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This paper extends some classical random allocation models for intravenous drug users
(IVDUs) to the case where the infectives may be of different types while the susceptibles
are homogeneous. A general recursive equation for the probability generating function
of the process is derived when there are only two infective types, and the first few pgfs
obtained explicitly. Recursive equations for the expectations of new infectives of the two
types are found, and a procedure for deriving these explicitly outlined. A simple example
is provided, illustrating the difference between this case and that where both susceptibles
and infectives are homogeneous.

1. Introduction

Some years ago, Gani (1991, 1993) applied a random allocation model to the
problem of needle sharing among IVDUs; in this problem, both susceptibles
and infectives were assumed to be homogeneous. The model was later used
by Gani and Yakowitz (1993) to describe the spread of HIV among IVDUs.
In a more recent paper, Gani (2002) has extended the model to the case
where susceptibles are heterogeneous while infectives are homogeneous, and
derived the expectations of the numbers of new infectives of different types
generated after an exchange of needles. Some asymptotic results for these
were also obtained.

The present paper is concerned with the case where the susceptibles are
homogeneous, but the infectives may be heterogeneous, and in particular
where they are of two types. Before we discuss this model, however, we
remind the reader of some results for the simple case where there are n
susceptibles and i infectives, both homogeneous. We shall assume that, after
an exchange of needles, all susceptibles receiving needles from one or more
infectives become newly infected. If there are s of these, then we may write
their probability as

ps(2?77,) = p{s new infectives | i infectives and n susceptibles initially},

which satisfies the recursive equation

/ s — 1\ s
(1.1) ps(i + l,n) = pβ_i(i,n) 1 - — — + p s ( i , n ) -

\ it I it
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where 1 < s < min(z,n). This states that if the number of initial infectives
is increased from i to i + 1, then the probability of s new infectives either
remains the same with probability s/n, or increases from s — 1 to s with
probability 1 — (s — l)/n. The probability generating function (pgf) of the
p s(i,n), namely

min(i,n)

ΦiAu) = Σ P ^ ' n ) n * ' 0 < u < 1,
8=1

is known to satisfy the difference-differential equation

(l 2) Φi+l,n\u) = -rΦi,n + 0̂2,n

n au

When the pgf is expressed in the form

(1.3) W l l ) = „ « [ ( ! _ ! ) . . . (i _ £ ) ] + . . .

n ) \ nι

1 < r < i,

the coefRcients αr(z + 1) of ίxr are found to satisfy the following relations:

di+i(i + 1) = aι(i + 1) = 1

ar(i + 1) = rar{ϊ) + α r_i(z), r = 1,2,... ,i + 1.

These can be readily obtained by matrix methods as in Gani (2002), and
lead to the following expressions for the first six values ofz = 1,2,...,6.
While we assume here that n > z, the expression (1.2) holds equally well for
n < 2, with the coefficients of ur and higher powers becoming equal to zero
if n = r — 1 < i.

α2(2) = 1, αi(2) - 1,

(1.4) α3(3) = l, α2(3) = 3, αχ(3) = 1,

α4(4) = l, α 3 (4)=6, α2(4) = 7, αχ(4) = 1,

α5(5) = 1, α4(5) = 10, α3(5) = 25, α2(5) - 15, αx(5) - 1,

α6(6) = 1, α5(6) = 15, α4(6) = 65, α3(6) = 90, o2(6) = 31,

αi(6) = l.

It should be pointed out that Woodbury (1949) and Rutherford (1954)
have given alternative derivations of the formula for p s(i,n), satisfying the
equation (1.1); this equation also arises in certain urn models.
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2. Two types of infectives

Suppose we now have two types of infectives numbering i\ and %2 respec-
tively, and these share needles with n homogeneous susceptibles. We can,
for example, imagine two variants of an infective virus, where type 1 is vir-
ulent while type 2 is benign; if a susceptible first exchanges needles with a
type 1 (2) infective, it will become a new type 1 (2) infective, and will not
succumb to the alternative type 2 (1) infection from any subsequent needle
exchange. Clearly, the order in which exchanges occur is important in this
situation. Let s\ be the number of susceptibles first infected by type 1 in-
fectives, while S2 is the number first infected by type 2 infectives. We can
then write the probability

(2.1) pSlS2(iι1i2'1n) = P{si, 52 new infectives of types 1, 2 |

ii, Z2 infectives and n susceptibles initially},

with Poo(O,O;n) = 1, and pgf φiui2-n(u,v).
If either i\ or %2 is zero, the situation is reduced to that of a single type

of infective as outlined in Section 1, and the relevant pgfs of the probabil-
ities p S l O ( i i ,0;n) and pO s 2(O,i2;n) respectively will satisfy the difference-
differential equations

u{\ — u) d

/Q 9\
 l j n du ' '

υ{l — v) o

' ' n dv ' ' 2

where, for simplicity, we have omitted the initial number of susceptibles n in
Φίi,i2;n(u,υ). The solutions of the equations (2.2) are of the form (1.3) with
v replacing u in the second case.

When both i\ and %2 are non-zero, then assuming that an extra infective
of type 1 is added with probability p > 0, while one of type 2 is added with
probability q — 1 — p > 0, the probabilities (2.1) can be seen to satisfy the
recurrence relation

(2.3) Ps l S 2(^i ' ^25n)

L , i 2 - l ; n ) ]
L n J

- iUi,&2 — l w) l
X \ Λ. / ΛΛ J / J I
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for all 1 < si < min(zi,n), 1 < 52 < min(z2,n). Multiplying (2.3) by uSlυS2

for all permissible values of si, S2 , we find that

(2.4) φhM{u,v) = lu—φi^x^ +υ—φil-i

q(l-v) Γ d ± d .

n [ σu ov

Thus, starting from φo$(u, υ) = 1, and the first few results obtained from
(2.2), namely

φi,o(u, υ)=u Φo,i(u, v)=υ

φ2,o(u,v) = - + u[ 1 ) φO2{u,v) = - +υ( 1 ),
n \ nj n \ nj

we can, using (2.4), obtain the pgfs

Φ\ϊ{u,v) = -[uq2 + v(l - q2)} + - ( 1 ) [uv(p + 2q + q2) +pυ2(q + 2)]
n n\ n J

<h,i(u,v) = -[υp2 + M(1 -p2)} + - ( 1 - - ] [uv(q + 2p + p2) + qu2(p + 2)]
n n \ n J

—=• [u(pq2 + q -p2q) + v(qp2 +p — pq2))

n z V n )

- f 1 - - λ ί l - -) [uv2(2p2 + 2p2q + 3p + 2pq + q2)
n \ n J \ n J

+ u2υ(2pq2 + 2q2 + 3q + p2 + 2pq)]

Note that when we set u = v = 1 in the Φi1,i2('u>,υ), we find that the coeffi-
cients are precisely those described in (1.4); for example, when 11=^2 = 2,
so that i = i\ + i^ — 4, the coefficients for the last pgf in (2.6) reduce to 1,
6, 7, 1, as in α4(4), α3(4), α2(4) and oi(4) of (1.4).

3. Expectations

We shall now assume that there are always n initial susceptibles, and remove
this suffix from our notation. It was established in Gani (2002) that for i
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initial infectives of a single type, the expectation of the number of new
infectives Y{ after an exchange of needles was

(3.1) m(i) = E{Yi) = n(l - (1 - l/n)*).

Thus, in the case of two types of infectives, with i\ = j , i^ = fc, we have
when k — 0, and j = 0 respectively, the expectations

(3-2)
m2(0, k) = E(Y2,0k) = n(l - (1 - l/n) fe).

When j and k are both positive, the situation becomes more complicated.
If we differentiate (2.4) with respect to u, we find, recalling that i\ = j and
i2 = k,

(3.3) JLφ.k = J u ± φ . _ l k + v]Lφ._lk]P
du 3 \ du 3 dυ 3 \n

d_
7 - 1 fe

Setting u = v — 1, we obtain the relation

(3.4) m1{j,k)

) - m 2 ( i - l , f c ) - + qπiι(j,k-l)

and similarly on differentiating (2.4) with respect to v and setting u = υ = 1,

(3.5) m 2(j,fc)-E(y 2 ; j f c)

) - m i ( j , f c - l ) - +pm2(j-l,Aϊ) +g.
n I n
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Writing these in matrix form, we note that

m2(j,k)

(3.6)

- 1,1)

0
0
0

0
0
0
0

P " 5 9(l
0 p(l-I) -

0 0

0

0
0
0
0

0
0
0

0
0

_ £
n

0
0
0

0
0
0

7"
n

P
0

0

) . . .

q

(i-ΐ)
0

P

q

P

q

P

q
1

1.

m2(j,fc-l)

where it is assumed that mi(j, 22), m2(j, 22) are known for all values of i 2 <
fc — 1. Thus, one can obtain these expectations for increasing j recursively.
A simple example will illustrate our proposed procedure.

We know the values of mi(j,0) and m 2 ( j , 0) from (3.2). Let us now
derive the rai(j, 1) and ra2(j, 1) using (3.6), or

h1)
+ 1,0)

-i)
0
0

0

_ £
nP

0

0

q
_ £

n

o n

P~

q
1

1

rm\{j -
m2(j -

mι(j
1

1,
1,

,0)

1)
1)

If we set j = 1 for the right hand vector, then mi(0,1) = 0, ra2(0,1)
m 2 ( l ,0) = 1, so that

= 1,

(3.7)

• miC7,l) '
TΓi2\J') l)

mi(j + l,0)
1

-k)
0
0
0

_£
nP

0
0

(1

q
_£

n- i
0
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Using the canonical form of the matrix in (3.7), we find that
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(3.8)

π

rai(j + ]

1

X

> ( 1

L)

o
.,0)

1

0

0

0

- ±)p 0
0 p>

0 0

0 0

- 1
1

0

0

( i -

0
0

0

p-nq
nH

1
1—nq

q

0

λy
n>

0"
0

0

1

n

0

n

1

Ί

0

0

0

1

1

0

0

- 1

1—nq

1—nq

0

o •

1—nq
__nq_

1—nq
1

0"
1

1

1

Hence, we obtain the expectations

= n | l -
nq — 1 nq — 1

(3.9)
nq — 1

n )

We can now proceed to obtain all rai(j,2), m2(j,2), and then m\(j,k),
rri2(j,k) similarly, although the relevant recursion matrices will be more
complicated in this case. We note that

Γ / iy + *l
mi(j, fc) + m 2 ( j , fc) = n 1 - I 1 I = m(j + fc),

L V n / J

where m(j + k) is the total expected number of new infections due to the j-\-k
initial infectives. Hence, if all rai(j, k) are known, so also will all m^ij-, k).

An asymptotic result which follows from (3.9) is that if j and n are both
large with j = en — 1, where c is some constant, then

(3.10)

vπ\{cn — 1,1) —> n 1 —

m 2(cn - 1,1)

(nq-p)e~

(nq — 1) J nq — 1
- e" c ),

— 1

Even a small value of fc, such as A: = 1 makes a difference to the number of
new type 1 infectives after a single needle exchange. Let the j type 1 initial
infectives be virulent, while the single type 2 initial infective is benign. Then
for p = q = 0.5, n = 10, and j — 1, 5,10, the Table below gives the expected
number of new infectives of type 1, as against the number of all new infectives
m(j + 1) when the j + 1 initial infectives are homogeneous.
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Table 1. Expected new infectives for n = 10

0.95
4.026
6.480

1
4.685
6.862

4. Concluding remarks

The random allocation model for the spread of HIV among IVDUs can lead
to fairly complicated equations when there are two types of initial infectives.
We have considered the partial differential equation governing the pgf of
the process, and shown how it can be used to derive the pgf recursively.
Equations for the expectations of the numbers of new type 1 and type 2
infectives were obtained, and again led to recursive equations. The case
of j > 0 type 1 and 1 type 2 initial infectives is solved explicitly, and the
procedure for k > 1 type 2 infectives outlined. Finally, an example for the
expectation rai(j, 1) when there are n — 10 initial susceptibles is given; the
existence of even a single type 2 initial infective appears to decrease the new
type 1 infectives.

An important problem remaining to be solved is the case where there
exist two types of initial infectives and two types of susceptibles with different
susceptibilities as, for example, with adults and children. Further research
on this topic is in progress.
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