumption of

strongly mixing processes.

3. Nonparametric tests for independence

The vectors of sample autocorrelations vec R,χ (k) can be used to test the
hypothesis of non-correlation between two multivariate processes X^1) and
χ ( 2 \ Under Assumption A.I and the null hypothesis of non-correlation, we
have from Section 2.2 that

(3.1) yftίvecR^ik) ±> N(0,Σ0),

where Σo is given by (2.6). From a multivariate version of Proposition 5.1.1

of Brockwell and Davis (1991), it follows that Σo is positive definite if I χ (̂0)

is regular and if Γχ J (h) —> 0 as h —» oo, j = 1,2. The estimation of the

asymptotic covariance matrix Σo in (3.1) allows us to deduce a simple and
(12)

natural procedure for testing Ho against the alternative H^: p^ J(k) φ 0.

Another nonparametric approach for inference on the theoretical auto-

correlations pχ (k) when the fourth-order cumulants of the joint process

X are non zero is also presented. It is based on the property that the

cross-covariance at a given lag between two stationary processes is in fact

the mean of the product of the two processes, the second one being lagged

appropriately. This idea was exploited among others by Brillinger (1978).
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3.1. Approach based on the estimation of the asymptotic covari-
ance

The method of Melard et al. (1991) allows us to construct a consistent es-

timator of the covariance matrix Σ = (Έk-h) of r χ \ noted Σ = (Σ^-^).

Under HQ, Σ/ when I = k — h is given by

τn-ι
(3.2) Σ z = Σ ™({u + l)/Tn)R%2\u + l)®w{u/Tn)R£1\u),

u=-Tn

^ ^ f

for / > 0 and Σ/ = Σ_j for I < 0. In expression (3.2), w: R —> R is a
positive definite symmetric weight function (also called a kernel), which is
continuous at zero, w(0) = 1, has at most a finite number of discontinuity
points, is bounded and square integrable. The sequence {Tn} of real numbers
is such that Tn —> oo but not too fast, that is n/Tn —> oc when n —> oo. If
the sample covariances C^ (0), j = 1,2, are positive definite, it follows from
the multivariate version of Problem 7.11 of Brockwell and Davis (1991) that
Σ = (Ek-h) is a l s o positive definite. In the numerical illustration presented,
Melard et al. (1991) used the modified Bartlett and Parzen windows which
are positive definite functions and the truncation points Tn = Hy/n, H =
1,3,5.
3.1.1. Tests based on the correlations

Let M be a fixed positive integer independent of n with M < n — 1. For
each k such that 0 < \k\ < M, we define the statistic QR(/c) by

(3.3) QR(fc) = nvecR^ί fc/Σo 1 vecR{^2)(k).

Under the assumption that Σo and Σo are regular, it follows from (3.1) that
the statistic QR(fc) is asymptotically distributed under the null hypothesis
Ho as a chi square variable with d±d2 degrees of freedom. The test procedure
based on R^ (A;) to test Ho against the alternative Hi^ is the following.

Given two realizations X ( 1 )(l), ,X(1)(«) and X^(l ) , ,X(2)(«):

Step 1. For \u\ < Γn, compute the autocorrelations R^ J(u), R -̂ J(u) de-

fined by (2.1) and the cross-correlations R^ (u) defined by (2.2).

Step 2. Compute the matrix Σo defined by (3.2) and the statistic QR(fc)
defined by (3.3).

Step 3. For a given significance level α, reject Ho if QR(&) > Xdid2,i-α'
where χ^ a is the αth quantile of the chi square distribution with m degrees
of freedom.
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This procedure can also be formulated in terms of the sample cross-
covariances as described in El Himdi, Roy and Duchesne (2003). As in
Haugh (1976) and in El Himdi and Roy (1997), the modified statistics

(3.4) JL
fc) =

were also considered.

In practice, we usually want to simultaneously take into account many

lags, and if no particular direction of causality is assumed a priori, the set

of lags such that \k\ < M, where M < n — 1 is fixed with respect to n, is a

reasonable choice. Thus for the alternative hypothesis H^ ':

(3.5) Ή.[M): There exists at least one fc, |fc| < M, for which p^\k) φ 0,

a global test of level at most a consists of rejecting Ho if for at least one lag
fc, QR(fc) > %d d i_α •> where α ^ = α/(2M + 1), invoking the Bonferroni
inequality.

We can also consider a portmanteau type test for Ho against ϊl[ ' whose

asymptotic level is exactly α. According to Section 2.2, the covariance struc-

ture under H o of the vector r £ 2 ) - (veci?$J 2 ) (-M)', . . . , vecfl£ 2 )(M)') ', is

known and we can define the following statistic

ίo a\ A D (12)/^-l (12)

(3.6) QR = n r ^ ; Σ r^ ;

where Σ = (Έk-h)o<\k\,\h\<M a n d Σ/ is given by (3.2). The statistic

is asymptotically distributed as a chi square variable with (2M + l)c?io?2

degrees of freedom when Σ is of full rank. If not, Σ is replaced in (3.6) by

a generalized inverse of Σ, and the number of degrees of freedom corresponds

to rank(Σ)did2, see for example Rao and Mitra (1971, p. 173).

The approach described in this section can be easily adapted to de-

tect causality directions in the sense of Granger between X^1^ and X^2);

see El Himdi, Roy and Duchesne (2003).

3.2. Approach based on the estimation of the variance of a mean

Let us assume that the d vector-valued process X is strictly stationary, that
its moments of all orders exist and that its mean is 0. Its joint cumulant
function of order k is defined by

«αi,...,αfc(*i, , tfc-i) = cumulant{Xαi (ίi + r ) , . . . , Xak_λ (*fc-i + T), Xak (r)},

&i? 5 ak £ {1? 5 d}, t i , . . . , tfc_i, r E Z, k = 2 ,3 , . . . . As in Brillinger
(1975), we will suppose that the span of dependence of X is small enough
as described by the following assumption.
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Assumption A.2. The multivariate process X is stricly stationary, its mo-
ments of all orders exist and are such that its cumulant function of order k
is absolutely summable, that is

+00

(3.7) ] Γ |κ α i , . . . j α f c (ίi, . . .,^_i) | <oo,

t1>...,ίfc.1=-oo α i , . . . , αfc G {1,..., d}, fc = 2,3,...

As before, let us write X = (χW',χ( 2) ') ' . For a fixed integer fc, let

Yfc = {Yfc(£) : t G Z} be the process of dimension q = d\d2 defined by

(3.8) Yfc(t) = χW(t) ® X ^ ( ί - k), te Z.

The stationarity of X implies that the transformed process Y& is also sta-
tionary and that its mean is given by

(3.9) μγ(k) = E[Yfc] = vec{r£2) (£)'}'•

(12)

Therefore, testing that I χ ;(fc) = 0 is equivalent to testing that μγ(k) — 0.
Brillinger (1978) exploited that property for developing confidence intervals
for the cross-covariance function of two univariate time series. The following
result is a direct consequence of the multivariate version of Theorem 2.9.1
of Brillinger (1975).

Proposition 3.1. If the process X satisfies Assumption A.2, then the trans-
formed process Y& defined by 3.8 also satisfies Assumption A.2.

Prom (3.9), μγ{k) = 0 is equivalent to I χ J(k) = 0, and classic results

on the estimation of the mean of a stationary multivariate time series can

be used in order to derive tests for non-correlation.

Let Y = {Y(t) : t G Z} be a g-dimensional process satisfying As-

sumption A.2 with mean μγ and spectral density fy( ) Prom a realization

Y(l) , . . . , Y(ή) of length n, the periodogram at frequency λ G R is defined

by _ _

where z denotes the conjugate of the complex number z and dy (λ) repre-

sents the finite Fourier transform of the series:

ί = l

The arithmetic mean Y of the realization Y( l) , . . . , Y(n) can be written as

Y = n~1d^'\θ) and from Theorem 4.4.1 of Brillinger (1975), we have that

(3.10) y/nΫ ±+Nq(μγ,2πfγ(0)),
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A test statistic for Ho: /Xy = 0 is obtained from (3.10) by replacing fy(0) by
a consistent estimator. Several consistent estimators of fy(0) are available;
see for example Brillinger (1975, Chapter 7). Here, we will use the smoothed
periodogram defined by
(3.11)

J

ψ\θ) =

where 1 < J < ra/2 is a positive integer and Re{A} denotes the real part of
the complex-valued matrix A. The joint asymptotic distribution of Y and
fy (0) is given by the following proposition.

Proposition 3.2. Let {Y(t) : t e Z} be a process satisfying Assump-
tion A.2. Then the matrices y/n(Y — μγ) and fy (0) jointly converge in dis-
tribution, as n —> oo, to Uo and \J\, where Uo and Ui are independent, Uo
follows a N9(θ,2πfγ(0)) distribution and Ui is a random matrix distributed
as (l/2J)Wg(2J, fy(0)), where Wg(ra, Ω) represents the real Wishart dis-
tribution with m degrees of freedom and of fundamental matrix Ω.

Proof A direct consequence of Theorem 4.4.1 of Brillinger (1975) is that
the J + l random matrices nιl2ά{y\ϋ), nι'2l{y}(2π/n),... ,n1/2l{y)(2nJ/n)1

where J is a positive integer independent of n, converge in distribution to
random independent matrices Uo, U i , . . . , Uj , where Uo is N^(μ y , 2πfy (0))
and Uj, j — 1,... J, are random W£(l,fy(0)) matrices. The symbol
W^(l,fy(0)) stands for the complex Wishart distribution with one degree
of freedom and fundamental matrix fy(0). The stated result follows from
(3.10) and the additive property of independent random Wishart matrices.
The proof is completed. •

If fγ(0) is regular, fy (0) is also regular for n sufficiently large and the
following statistic

(3.12) Sn = ^(Ϋ-μγy{4n)(0)}-1(Ϋ-μγ)

is well defined. The joint convergence in distribution of Y and fy (0) to
independent matrices Uo and Ui allows us to conclude that, under the
null hypothesis Ho: μγ = 0, and for large n, Sn approximatively follows an
Hotelling T 2 distribution with q degrees of freedom provided fγ(0) is regular;
see Anderson (1984, p. 163). Therefore,

(2J-q+l)Sn

2J a
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follows a Fq£j-q+1 distribution . Since the parameter J in the expression
(3.11) is generally relatively large with respect to the dimension q of the
process Y, the distribution of the statistic -Sn can be approximated by an
Fq,2J distribution.

3.2.1. Test for non-correlation at individual lags

By Proposition 3.1, the transformed process Y^ defined by (3.8) also satisfies
Assumption A.2, and the results of the previous section apply for Y^. It
allows us to propose the following procedure for HQ against H^: Γ^ \k) φ
0.

Given the two realizations X ^ l ) , . . . ,X(1)(™) and χ( 2)(l), . . . ,χ(2)(n):

Step 1. Compute the transformed realization of length n — \k\:

- f c ) , ί = ife + l , . . . , n if fc > 0,
k[ '~ \χW(t)®χM(tk) t l + fc if fc < 0.

Step 2. With the realization obtained at Step 1, compute the values of the
periodogram {Iγ(2πj/n);j = 1,..., J} and deduce the estimator fy (0)
defined by (3.11).

Step 3^Compute the quadratic form QS(fc) = nY/

k{ΐP(0)}-1Yk/(2πd1d2),
where Yk is the sample mean of the series Yk(t).

Step 4. Reject HQ at level a if QS(fe) > Fd1d2,2J-d1d2+ι{^ — a) where
^did2,2J-did2+i(α) i s t h e α t h quantile of the distribution Fd l d 2 ϊ 2j-did2+i

3.2.2. Global test of non-correlation

The approach of the previous section can be extended to take into account an
arbitrary finite number of lag cross-covariances and therefore, to construct
a global test for Ho against H^ . Let fci,..., km be distinct lags, and let

(3.13) Zm(ί) = (Yfcl(t)', , Ykm(t)'Y : t € Z ,

where each vector Yfc.(t) is defined by (3.8). Then, the multivariate process
{Zm(t)} is of dimension mxdιd2 and each of its vector components {Yfy (t)}
satisfies Assumption A.2 according to Proposition 3.1. Its mean μ^(ra) is
given by

Έ{Zm(t)} = μz{m) = (μy(fci),... , μ y f c ) ) ' ,

where μY(kj) is defined by (3.9). The following general result, as Proposi-
tion 3.1, can be deduced from the multivariate version of Theorem 2.9.1 in
Brillinger (1975).

Proposition 3.3. // the process X satisfies Assumption A.2, then the pro-
cess Zm defined by (3.13) also satisfies Assumption A.2.
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Consider the realization Z m ( l ) , . . . , Z m (n) of the process {Zm(ί)}. For

example, that realization can be obtained from a realization of length n + K

of the series {X(t)} where K = max{|fci|,..., |fcm|}. Letting Z m and f|>(-)

be the sample mean and the smooth periodogram estimator of the spectral

density of the process Z m , we can define the following statistic:

(3.14) QSTO = ^ ( Z m - μz{m))'{ΐP{Q)}-\Zm - μz{m))

Prom Propositions 3.2 and 3.3, we can conclude that Q S m asymptotically
follows an Hotelling T 2 distribution with md\d2 degrees of freedom.

Choosing {fci, &2, > km} = {—M, — M + 1,. . . , M — 1, M}, the global

statistic for testing Ho against H[ ' is the following.

Step 1. For \k\ < M, compute

-fc), t = fc + l , . . . , n if fc>0,
k W " [X«(ί ) (8) X ^ ( * - fc), t - 1,..., n + k if fc < 0.

Step 2. Construct the vector of length (2M +

t = M + l , . . . , n - M .

Step 3. With the realization of length n — 2M of the process Z M obtained at

Step 2, compute the estimator f̂  (0) and the quadratic form QS M defined

by (3.14), replacing n by n — 2M.

Step 4. Reject Ho at level a if

( 2 J - ( 2 M + l)d!d2 + l)

V̂  1 5 ) 2J(2M + l)rf d M ^(2M+l)did2,2J-(2M+l)did2+lW

If the means of the subprocesses χ( χ ) and X^2) are different from 0, then

the process Yk in (3.8) is replaced by Yk(t) = (X(1)(*) - X ( 1 )) ® (X(2)(^ -

k) — X(2)), t G TL. As in the univariate case, the correction for the sample

means does not affect the asymptotic distribution of the proposed statistics

under Assumption A.2; see Brillinger (1978).

4. Simulation results

4.1. Description of the experiment

In this section, we present the results of a small simulation experiment re-
alized to compare the exact distributions of the statistics QR(fc), QS(fc),
QRM, and QSM, with their respective asymptotic distributions under the
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Table 1. Models used in the simulation study.
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Model

A

a

'X.Wζt)'
X(2)(ί)

Φ l
0

Φ l
0

Equation
0

φ 2

0
φ 2

'XS^ζt —

X(2)(t-

χW(t -
X ( 2 ) ( ί -

1)

1).
1)'
1)

+ *{2)(t\
sSι\t)

Ω
ΓΩi

[o
[Ωi
| Ω I 2

a

°1
Ω2J
Ω 1 2 1
Ω2

Φ l =

1.0
0.5

0.5
1.07

0.4

-1.0

Ω2 =

Parameters
0.1
0.5 j

Ί.O 0.75
0.75 1.0

3

= [-0.
-1.5

9
1.2
O.δ

'12 =
0.15
0.0

0.0
0.15

null hypothesis HQ of non-correlation. We also compare the empirical power
of these tests under a particular alternative to the empirical power of the
multivariate version of Haugh's test described in El Himdi and Roy (1997).
With this aim, we analyzed the empirical frequencies of rejection of the null
hypothesis by tests with three different nominal levels (1,5 and 10 percent)
for each of two series lengths (n = 100 and 200) anf for two global ARMA
models for X^1) and X^2). The two models are described in Table 1. In
Model A, X^1) and X^2) are uncorrelated and allows us to evaluate the exact
levels of the proposed tests. In Model B, X^1) and X^2) are weakly correlated
through their corresponding innovation processes that are only correlated at
lag 0. For each model, 10,000 independent realizations were generated.

For each model, the experiment proceeded in the following way.

1. 4-variate independent N(0, Ω a ) innovations were generated using the
NAG subroutine G05EAF.

2. The values X ( l ) , . . . ,X(iV) were obtained by solving the difference
equation defining the model. For each model, 10,000 independent realiza-
tions of length TV = 200 were generated; The value X(l) was generated
from the exact distribution N(0,Γχ(0)) of X(ί) using an algorithm of Ans-
ley (1980) and the other observations were obtained using N — 1 values of
a(£) that were also independent of X(l) .

3. For each realization X ( l ) , . . . ,X(200), the test statistics were com-
puted for the first n observations of the time series for n = 100 and 200.
The values of the statistics QR(A ), QR*(fc) and QS(fc) were computed for
k = - 1 2 , . . . , 12, and those for Q R M and Q S M for M = 1, 2 , . . . , 12 (when
it was possible). For each test, the value of the statistic was compared with
the critical value obtained from the corresponding chi square distribution.
To compute the statistics QR (QR(fc), QR*(k) and Q R M ) , we used the
modified Bartlett window as the weight function and the truncation points
Tn = HΛJU, H = 1,3,5. However, only the results for H = 3 are reported.
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Table 2. Empirical levels (in percentage) of tests at individual lags based on QR(A ),
QR*(/c) and QS(fc) with model A, at the nominal level α = 0.05.

k= -10 - 8 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 8 10
n = 100

QR(/c) 2.7 3.1 3.5 3.5 3.4 3.8 4.0 4.4 4.3 4.2 4.3 3.9 3.8 3.7 3.3 3.0 2.6
QR*(/c) 4.6 4.4 4.5 4.3 3.8 4.3 4.5 4.5 4.3 4.4 4.7 4.4 4.4 4.6 4.5 4.3 4.4
QS(fc) 6.3 6.1 6.5 6.5 6.1 6.1 6.1 6.3 6.0 6.5 6.3 6.0 6.6 6.3 6.4 6.0 5.8
n = 200

QR(fc) 3.7 4.0 3.8 4.1 4.4 4.3 4.5 4.4 4.5 4.5 5.0 4.3 4.3 4.5 4.1 4.2 3.7
QR*(fc) 4.8 4.6 4.2 4.6 4.7 4.7 4.7 4.5 4.5 4.6 5.1 4.4 4.7 5.0 4.7 4.9 4.9
QS(fc) 5.0 5.0 5.3 5.3 5.3 5.0 5.3 5.2 4.8 5.0 5.1 5.5 5.4 5.3 4.8 5.3 5.2

Similarly, in the calculation of the QS statistics (QS(fc) and QS M ) , we have
to evaluate the smoothed periodogram (3.11) at the frequency 0. The values
for J were obtained from a preliminary simulation. With the QS(fc) statis-
tics, we used J = 10 for n = 100 and J = 20 for n = 200. With Q S M , we
employed J = 30 for n = 100 and J = 60 for n = 200. In order that the
second degree of freedom 2J — (2M + \)d\ά2 + 1 of the F distribution in
(3.15) be positive, we must have M < 6 when n = 100 and M < 14 when
n = 200.

4.2. Behavior of the tests at individual lags

The empirical levels of tests at individual lags based on QR(/c), QR*(fc) and
QS(A ) are reported in Table 2, for |fc| = 0, 1, 2, 3, 4, 5, 6, 8, 10 at a = 0.05.
Due to space constraints, the results for a = 0.01 and a = 0.10 are not
presented. With 10,000 realizations, the standard error of these empirical
levels is 0.22%. Firstly, for QR(A ), the chi square distribution provides a
relatively poor approximation for the larger lags, specially for series of 100
observations. The approximation for the modified statistic QR*(fc) is much
better. In most cases, the empirical levels are within 3 standard errors of
5% for n = 100 or 200. The rejection rates with the statistics QS(fc) are
slightly above 5% with n = 100 and are all within 2 standard errors of 5%
when n = 200.

The rejection rates at the level a = 0.05 of the null hypothesis of non-
correlation, when the two series X ^ and X^2) are generated under the al-
ternative defined by model B, are given in the Table 3. We only present
the empirical power for QR*(fc) and QS(fc), whose levels are reasonably well
controlled.

For a given k, the power of QR*(£;) and QS(fc) are quite similar. As
a function of fc, the powers of both tests rapidly decrease and the highest
values are obtained at the small lags 0, ± 1 , ±2.
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Table 3. Empirical powers (in percentage) of tests at individual lags based on QR*(k) and
QS(/c) with model B, at the nominal level α = 0.05.

k= -10-8-6-5-4 - 3 - 2 - 1 0 1 2 3 4 5 6 8 10
n = 100
QR*(fc) 4.2 4.2 4.3 4.4 4.0 5.2 11.4 25.1 33.4 25.3 16.1 8.1 5.2 4.2 4.4 4.1 4.2
QS(fc) 5.9 6.2 6.7 6.3 7.2 9.6 15.4 22.5 31.6 23.0 12.7 7.2 6.3 6.2 6.6 6.0 6.2
n = 200
QR*(/c) 4.8 4.7 4.4 4.6 4.8 7.8 22.5 53.4 67.9 52.5 33.8 14.1 7.1 5.1 4.4 4.8 4.4
QS(fc) 5.0 5.3 5.2 5.4 7.3 13.7 29.6 45.3 63.8 47.4 21.1 8.6 5.8 5.5 5.0 5.4 5.5

Table 4. Empirical levels (in percentage) of the tests QH^ (El Himdi and Roy, 1997),
QRM and QSM with model A, at a = 0.05.

M = 1 2 3 4 5 6 7 8 9 10 1 1 1 2
n = 100

Q H ^ 4.6 4.5 4.7 4.5 4.6 4.7 4.7 5.0 4.9 4.9 5.0 5.0
Q R M 1.4 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Q S M 2.9 3.6 4.0 3.9 3.4 3.7
n = 200

Q H ^ 5.1 4.8 4.7 4.8 4.8 4.8 4.7 4.9 4.9 5.0 4.9 5.0
Q R M 2.0 1.2 0.8 0.5 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0
Q S M 2.9 4.0 4.3 4.3 4.3 4.5 4.4 4.4 4.2 4.1 4.3 4.1

4.3. Behavior of the global tests

As a benchmark for the power analysis of the proposed nonparametric tests,

we used the multivariate version of Haugh's test studied by El Himdi and

Roy (1997). It is a parametric test based on the residual cross-correlation

matrices R^ (k), \k\ < M, between the two residual series k^(i) and

a^2) (ί) resulting from fitting multivariate ARMA models to the original series

X^^ί) and χ( 2)(ί). Here we estimated the true AR(1) models for each series

and the resulting statistic is noted QH^ as in El Himdi and Roy (1997).

Table 5. Empirical powers (in percentage) of the global tests QH^, QRM and QSM with
model B, at a — 0.05. For QRM and QSM, the exact critical values obtained in the level
study were used.

M= 1
n = 100

QH^ 82.6
QRM 76.6
QS M 18.7
n = 200

QH^ 99.7
QRM 99.6
QS M 48.0

2

70.3
64.3
12.9

98.8
98.1
35.2

3

60.5
55.7
9.7

96.9
96.2
26.8

4

54.1
47.0
8.5

94.6
93.0
22.0

5

48.2
39.5
8.1

92.0
88.8
18.4

6

43.
34.
6.1

88.
85.
15.

.5
2

B

.8
,0
.8

7

40.3
28.7

85.7
79.9
14.0

8

37.6
26.

82.
74.
11.

.7

.9
,8
.8

9

35.3
23.3

80.6
71.1
10.8

10

33.4
20.8

77.6
67.8
9.8

11

31.2
19.3

75.1
63.3
8.8

12

30.0
16.7

72.5
60.0
8.3
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The empirical levels of the tests QH^, Q R M and QSM are presented in
Table 4. As already observed by El Himdi and Roy (1997), the exact level
of QH^ is quite close to the nominal level. However, the tests based on
QRM are very conservative. The exact distribution of QRM is considerably
shifted to the left of the corresponding chi square asymptotic distribution.
Various modifications were tried: (1) the modification n/(n — \k\) applied
at each lag k\ (2) a translation of the whole distribution based on M and n
as suggested in Li and McLeod (1981). No satisfactory modification has yet
been obtained. The test QSM is slightly conservative but except at M = 1,
its exact level is at least 4% with n = 200.

For various values of M, the empirical powers of QH^, QR^ and QSM

are given in Table 5. The power of QH^ is based on its asymptotic critical
value whilst those of QR^ and QSM were obtained from the exact critical
values obtained in the level study. We make the following observations.
First, QRM seems considerably more powerful than QSM even at n = 200.
The power of both tests decreases as M increases as it is usually the case
with portmanteau type tests. Second, the power of QRM is slightly smaller
than the one of QH^. At least for the particular model considered, the loss
of power resulting from the use of the nonparametric test (with the exact
critical values) rather than the parametric test QH^ is quite reasonable.

5. Application

In this example, we consider a set of seven American and Canadian quar-
terly economic indicators used in a study of the Canadian monetary policy;
for a description of the data, see Racette and Raynauld (1992). The goal
of this section is to illustrate the use of the nonparametric tests introduced
in the previous sections to explore the relationships between the Canadian
and American economies. The Canadian economic indicators are the gross
domestic product (GDP) in constant dollars of 1982, the implicit price index
of the gross domestic production (GDPI), the nominal short-term interest
rate (TX.CA) and the monetary basis value (Ml). The other three vari-
ables represent the American gross national product in constant dollars of
1982 (GNP), the implicit price index of the American gross national prod-
uct (GNPD) and the nominal short-term American interest rate (TX.US).
In this study, the observation period is from the first quarter of 1970 through
the last quarter of 1989, giving 80 observations for each series. The loga-
rithmic transformation was applied to the Ml time series to stabilize the
variance and all series but TX.CA were differenced, to have stationarity.
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In the following, the two Canadian and American vector time series,
denoted { X ^ ί ) } and {χ(2)(ί)} respectively, are denned by:

X«(t) = 10(1 - B) GDPI(t)
TX. CA(t)

r l

100(l-S)In(Ml(t))J L T X U S(*)

i ( l - β ) G N P ( t )
10(1 - B) GNPD(ί)

The multiplicative factors in the definition of these series were chosen in
order to obtain variances of the same order of magnitude within each series.

To test the hypothesis of non-correlation between the two economic time
series, we employed the tests QR*(A;) at individual lags. The asymptotic
covariance structure of the serial correlations was estimated with the mod-
ified Bartlett window and the truncation point Tn = Hy/n, H = 3. The
values of QR*(fc), |fc| = 0, 1, 2,..., 12 are displayed in Figure 1. To test the
null hypothesis Ho of non-correlation at the significance level a = 0.05 the
critical value is the quantile X12095 = 21.02 and we reject HQ if QR*(fc) is
greater than that value. We see from Figure 1 that Ho is rejected at the 6
lags k = - 1 , 0, 1, 2, 3, 4. With the simultaneous tests QR*(fc), |fc| < M,
at the marginal level OLM — OL/(2M + 1), the global level is at most α by
Bonferroni inequality. Again, the null hypothesis Ho is clearly rejected with
M = 4,8 and 12. With the global test QR^, we reject at the 5% level with
M = 1 but we do not reject with M — 2, 3,.. ., 12. There are two possible
reasons for that. First, the true level is possibly much less than 5% (see
Table 4) and even with a well controlled level, the power of QR^ decreases
as M increases (see Table 5). The simultaneous tests QR*(fc), |fc| < M, are
more convincing than QR^/ in this example.
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Figure 1. Values of the statistic QR*(/c), \k\ = 0, 1, 2,..., 12. The dotted line represents
the marginal critical value at the significance level a = 0.05. The other lines represent the
critical values, at the global level a = 0.05, for the simultaneous tests at lags \k\ = 0, 1,
2,..., M, with M = 4 (+), 8 (-) and 12 (solid line).
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