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A class of U-statistics matrices is introduced to obtain the distribution of the matrices of
the Spearman and Kendall correlation coefficients between the components of a random
vector. These results are used to construct nonparametric tests of independence between
two sets of variables based on three measures of multivariate relationship. The tests are
illustrated by an example and a simulation study is performed to compare the tests based
on Kendall's matrix with those based on Spearman's matrix.

1. Introduction

Let F{x) = F(χW,χ[2]) be the continuous c.d.f. (cumulative distribution
function) of a random vector X = (χW,χW)', where x = (x^\ ... ,χ(m))/ G
Rm, m > 2, xW G RP, x® G Rq (p + q = m) and F^(x^) (k = 1,2)
denote the marginal c.d.f. of X^k\ The objective of this paper is to de-
tect deviation from the null hypothesis of independence that is, to test Ho:
F(x) = F^(x^)F^(x^) against appropriate classes of alternatives Hi : n.
A nonparametric approach to this problem was explored by Puri, Sen and
Gokhale (1970) who defined a class of association parameters based on com-
ponentwise ranking. The statistic they proposed uses the elements of the
matrix A* = ( ^ £ * ) , where

α=l

Here, Ra is the rank of X&, that denote the zth coordinate of the vector
Xa,\ the symbol a will run over the sample (from X) with a = 1,... ,n
and J represents an arbitrary standardized score function. Puri, Sen and
Gokhale (1970) established the joint asymptotic multivariate normality of
the vector formed by the elements of Dn.

When the score function is J(ύ) = Jo(u) = \f\2{u —5), then

(i\ n+l\ { /,Ί n + 1

ij = l,...,m,
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which reduces to Spearman's rank correlation with asymptotic mean given

by Spearman's coefficient (see Hoeffding, 1948, p. 318)

(1.3) ρ^j) = 3

ij = l, . . .,ra,

where F®(χW) and F^\x^\x^) denote the marginals c.d.f. of X$ and

(X^\xίJ)Y respectively.

They based their test of independence on the statistic SJ = \Dn\x

(IDili |£*221)"1, where \A\ denotes the determinant of A. They also showed

that under Ho, — nlogS J —> X^q. With Jo, the statistic SJ is a generaliza-

tion of Spearman's rho for multivariate data sets.

Using the results of Puri, Sen and Gokhale (1970) with Jo(u), Cleroux,
Lazraq and Lepage (1995) and Lazraq, Lepage and Cleroux (1995) proposed
other tests of independence between two or more random vectors which are
based on the measures of multivariate association proposed by Escoufier
(1973) and Cramer and Nicewander (1979).

In the present paper, we present an approach based an original concept of
U-statistics matrix inspired from Hoeffding (1948) to the problem of detect-
ing dependence between two random vectors. This theoretical tool allows us
to deduce the asymptotic distribution of a general association matrix. The
first application is to construct the association matrix with Kendall's tan and
study its relationship with Spearman's rho. We also propose nonparamet-
ric tests of independence between two random vectors based on three known
measures of multivariate relationship with the Kendall and Spearman associ-
ation matrices. We obtain the asymptotic distribution of the tests statistics
under the null hypothesis and under a sequence of alternatives. In order
to assess the behavior of the tests, a Monte Carlo study is performed to
compare the empirical level and the empirical power of the tests based on
Kendall's matrix with those based on Spearman's matrix.

Some multivariate generalizations of the Kendall's tan correlation coeffi-
cient have been studied in the literature by Hays (1960), Simon (1977) and
Joe (1990). They have used the Kendall's tau correlation coefficient to test
the total independence but not for the independence of two or more random
vectors.

The paper is organized as follows. In Section 2, we give the asymptotic
distribution of the matrices of U-statistics and deduce those for Spearman's
matrix and Kendall's matrix. Section 3 is concerned with the three known
measures of multivariate relationship: some properties and their asymptotic
distributions under the null hypothesis and under a sequence of alternatives
are given. In Section 4, we propose some tests of independence based on
Spearman's and Kendall's matrices. We illustrate all the tests by an example.
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Finally, Section 5 contains an empirical comparison of the new tests based
on Kendall's matrix with the competitors based on Spearman's matrix. The
results of this paper, can easily be extended to test the independence between
several random vectors.

2. U-statistics matrix

Let Xi , . . . , Xn be n independent random vectors, Xa = (Xa , . . . , Xa )',
a = 1,. . . , n, from an unknown continuous c.d.f. F. Let Φ^ '^(x i , . . . , xr(ij)),
for z = 1,... ,p and j — 1,. . . , g, be symmetric function with r ^ J ) (r^) e N)
arguments. Let

where B = {β = (βu...,βriiJ)) | 1 < βι < < βr{iJ) < n } , be a

U-statistic for the parameter η^) of degree r ^ J ) based on the symmetric

kernel φ(ι'•?'). Let

(2.1)

Φ^'J\x) = E[Φ(*' ?)(a;,X2, .,Xβr(iJ))}, for i = 1,... ,p and j = 1,... ,q.

We note that E[C/^J)] = E[#S i J )(X)] = 7^') (see Hoeffding, 1948)). We
now define the matrices of U-statistics Un, of degrees R and of parameters
Γ by respectively

ΊJQ-M ... u^qΛ /A1'1) ... r( χ ' « ) N

(p,i) r(p,ς)
\ / v . . . •

and

Consider vecί7n, as the vector formed by stacking the columns of Un.

The asymptotic multivariate normality of vec/7n follows from Theorem 7.1
of Hoeffding (1948).

Theorem 2.1. // £Λe kernel function φ(1^ for the parameter 7^'^ of degree

is such that

W ) ^ ^ . . . , ^ ^ ) ) ) 2 ] <oo,

for i — 1,... ,p and j = 1,... , q, then yjn(vec Un-vec Γ) —» Λ/*p<7(0, Ω)
t/ie elements of Ω are gzi>en 6y
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Φ ^ ( x ) a n d φ [ ' \ x ) are g i v e n i n ( 2 . 1 ) f o r i , k = 1 , . . . , p a n d j , l = 1 , . . . , 5 .

p

We can also deduce from Hoeffding (1948) that vecUn —> vecΓ.

Spearman's matrix

To express the rank correlation in terms of indicators, we define the signum
function as s(x) = 1 if x > 0, 0 if x = 0 and — 1 if x < 0. Then we can define
the U-statistic

V3/ l<a<β<u<n

for Spearman's coefficient ρ^1^ of degree 3 based on the kernel function

Here, we have (see Hoeffding, 1948, p. 320)

(2.2) Φ ^ p k ) = [1 - 2F

+ 4 ί[F^j

+ 4 f[

where φj i j ) (x) - E[φ( i '^(x,X2,X3)]. For i - j , we have 5^ ' j ) = ρ^ = 1.

Obviously Sn is an unbiased estimator of ρ^h^ while £)(ZJ') given by (1.2))
is not.

The matrix Sn — (Sn )ίj=i,...,m will be called Spearman's matrix for
the parameter matrix P = (ρ^) i j=i . . . j m . For all i φ j the degree is 3 and
zero for i = j. The application of Theorem 2.1 leads immediately to the
following theorem.

Theorem 2.2. The random vector ^(vecSn — vecP) has a limiting m2-

multivariate normal distribution ΛΓm2(O,Σ>s) where the elements 0/Σ5 are

given by σfM)= 9 Σ L i Σ Ϊ ' = I Cσv(Vx

(y>'*, v}k'l)'h>) with i, j, k, I = 1,..., m,

and

/«)'2 = 4 ί

}ij)'z = 4 f
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Kendall's matrix

Kendall's tan is a measure defined by the product moment correlation of
signs of concordance,

jζihj) - J_ W s(χM - x«wχ ϋ ) - xUh
V2/ l<a<β<n

while Spearman's rank correlation coefficient is the product moment correla-
tion between F®(χW) and F^(X^) (ij = 1,... ,ra) (see Cleroux, Lazraq
and Lepage, 1995, p. 719). Thus, Theorem 4.1 in Puri, Sen and Gokhale
(1970) cannot be used to obtain the asymptotic multivariate normality of
the elements of the Kendall's matrix. The element Kn is a U-statistic of
degree 2 based on the symmetric kernel

for Kendall's coefficient defined as

τ(iJ) = 4 ίίF^\x^,x^

Here also (see Hoeffding, 1948, p. 316), we have

(2.3)

where Φ{*J\x) = E[Φ^\x,X2)}. For i = j , we have K^j) - T^ = 1.

The matrix Kn — (Kn )t,j=i,...,m wiU be called Kendall's matrix for the
parameter matrix Λ = (τ^ J^)i J =i v.. 5 m. For all i φ j , the degree is 2 while it
is zero for i = j . The application of Theorem 2.1 leads immediately to the
following theorem.

Theorem 2.3. The random vector >/n(vec Kn — vecΛ) has a limiting m2-
multivariate normal distribution Λ/"m2(O,Σ^) where the elements ofΣχ are
given by σψkl) = 4 ^ L i Σ k i Cov(C/f J ) Λ , C / 1

( f e ' / ) Λ ' ) with i,j,k and I =

and
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If we insert the rank Ra of Xa defined by

in (1.2), we have
n-2

(see Hoeffding, 1948, p. 318). Then, y/n(vecDn - vecP) and y/n(vecSn -
vecP) have the same limiting distribution given by Theorem 2.2; we find
here the result given by Puri, Sen and Gokhale (1970).

Let us now partition P and Λ and their analogue sample matrices Sn

and Kn in following way:

p ( Λ _ fKn K12

\P2i P22J' U 2 1 A 2 2 ; ' n n ~

and

Λ _ /An Λ1 2 f

U A ; '
 nn~\κ κ22

S — f \
\S S22J

where M2\ (M — P, Λ, S or K) is of order qxp. Now, we have P21 = Λ2i = O

under HQ. Under Ho, Xa and Xa are independent for i — p + 1,... ,ra

a n d j = l , . . . , p .

Theorem 2.4. Under Ho and tί /ien n —> 00, we have

y/ήvec K21 ^ Z ( r ) where Z^ follows a λίpq(O, | P n ® P 2 2 )

and

v

/ ήvec5 2 i ^> Z ( r f ^Λere Z ( ^ follows a λfpq(O, Pn ® P 2 2 ) .

Proof. From Theorem 2.3, we note that under Ho the random vector

y/ΰvec K2\ has a limiting multivariate normal distribution ΛΓpq(O, A) where

the elements of A are given for z,j, fc, Z = 1,.. . , ra by

[k))= 4E[1 - 2F«(xf))][l - 2F(-k)(x[k))}

Thus, A = | P n ® P 2 2 . In a similar way, we can obtain the limiting multi-
variate distribution of -^/nvece^i under HQ. Π
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We shall now study the asymptotic distribution of M21 (M = S or K)
under a sequence of alternatives {Hi : n ,n = 1,2,...} (see Puri, Sen and
Gokhale, 1970) which specifies that

H,, = m n

where Qβ\$\) i s some function of (F^(x^), F®(x®)) and Ω(W M) φ 0.
Hχ:n implies that for i = p + 1,..., m and j = 1,..., p,

(2.4)

f
V

where Ω -̂ 7') is a function of (F^,F^) and Ω( i j) φ 0; it also implies that

(2.5)

Ω ( F f c ) ( g «) ; x(k)); F 0 , 0 (go"), x

V

where F^'klΊ is the c.d.f. of the (X®,X&, jW,Λ"(0) for j , / = l , . . . , p ;
i, fc = p + 1,. . . , m, and Ω^-fcί) ^ 0 is a function of

Let for i = p + 1,.. ., m and j = 1,... ,p,

(2.6)

_a 2Ffa )(#,χϋ)) ( i )

~ dx^dxii)

= dF® (Ί

where the function ufy- is obtained by differentiating (2.4)). In a similar way,
let for i = p + 1,.. . , m and j = 1, . . . , p,

ijM) ( x (0, x ϋ ) , x(fc), x (0)

d2F(i,k) ^( t ) ; g

To simplify the notations, we set

^ W , x ϋ ) x ( * ) j X ( 0 ) m r Ί f . m
v . . '—7τ^—^ dx(*} dx{:)) dx(k) dxw
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and
dF(i,k) = /(*.*) ( xW )

Let B = (β(ι'ti) be the q x p matrix where

β(i,j) = ίί F^(x^)F^\x^)φi\F^

Using (1.3) and # f j ) denned by (2.2) where

E[φί i J )(Xi)] = ρ^ = 3 /Y[2F«(x«) -

we obtain under Hi : n,

//"

φt '

In a similar way, using Φγ'3' denned by (2.3), we obtain under Hi : n ,

r g

3

We thus have shown the following lemma.

Lemma 2.1. Under Hι:n, we have

8 12
Λ21 = —F=B and P21 = —==B.

The next theorem gives the limiting distribution of K^\ and ^21 under
the sequence Hi : n .

Theorem 2.5. Under Hi : n and when n —> oc; we have

y/ΰvecK2ι ^ Z ( τ ) where Z ( r ) follows a Λfpq(8vecB, | P n ® P22),

>/n v e c 5 2 i ^> Z ( ί ? ) ^/iere Z ( ρ ) /©Mows α Λ/"p(?(12 vec β , P n (8) P 2 2 ) .

Proo/. Prom Theorem 2.3, the random vector Λ/U vec if21 has a limiting mul-
tivariate distribution with mean vector Έ[y/nvecK2i] = 8vec£? and covari-
ance matrix | P n ® P22 whose its elements are
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Using the expression for dF^'kι^ given by equation (2.7), we have

(//'

~ ίίίί[l ~
x [1 - 2F^(x^)]ωijM dx® dx& dx(fc) dx®

n

~ ffff[l -
x [1 -

n

The result follows from Serfling (1980) (Lemma A, p. 20). In a similar way,

we have the limiting distribution of V^vecc^i from Theorem 2.2. D

3. Measures of association

We now apply the measures of multivariate relationship proposed by Es-
coufier (1973), Stewart and Love (1968) and Cramer and Nicewander (1979)
to the Kendall and Spearman matrices.

For the Escoufier's measure (1973), we have

The Stewart and Love's measure (1968) gives

ι _ tr(<S12<S22

1,Sί2)

P V

Finally with the Cramer and Nicewander's measure (1979), we have

C N ( τ ) _ tv(κn κi2K22 K'l2)
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The corresponding measures at the level of the population are defined

by:

( τ ) = tr(Λ12Λ'12) a n d ( g ) =

V^ΛfJtrOVy P

for the Escoufier's measure,

g L ( r ) = tr(A 1 2 A^Aj 2 ) a n d ( g ) =

PP P

for the Stewart and Love's measure,

((p) _

P V

for the Cramer and Nicewander's measure.
The main advantage of considering these transformed measures are that:

(a) the individual data may be ordinal variables, (b) the scale of measurement
for each variable may be different, (c) the classical hypotheses of multivariate
normality or ellipticity of the parent population may be omitted, (d) they
lead to a robust procedure against outliers. Moreover, the three measures
applied to Kendall's matrix or Spearman's matrix have the following prop-
erties:

(i) pM^ = pM^ = 0 if and only if P2i = A i2 = 0, for M = RV, SL and
CN.

(ii) when p = q = 1, the three measures reduce to the square of Kendall's
coefficient or to the square of Spearman's coefficient between the vari-
ables

(iii) 0 < pM^ < 1, for s = r, ρ and M = RV, SL and CN. The sample
analogue of the measures, M^s\ for s — T, ρ and M — RV, SL and CN,
have the same properties.

For the proof of these properties and other results on measures of mul-
tivariate relationship, the reader is referred to Lazraq and Cleroux (1988).
The testing problem is now restated as HQ: pM^ = 0 versus pM^ > 0, for
s = r, ρ and M = RV, SL and CN.

In the following theorems we give the asymptotic distribution of our
statistics under the null hypothesis and under a sequence of alternatives. We
will show that they are represented as linear combinations of independent
central X2 and noncentral X2 random variables respectively.
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Theorem 3.1. Let Kn andSn be Kendall's and Spearman's matrices respec-
tively obtained from a sample of size n drawn from a m-dimensional random
vector with an arbitrary continuous c.d.f. F(x). Then, under HQ and when
n —> oc ; we have

P q

y y

where the Uij 's are iid JV(0, 1), i — 1,... ,p; j — 1,. . . , q, random variables
and Xi and μj are the eigenvalues of Pn and P22 respectively.

(iv)

i=i j=\

where the Z<^i 's are iid X^, i = 1,... ,p, random variables with q degrees of
(2)

freedom, \, i = 1,... ,p are the the eigenvalues ofP\\ and t, , j = 1,... ,q,

are the eigenvalues of Λ ^ ί ^

(vi)
P

where t\ , i = 1,... ,p, are the eigenvalues of K.^P\\.

Proof, (i) Since Kn converges in probability to Λ as n —> 00, the submatrices

K\ι and K22 converges in probability to An and Λ22 respectively as n —>

ex). Furthermore, under Ho, v ^ v e c ^ 2 i converges to Z^τ^ with distribution

λfpq(O, | P n ® P22) Theorem 2.3. Since

we deduce using classical results on quadratic form (see Baldessari, 1967 or

Johnson and Kotz, 1970) that,

n
R V w
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where the C/̂  's are iid Λf(O,1), i — 1,... ,p; j = 1,. . . , q, random variables
and λ ,̂ μj are the eigenvalues of P n , P22 respectively.

Noting that ntr( i f 12^22* ̂ 21) = 1

we have

where ί̂  , j = 1,. . . , q, are the eigenvalues of K^P n F ° r the case nCN^T\

we use

The proofs are analogous when Spearman's matrix is used. D

Theorem 3.2. If the conditions of Theorem 3.1 are satisfied then under

Hi : r λ and when n —> oo, we have

<«

where the C/^i 's are independentλί(δij, 1), i = 1,... ,p, j = 1,. . . , g, random
variables;

(ii) /f 2,

where the U%^2 's are independentΛf(y/^δf ^ 1), i = 1,... ,p, j = 1,...,q, ran-
dom variables and Xi, μj are the eigenvalues of Pn, P22 resp. corresponding
to the normalized eigenvectors aι, bj, 5? = 64tr(BfbjbfjP^2

ιBP^1

1aia/

i) and
B is the matrix defined in Lemma 2.1;

where the Xiijiβhij's are independent chi-squared random variables with

one degree of freedom, with δfjλ = tr(J5/pjp^ P^ 1J5P 1^ 1αiθ9 as noncentrality

parameter and pj, j = 1,. . . , q, is the normalized eigenvector corresponding
(2) 1

to the eigenvalue ty } o/Λ "̂2 P22/
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where the Xfίq\{δ^)9s, i = l , . . . , p , random variables are independent chi-
squared random variables with q degrees of freedom and noncentrality pa-
rameter defined by δf = 1 1

r i=l 3=1

where the Uij 's are independent Λ/*(Δ^ , 1), i = 1,... ,p, j = 1,. . . , q, random

variables with Δ ^ = 64tr(i? /pjp^P^ BPΰ did^) as noncentrality parameter

and di, i = 1,... ,p, is the normalized eigenvector corresponding to the eigen-

value t\

(">

where the X2

q random variable has qp degrees of freedom and noncentrality

parameter defined as δ2 = tr(B /P 2^ 1 BP^1).

The proof of this Theorem is analogous to Theorem 3.1, but a noncentral-
ity parameter is introduced in the asymptotic distribution of \

4. Tests of independence of two vectors

The results of the preceding section can be used to construct asymptotic

tests of independence between two vectors. We will test for M = RV, SL

or CN and s = τ or ρ, Ho: pM^ = 0, against pM^ > 0 at level α by

rejecting Ho if nM^ > Cα where cά' is the 100(1 — α)th percentile

of the corresponding distribution given in Theorem 3.1. Under Hi : n , nM^

converges in probability to pM^ for M — RV, SL, CN and s = r, ρ and

thus the asymptotic power of each of these six tests converges to 1 when

n —> oc. Thus, each test is consistent.

The limiting distributions given in Theorem 3.1 are not easy to deal

with and consequently, the percentiles will be computed by using Imhof 's

algorithm (Imhof, 1961). Moreover, in these distributions, P n , P22, An and

Λ22 are usually unknown, we thus use instead the estimators <Sn, £22 5 Ku

and UΓ22- Since the estimators are consistent, the asymptotic distributions

remain unchanged.

Let us notice that the tests nM^ (M = RV, SL and CN) based on the

matrix of Kendall depend on the tests M^ based on the matrix of Spearman.

For example, the asymptotic distribution of nRV(r) and n R V ^ use the same

eigenvalues resulting from the submatrices P\\ and P22 of Spearman's matrix.

They are asymptotically equivalent, up to a multiplicative coefficient which

depends on Kendall matrix. In the case of total independence, this constant

is I and this is already mentioned by several authors (see, for example, Hajek

and Sidak, 1967).
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Description of the procedure

Given a sample of size n, (X?, xf] )', . . . , (X[n], XJ?1)' where x\1]: p x 1 and

X] 2 ]: g x 1 for i = l , . . . , n .

1: Compute i^n, if22? ^12, ^21 and <Sn, <S22, £12, <?2i

2: Compute the required eigenvalues from the consistent estimators.

Step 3: Compute nM^ for M = RV, SL, CN and s = r, ρ.

Step 4: For each distribution given by Theorem 3.1, obtain the 100(1 — α)th

percentile, c£'M\ for M = RV, SL, CN and s = T, ρ, by using the

Imhof (1961) algorithm.

Step 5: Reject H o at level a if pM^s) > c{a'M\ for M = RV, SL, CN and
s = r, ρ.

Example. The six tests are illustrated with sport data. The data consist of
the 1984 Olympic track records of 55 nations for women as well as men (see
Naik and Khattree, 1996). The data matrix for women is a 55 x 7 matrix
with seven events represented: the 100 meters, 200 meters, 400 meters, 800
meters, 1500 meters, 3000 meters and marathon (which is 42195 meters).
For the men the corresponding matrix is of order 55 x 8 differing from the
women's events in that the 3000 meters was excluded but 5000 meters and
10000 meters were included.

As noted by Naik and Khattree (1996), to test athletic performances of
women and men, the appropriate variable that may be more relevant in this
context is the speed, defined as the "distance covered per unit of time." This
variable succeeds in retaining the possibility of having different degrees of
variability. We will therefore use the speed in the track events as the variable
for the tests of independence between women and men performances. These
two data sets are presented in Tables 1 and 2 of Naik and Khattree (1996).

First, we test the hypothesis Ho of independence between X^ and X^
where X^ is the vector formed by women performances and X^ is the
vector formed by men performances. We have n — 55, p — 7 and q = 8.
Table 1 gives the value of the statistic, the 5% critical value and the observed
critical value. Therefore, Ho is strongly rejected.

5. Simulation study

In order to assess the behavior of the tests based on Kendall's matrix, a
Monte-Carlo study is performed to compare its empirical level and its em-
pirical power with those of the three competitors based on Spearman's matrix
(see Cleroux, Lazraq and Lepage, 1995).
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Table 1. Tests of independence between women and men performances, the value of the
statistic, the 5% critical value and the observed critical value.

Matrix

Spearman

Kendall

Statistic 1

nRV{ρ)

raSL^

nRV ( r )

nSL ( r )

n C N ( r J

1 Value

44.88
42.14
17.18

37.16
28.67

8.21

Critical point Co,o5

4.33
14.32
10.63

2.77
3.95
1.57

Critical level

1.19 x 10~7

1.19 x H Γ 7

1.25 x 10" 6

0
1.19 x 10~7

1.19 x 10~7

All the simulation programs were written in FORTRAN programming
language. For ease of comparison, the study is restricted to the case p = 2,
q = 3 and the nominal level 1%. The number of repetitions at each setting
is 10 000. Two types of underlying distributions are imposed. In the fam-
ily of elliptic distributions, we consider a multivariate distribution Afs(O, Σ)
and an elliptic multivariate t$. In the family of nonelliptic distributions, we
consider a multivariate logistic U (see Johnson, 1987) and a general multi-
variate distribution constructed as follows: each component of the vector X
is independently generated from the other, the first is Λ/Ί(0,1), the second
is uniform on [0,1] minus 0.5 and multiplied by \/Ϊ2, the third is an expo-
nential distribution (with parameter 1) minus 1, the fourth is a beta (with
parameters 2 and 2) minus 0.5 and multiplied by Λ/20 and finally the fifth is
a gamma distribution (with parameters 1 and 4) minus 4 and divided by 2.

Under Ho, we generate two independent random vectors XW and X^.
For the alternative hypothesis, we consider the linear transformation Y =
CX where C is such that Σ = CCf. The matrices considered here are

— h Σ22 = Σ12 = Σ'2 1 = Coo, CΊo, C15 and C20

where the matrices Cxy represent 2 x 3 matrices with all elements being

the real number O.xy; for example, all elements of C15 are equal to 0.15.

This type of matrices was used and justified by Cleroux, Lazraq and Lepage

(1995).
Table 2 summarizes the simulation results for the five distributions. In

order to judge the empirical level of the asymptotic tests and their empirical
power, an empirical level will be good if the nominal level 1% belongs to the
95% confidence interval. So that, for 10 000 repetitions, COo column must
vary between 79 and 121.

The first observation is that for Kendall's tests and Spearman's tests,
the empirical power of each test increases with departure from the null
hypothesis that is when the value xy of the matrices Cxy increases. The
empirical levels of nM^ are in general slightly conservative while that of
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(M = RV, SL or CN) are liberal. The tests nM^ have an empir-
ical power slightly inferior to nM^ (M — RV, SL or CN). In each class
of tests (Kendall or Spearman), we notice that the empirical power of the
tests nSL^ (s = τ or ρ) is greater than the empirical power of the other
tests, but when the underlying distribution is logistic, the empirical power
of nRV's' (s — τ or ρ) is greater than the two others. In conclusion, the
empirical power of each test, in a given class, depends on the underlying
distribution. Nevertheless, one notices that the tests of Kendall's class are
empirically more powerful than the tests of Spearman's class especially for
small sample sizes and in the vicinity of the null hypothesis CQO
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