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One- and two-sided confidence intervals are considered for the location parameter in the
semiparametric symmetric location model. Asymptotic bounds are proved and confidence
intervals are constructed that attain these bounds locally asymptotically uniformly. Global
uniformity is studied as well.

1. Introduction

Let Q be the class of distribution functions G with densities g w.r.t. Lebesgue

measure that are symmetric about 0 and that have finite Fisher information

I{G) for location. This means that every G G Q has a density g satisfying

(1.1) g(-x)=g(x), x G R,

and being absolutely continuous with derivative g' such that

(1.2) I(G) = j{g'/9?9 < oo

holds. The semiparametric symmetric location model

(1.3) V = {PθiG:θeπ,Geg}

consists of all distributions PQ^G with density g(x — 0), x G R, with respect

to Lebesgue measure.

Based on i.i.d. random variables X\,...,Xn with distribution PQ^Q es-

timation of the location parameter θ is possible by estimator sequences

= (tn(Xi,... ,Xn))nen satisfying

(1.4)

and even

(1.5) V ( n

AMS subject classifications'. Primary 62G15; Secondary 62G05, 62G20.
Keywords and phrases: Adaptive estimation, local uniformity, global uniformity,

asymptotic bounds.



66 C.A.J. Klaassen

as n —> oc. An estimator sequence (Tn) is called regular at PQ^Q within

V\ = {PQ Q : θ G R} if there exists a law LQ such that for every sequence

{θn) with (y/n(θn - θ)) bounded

(1.6) y/ίi(fn - θn) ^ LQ

holds under Pθn,G- By the Hajek-Le Cam convolution theorem such estima-
tor sequences satisfy

(1.7) [ ^

under PQ^Q with LQ — λί{θ,I~1(G)) * MQ. The asymptotic linearity (1.5)
implies (1.4) and even implies regularity of (Tn) within V\ at PQ,G with
LQ = Λ/*(θ,/~1(G)). This follows from local asymptotic normality within
V\. Therefore, estimator sequences (Tn) with the asymptotic linearity prop-
erty (1.5) are called asymptotically efficient; see, e.g., Section 2.3 of Bickel,
Klaassen, Ritov, and Wellner (1993), henceforth referred to as BKRW (1993).
Such estimator sequences are also asymptotically optimal within the class
of all (not just regular) estimator sequences in that they attain the lower
bound in the local asymptotic minimax theorem.

As above, fix θ and G. Furthermore, let V be a random variable and
define the random location parameter

(1.8)
n

Given ΰ = θ the common distribution of X i , . . . , X n is PQG The limit

behavior of the sequence [^\/n{Tn — i?)) is governed by the local asymptotic

behavior of (Γn) around PQ,G Under weak conditions on the distribution

of V the finite sample spread inequality (Klaassen, 1989a) implies that as

n —• ex) and subsequently σ —> oc, all possibly defective limit points of the

sequence of distributions of y/n(Tn — ϋ) are at least as spread out as a normal

distribution with variance I~1{G) see Klaassen (1989b). One distribution is

at least as spread out as another if any two quantiles of the first distribution

are at least as far apart as the corresponding quantiles of the latter; cf. Bickel

and Lehmann (1975). Asymptotically linear estimators satisfying (1.5) are

efficient also in this local asymptotic spread framework. Le Cam's one step

estimators based on a discretized preliminary estimator and on knowledge of

the underlying density g, are asymptotically linear in the sense of (1.5) for

every G E Q. For strongly unimodal g, for which g1 /g is nonincreasing, it is

particularly easy to see that the maximum likelihood estimator is efficient.

Stein (1956) has noted that it should be possible to construct estimators

Tn satisfying (1.5) for all G G Q simultaneously, van Eeden (1970) was the
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first to construct estimators Tn satisfying (1.5) for all strongly unimodal g,
G £ G, simultaneously; she called her estimator efficiency-robust and noted
the analogy to the uniformly asymptotically efficient tests of Hajek (1962). In
fact, she constructed the first semiparametrically efficient estimator, namely
for the semiparametric model

(1.9) {PΘ,G > θ E R, G e Q, G has a strongly unimodal density}.

Stone (1975) and Beran (1974, 1978) constructed such estimators for the
complete semiparametric model V. These estimators were called adaptive,
since they adapted, so to say, to the underlying density g. This model and
these semiparametrically efficient estimators stimulated the development of
semiparametric estimation theory, which includes regression models, Cox'
proportional hazards model, transformation models, and many more; see
BKRW (1993). In fact, van Eeden (1970) also constructed an adaptive,
efficiency-robust, semiparametrically efficient estimator of the shift parame-
ter in the two-sample location model for strongly unimodal distributions.

Given these fully efficient estimators of the location parameter θ within
the semiparametric symmetric location model V, a natural next step is the
construction of asymptotically optimal confidence intervals for θ. In Sec-
tion 2 we will derive asymptotic bounds to the performance of one-sided
(1 —α)-confidence intervals and of two-sided asymptotically unbiased (1 —α)-
confidence intervals. Constructions of efficient confidence intervals, which
attain these asymptotic lower bounds, will be given in Section 4. It is well
known that there is a close relationship between confidence intervals and
testing hypotheses. Choi, Hall, and Schick (1996) have developed a gen-
eral theory for semiparametric hypothesis testing and they have derived the
asymptotic performance of asymptotically uniformly most powerful (unbi-
ased) tests. In their Section 6 they note that these results can be translated
into optimality results for confidence intervals and in their Example 8.1 (a)
they treat the symmetric location case. Strictly speaking, our results can
be derived from theirs. However, we have chosen to present explicit results
and self-contained, quite straightforward proofs in order to set the proper
stage for our discussion of uniformity. Indeed, in Sections 5 and 6 we will
discuss local and global uniformity issues for our confidence intervals. In
our approach we keep the confidence level 1 — a fixed. Asymptotically ef-
ficient fixed width confidence intervals for model (1.3) have been given by
Martinsek (1991) and Chang (1992).

2. Parametric asymptotic bounds

Fix G G Q. Within the parametric symmetric location model

(2.1) Vι = {PΘ,G • θ € R}



68 C.A.J. Klaassen

we consider random intervals In that are based o n X i , . . . , Xn and that have
asymptotic coverage probability at least 1 — a for a small positive value a
at θ0 G R, i.e.

(2.2) liminfPθo,G(θo eln)>l-a.
n—> o o

First we will study one-sided intervals of type In = (—oo, An] that have
locally asymptotically uniform coverage probability at least 1 — a at θo € R
in the sense that for all sequences (^n) n eκ with (y/ΰ(θn — #o)) G™ bounded,

(2.3) hmuήPθntG(θn eln)>l-a
n—»oo

holds.

T h e o r e m 2.1. Fix G G Q, ΘQ G R. // the sequence of one-sided confi-
dence intervals In = (—oo,τ4n] /ιαs locally asymptotically uniform coverage
probability at least 1 — a at ΘQ in the sense of (2.3), then for every v > 0,

(2.4) lim inf P^Jθo + ~r== * In) > Φ(φ-χ(l - a) - v)
n^°° \ VnI(G) )

holds.

Proof. By the standard relationship between confidence sets and testing the-
ory we reject the hypothesis that the location parameter θ equals θn =
#o + v/y/nI(G) iff θn £ In. In view of (2.3) this yields a sequence of size an

tests with lim supn_^oo an < a. We compare this sequence to the sequence
of most powerful level an tests for the null hypothesis θ = θn against the
simple alternative θ = ΘQ, which rejects if, for some nonnegative constant

n n

(2.5) J ] g(Xi - θ0) - co,n Π g(Xi -θn)>0

holds with possibly randomization at equality. Now, under P§ G with θn

^o + w/VnI(G) the left hand side of (2.5) behaves asymptotically as

(2.6,

in the sense that the ratio of both expressions tends to 1 in probability, by
the local asymptotic normality property of regular parametric families; see
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Example 2.1.2 and Proposition 2.1.2. of BKRW (1993). The second factor
behaves asymptotically, with U ~ λί(0,1), as

(2.7) exp[-wU - \w2} - co,n exp[(v - w)U - \{v - w)2}.

Prom (2.5), (2.6), and (2.7) we obtain

Y[g(Xi - θ0) - co,n Y[g(Xi -θn)>0
i=l » = 1

= P(exp[-υU - \v2] > co)

v 2

and hence

-logc 0 < vΦ~λ(a) + \v2

with CQ = limin^^ooCo^ This implies

limsup PΘO,G[ 9(χi ~ #o) - co,n

- \A > o)
< P(0 > -

and hence (2.4). D

Note that inequality (2.4) of Theorem 2.1 may be interpreted also as an
inequality for the overshoot An — #o Furthermore, with

(2.8) §n

it may be rewritten as

(2.9) limsupPθθ!G(VnI(G)(θn - θ0) <y)< Φ(y), y > Φ " 1 ^ ) ,
n—xx)

which states that θn may be viewed as an estimator of θ and that the right

tail of θn is asymptotically under PΘO,G stochastically larger than a stan-

dard normal distribution, provided θn is standardized to VnI(G)(θn — θ$).

Note also that (2.8) suggests a way to construct confidence intervals from

estimators, as we will exploit in Section 4.
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We will call a sequence (In) of confidence intervals with asymptotic cov-
erage probability at least 1 — a locally asymptotically unbiased at #o if for
every sequence (θn) with (yjn{6n — 0Q)) bounded

(2.10) limsupP0n,G(0o E /n) < 1 - α, G E Q,
n—>oo

holds. For two-sided confidence intervals [Bn,Cn] the following analogue of

Theorem 2.1 holds.

T h e o r e m 2.2. Fix 0 < a <1, G <ΞQ, and θ0 E R, and write In = [Bn, Cn}.
If for a sequence of such two-sided intervals (2.2) and (2.10) hold, then for
all v 6 R the inequality

(2.11)

holds.

Proof Fix 0 o E R , G E ί ? , 0 < α < l , and choose υ > 0 without loss

of generality. By the standard relation between confidence sets and testing

theory we reject the hypothesis that the location parameter θ equals #o iff

#o ^ In- In view of (2.2) and (2.10) this yields a sequence of size α^-tests with

an —> α, asymptotically. Let u be arbitrary and define θn — ΘQ — u/y/nI(G),

θf

n = θ0 + v/VnI(G), and

(2.12) βn = Pθn,G(θo i In).

By (2.10) we have

(2.13) l iminfβ n > a.
n—> o o

We will compare this sequence of tests to the sequence of most powerful level
αn-tests ψn for the null hypothesis θ = ΘQ against the alternative θ = θf

n

under the side condition

(2.14) EθniGφn(X1,...,Xn)=βn.

By the Neyman-Pearson lemma the test φn rejects iff

n

(2.15) J I g(Xi - θ'n) + ko9n(u) Π 9(Xi - θ0) + khn(u) JJ g(Xι -θn)>0
i=l i=l i=l

(with possibly randomization at equality), where ko^n(u) and k\^n{u) are de-
termined by the level an and by (2.14). Fix w G R. Since g has finite Fisher
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information for location by assumption, the corresponding location family

of distributions is regular and hence it has the local asymptotic normality

property. Consequently, under P$ G with θn = ΘQ + w/y/nI(G), the left

hand side of (2.15) divided by ΠΓ=i sC^i ~ θn) behaves asymptotically as

(2.16) exp[-(v - w)Z - \{v - w)2} + ko(u) exp[wZ - \w2}

+ kι(u) exp[(u + w)Z -\{u + w)2)

with Z a standard normal random variable, where for each subsequence (nr)
of (n) there exists a further subsequence (n/f) such that ko(u) and k\{u) exist
as limits of {ko,n"{u)) a n d {kι,n"(uγj, respectively. Since the subsequent
argument is valid for each subsequence (n7), we may assume without loss of
generality (n") = (n), βn —> β > a, and also ηn —> 7, where

(2.17) Ίn = Eθ,n,gφn(X1,...,Xn)

denotes the power at θ'n of the most powerful test.

Taking w = 0, —u, and v, respectively, we obtain from (2.16), an —> a ,

(2.14), βn —> β, (2.17), and ηn -* 7 the system of equations

(2.18)

ψ(y) = exp[-vy + \ψu(y) = exp[-vy + \υ2} + ko(u)

k\{u) exp[uy — \u2 — uυ],

Since t; is positive, ψu(-) is either decreasing or decreasing-increasing de-
pending on the sign of uk\(u). In any case, ψu(y) > 0 is equivalent to

(2.19) y<buory>cu

for some bu < cu G (—00,00]. It follows that the first two equations from

(2.18) become

-v) + Φ(-cu + v),

= Φ(bu - v - u) + Φ{-cu + v + u).

In view of a < 1 the first equality in (2.20) shows that the smallest value
among the arguments bu — υ and — cu + v is negative and largest in absolute
value. This implies that the function w \-> Φ(bu — v — w) + Φ(—cu + v + w)
is increasing near w = 0 in case of bu — v < — cu + v and decreasing in case
of bu — v > —cu + v. Consequently, (2.13) and (2.20) show that for small
positive values of u the inequality bu — v < —cu + v has to hold and for
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negative values of u close to 0 the inequality bu — v > —cu + v has to hold.

It follows that as u —> 0 any limit point (bo, CQ) satisfies

(2.21) bo - v = -co + v,

which by the first equality in (2.20) has to be equal to Φ - 1 (α/2). Combining

this with the third equation of (2.18) and with (2.19), we arrive with 7 = ηu

at

(2.22) lim Ίu = lim (Φ(bu) + Φ(-cu))

Since the tests φn are most powerful, 1 — ηu is a lower bound to the left
hand side of (2.11) for all u. Together with (2.22) this proves (2.11) and the
theorem. D

Of course, there is a close relationship between Theorem 2.2 and the

unbiased test in the normal location model for the simple hypothesis θ — 0

against the alternative θ φ 0. If we would have strengthened (2.10) to

(2.23) lim ^-PΘ0,G(ΘO e In) = 0,
n—>oo Otto

this relationship would have been still more apparent. With our much weaker
condition (2.10) the extra limiting procedure u [ 0 has been needed in the
proof.

As we have seen, these bounds in the theory of confidence intervals are
based on the Neyman-Pearson Lemma. Therefore, they are easier to prove
than the bounds in estimation theory as discussed in the introduction.

3. Semiparametric asymptotic bounds

Our focus is on the semiparametric symmetric location model

from (1.3), in which we consider random intervals In that are based on
Xi,. . . , Xn. Of course, the bounds from Theorems 2.1 and 2.2 are still valid
for every θo G R and every G G Q. Like in estimation theory, they are sharp
in the sense that there exist sequences (In)ne^ of confidence intervals for the
location parameter θ that attain equality for all G G Q simultaneously. Such
sequences of confidence intervals will be constructed in the next Section.
These sequences might be called adaptive. Needless to say, that in the
generic semiparametric model this phenomenon of adaptiveness does not
occur, typically.
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4. Asymptotically Most Accurate Confidence Intervals

4.1. G known, one-sided

Let G be known and let ΘG,Π be an efficient estimator of the location param-
eter θ based on i.i.d. random variables X i , . . . , Xn with distribution function
G(- — θ) and Fisher information I(G). This means that for every θo £ K*
every sequence (<9n)nG]N with (^/n(θn - 0o))n€lM bounded, under PΘU,G,

Λ/"(0,1), as n -+ oc;(4.1)

see, e.g., Section 2.3 of BKRW (1993).
With

(4.2)

as suggested by (2.8), the one-sided confidence interval In = (—OC,AG,Π]
is asymptotically most accurate at level 1 — a in the sense that it attains
equality in both (2.3) and (2.4) of Theorem 2.1. Indeed, by (4.1) we have

(4.3) lim PθntG(θn € /„) = lim Pθn,G(VnI(G)(θG,n - θn) > φ-\a))
n—>oo n—*oo

= l - Φ ( Φ ~ 1 ( α ) ) = l - α

a n d

(4.4)
fnI{G) )

= lim Pθ0tG(VnI(G)(θG}n - θ0) υ)

4.2. G known, two-sided

Similarly, we may construct asymptotically optimal two-sided confidence

intervals. With

=φ - 1
(4.5)

and

(4.6)

the two-sided confidence interval In = [BG,Π,CG,Π] is asymptotically most
accurate at level 1 — a in the sense that it satisfies (2.10) and attains equality
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in (2.2) and (2.11) of Theorem 2.2. Indeed, by (4.1) we have, as above,

(4.7)

lim PΘO,G{ΘO e In)
71—>OO

= .KScΛ.^*"1 ( f ) * V^G)(^,n - θo) < Φ- (l - f ) )

= Φ Φ- 1 a ai f ^ j = l _ α ,

(4.8)

- φ " 1 ( 1 " f ) + v ς ί 7 ^ ( ^ 0 " ^ ) )

= l - α ,

1 ( % ) + v < VnI(G)(θG,n - θo) < Φ " 1 ( l - % ) + v )

for ?; > 0.

4.3. G unknown, one-sided

If G is unknown, we have the semiparametric model V from (1.3) and esti-
mation of the location parameter θ with the same asymptotic performance as
for the case G known, is still possible as mentioned in the Introduction; see
also Example 7.8.1 of BKRW (1993). Consequently, there exists a sequence
(@n)neiN of estimators of θ such that for every G G £/, for every θo E R, and
every sequence (θn)ne^ with {y/n{θn — θo)) F N bounded, under Pθn,G
convergence

(4.10) vnI(G){θn-θn)^Λf (0,1), asrwoo,
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holds. To construct confidence intervals of the location parameter along
the lines of (4.2), (4.5), and (4.6) for the semiparametric model V, we may
use this semiparametrically efficient estimator sequence, but we also have
to estimate the unknown Fisher information I(G) consistently. However,
estimation of the Fisher information hardly causes additional difficulties.
In fact, all constructions of semiparametrically efficient estimators of θ im-
plicitly generate or explicitly use estimators of /(G); see, e.g., Lemma 3.3
of van Eeden (1970) and Theorem 7.8.1 and Example 7.8.1, continued, of
BKRW (1993). Essentially, existence of semiparametrically efficient estima-
tors of θ is equivalent to existence of ^/n-unbiased, consistent estimators
of the efficient influence function —I~1{G)g//g(-); see Klaassen (1987). Let
(/n)nGN be a locally uniformly consistent sequence of estimators of I(G) ,
i.e., for every G G (?, for every ΘQ £ H, and every sequence (#n)neN with
(y/n{θn - #o))n G ] N bounded,

(4.11) / n ^ ^ / ( G ) , n->oo,

holds. The existence of such an estimator sequence is guaranteed by e.g.

Proposition 7.8.1 of BKRW (1993) and the contiguity of (Pon^G)neiN and

(PΘO,G)Π<EΊN J which is implied by local asymptotic normality, which in turn

is a consequence of the finiteness of I(G). From (4.10) and (4.11) it follows

that for every G G Q, for every θo Ξ R, and every sequence (#n)neN with

(y/n{θn - # o ) ) n G N bounded, under Pθn,G,

(4.12) yfnfnΦn ~ θn) ^ Λf(0,1), as n -> oo.

Using (4.10)-(4.12) we define

(4.13) An = θn-—t=φ-1(a)

and we note that the one-sided confidence interval In = (—oo, An] is asymp-

totically most accurate at level 1 — a in the sense that it attains equality in

both (2.3) and (2.4) of Theorem 2.1 for all G G Q simultaneously. Indeed,

by (4.12) we have

(4.14) lim Pθn,G{θn G In) = lim PΘ^G^LΦU - θn) > Φ'\a))
n—>oo n—>oo

= l - Φ ( Φ " 1 ( α ) ) = 1 - α
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and, by (4.12) and (4.11), we obtain

€ In(4.15) lim PΘO,G (θo +
fnI(G)

= lim PθθtG[ Vnln(θn - θ0) > Φ~\a) + υ

4.4. G unknown, two-sided

Similarly, we may construct semiparametric, asymptotically optimal two-
sided confidence intervals. With

(4.16)

and

(4.17)

Bn — θn —
'nln

n — θn —
'nln

the two-sided confidence interval In = [Bni Cn\ is asymptotically most accu-
rate at level 1 — a in the sense that it satisfies (2.10) and attains equality
in (2.2) and (2.11) of Theorem 2.2 for all G G Q simultaneously. Indeed, by
(4.12) and (4.11) we have, as above,

(4.18)

lim PΘO,G(ΘO € /„ )

n—>oo

_ . ( •- (l - f)) - • ( . - (f)) _ 1 - „,
(4.19)

limsupP0n?G(#o Ξ In)

nΦcn - θn) < Φ~l ( l - | L(ΘO ~ θn)

a
n(θGtn -θn)<φ-Ί-)+ Vnln{θo - θn)

a a
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and

(4.20) lim

In <Vnϊn(θn-θ0)

_i/. OL \ \ , / τ_τ / α
= Φ Φ~M 1 - - ) +υ - Φ

for v > 0.
Semiparametrically efficient estimators are asymptoticallly linear, which

implies (4.10) and (4.12) locally uniformly in G. This local uniformity is
inherited by our semiparametric confidence intervals as we will discuss in
the next section.

5. Local uniformity

Fisher information for location G ι—> I(G) is lower semicontinuous; see, e.g.,
Definition 4.1, Theorem 4.2, and the paragraph below the proof of Theo-
rem 4.2 in Huber (1981). In fact, for any G with finite Fisher information
I(G) and with density g, and for any e > 0 there exists a density ge with
distribution function Ge and with

(5.1) /(

This phenomenon has been used in Klaassen (1979, 1980) to prove that
adaptive estimators of location cannot converge uniformly; more precisely
he showed that for any n G N, for any θo G R, and for any translation
equivariant estimator θn of the location parameter θ

(5.2) supsup|P0o,G e(VnI(G e)(θn - Θo) < x) - Φ{x)\ = -

holds.
For semiparametric confidence intervals satisfying (2.2) the strict lower

semicontinuity property (5.1) has dramatic consequences as well. In view of

(5.3) S}1PPθo+υ/y/ίJ(G^tGSθo G ^ ~ l ϊ m Pθ0+v/VnΊ(G7),GSθV G ^
€>0 ' eJ-^

= PΘO,G{Θ0 ε /„)

these intervals satisfy
σθo+v/VnΊ(G7),GSθθ E 7 " ) ^ li™£ίPθo,G(θθ € /„)

> 1 - α ,
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and consequently the convergences (4.15) and (4.20) are as far from uniform
as possible.

Semiparametric estimation theory is based on a study of the local asymp-
totic properties of estimators within parametric submodels that are regular
at a value of the parameter. A fc-dimensional parametric model

(5.5) VH = {Pη' ηe H}, H C Rfc,

of probability measures dominated by a measure μ, is regular at τ?o if ηo is
an interior point of H and if the map η ι—• y/dPη/dμ from H to /^(μ) is
continuously Prechet (or equivalently Hadamard) differentiate of rank k at
770. Such parametric models have the local asymptotic normality property,
which implies the contiguity

(5.6) (PηJneN <> (^O)ΠGM, (Vn(ηn - Vo))n€N bounded.

Estimator sequences (#n)neN within a general semiparametric model V =
{PΘ,G : θ G R, G G G} are called semiparametrically locally asymptotically
efficient at PΘO,GO, or efficient at PΘO,GO fc>r short, if there exists a number /Q

such that for every regular parametric submodel

(5.7) {Pθ,Gη :θeR,ηeH}, O e J ί c t f open,

oΐV

(5.8) VnΓA ~ θn) 2+ Λ/-(0,1), under Pθn,Gηn,

holds for all sequences (θn) and (ηn) with both {\/ri(θn — #0)) a n d
bounded. In our semiparametric symmetric location model V from (1.3)
efficient estimator sequences exist and they satisfy (5.8) with /o = /(Go);
see the Introduction for references. Efficiency is proved by showing that
the estimator sequence is asymptotically linear in the sense of (1.5) under
Pθo.Go a n d by invoking Le Cam's third lemma based on the local asymptotic
normality of regular parametric submodels.

For our one-sided semiparametric confidence intervals property (5.8) of
efficient estimators yields the following local asymptotic result.

Theorem 5.1. Let (#n)neN be an efficient sequence of estimators of the
location parameter θ in the symmetric location model V from (1.3). Let In be
a consistent estimator of the Fisher information for location I{G) satisfying
(4.11) with θn = ΘQ. Fix a G (0,1) and define

(5.9) In= (-oojn-



Confidence Intervals in the Semi-parametric Symmetric Location Model 79

For every θo G R and Go G Q and for every regular parametric submodel of
V of type (5.7)

(5.10) lim limsup sup Pθθ)G (θ0 + > V G In)
c-+oo n _ o o ^\η\<c

 η \ y/nI(Gη) )nI(Gη)

= Φ ( Φ ~ 1 ( l - α ) -υ), v> 0,

holds.

Proof Fix c > 0 and let (ηn)nei^^ V™\Vn\ < c-> be such that

(5-11)

= lim sup sup PθθtGη (θo+
 V € In ) .

The contiguity (5.6) with 770 = 0 and the continuity on the chosen regular
parametric submodel of the map G *—>> I(G) imply

(5 12) In > I (Go),

Together with (5.8) with /Q = I (Go), this shows that the left hand side of
(5.11) equals

(5.13) n (y ]JJ^f)
1 v>0.

Taking limc-̂ oo we obtain (5.10). D

Similarly to semiparametric estimation theory, this result justifies the ter-
minology to call (/n)nGN defined in (5.9) semiparametrically locally asymp-
totically efficient or efficient for short. We might also call the sequence
(i"n)neiN locally asymptotically most accurate; cf. Sections 3.5 and 5.5 of
Lehmann (1959) and the title of the present paper. In the last section we
will show that this sequence of confidence intervals is globally asymptotically
efficient—or most accurate for that matter—within appropriately restricted
submodels. Finally, we note that also the semiparametric two-sided confi-
dence interval from (4.16) and (4.17) is locally asymptotically optimal.
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6. Global uniformity under strong unimodality

As explained in Section 5 the discontinuity of the Fisher information causes
non-uniformity. Therefore, uniformity can hold only on subsets of V on
which the Fisher information for location is continuous. In Bickel and
Klaassen (1986) an adaptive, semiparametrically efficient estimator θn of
θ has been constructed with the following strengthening of (4.10) and (5.8)
with /o = I (Go)- For every ΘQ € R? a n d every sequence (#n)ne]N with
(y/n(θn — #o))n ( E ] N bounded, for every Go G G and every sequence (Gn)ne¥i
in G satisfying

(6.1) Gn^Go, / ( G n ) - > / ( G o ) ,

the convergence

(6.2) VnI(Gn)(θn - θn) ^ ΛΓ(0,1), as n -» oo,

holds under Pθn,Gn- Moreover, their estimator ϊn of the Fisher information
is consistent along such sequences, i.e.,

(6.3) In

 F ' n > G n ) /(Go)-

For the proof of (6.2) we refer to Theorem 1.1 of Bickel and Klaassen (1986).
By (2.5), (2.9), and (2.12) of ibid, with cn = σn, nσn -> oc, and v = vn =
Op(l/y/n) in their notation, we see that (6.3) holds.

The one-sided confidence interval from (5.9) based on these estimators is
globally asymptotically most accurate or globally asymptotically efficient in
the following sense.

Theorem 6.1. Let Go C G be such that I: Go -• (0,oo), G •-> I(G), is
continuous under the topology of weak convergence. The confidence interval
In is as defined in (5.9) with θn and In satisfying (6.1) through (6.3). If Go
is compact, then

(6.4) limsup sup
n-+oo GeGo

τ ( l - α) -v), v > 0,

holds.

Proof. Let (G n ), Gn G Go, be such that the left hand side of (6.4) equals

(6-5) lim Pflb.Gn ί^o + J-— e In).
nI{Gn)

Because of the compactness we may assume without loss of generality that
there exists a Go G Go such that the sequence of distribution functions Gn

converges weakly to the distribution function Go- By (6.2) and (6.3) the
theorem is proved. D
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A distribution function G on R has a strongly unimodal density g if
its convolution with any unimodal distribution is unimodal again. Ibrag-
imov (1956) has shown that g is strongly unimodal iff it is log-concave.
Consequently, a strongly unimodal density g is absolutely continuous with
derivative g' such that the score function for location —g'/g is nondecreas-
ing. As mentioned already in the Introduction, Van Eeden (1970) has studied
her adaptive estimator of location for the class of symmetric densities with
monotone score function, in other words for the class of symmetric, strongly
unimodal densities. This motivates us to study global uniformity of our
confidence intervals over this class of densities.

We have the following continuity result on substantial subclasses of the
class of all strongly unimodal densities.

Theorem 6.2. Denote the variance of a random variable with distribution
function G by σ2

G, the density of G by g and its score function for location by
—g'/g. Let Qe^ be the set of distribution functions with symmetric, strongly
unimodal densities g onH satisfying

(6.6) °

For every e G (0, ̂ ] and K > 1 the set Qe^ is nonempty and it contains
the normal distribution functions with mean zero. Furthermore, the Fisher
information G ι-> I(G) is continuous as a map from Ge,κ with the topology
of weak convergence, to (0, oo).

Proof. In view of

l - e
(6.7) supz 2 (φ(z)( l-Φ(z)))

x>0

the first statement has been proved. For measurable functions /, /n, n G N,
we will say that (fn) converges weakly to / if (fn(x)) converges to f(x) for
all continuity points x of /. We will denote this convergence by fn ^ f.

Fix e and K. Let (Gn) be a sequence in Qe^ with (gn) the sequence of
corresponding densities and (ψn) = (-gn/gn{G~1)) the sequence of corre-
sponding score functions. Let (Gn) converge weakly to G G Ge,κ with density
g and score function φ = -g'/giG'1). By, e.g., (6.1) of Klaassen (1989b)
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this implies G'1 ^ G~ι. The symmetry and unimodality of g imply

(6.8) G-\u) = Γ \
Ji/2 9{G

ώ , 0 < u < 1,

with the integrand monotone both for ?/ < \ and ?x > \. The same holds

mutatis mutandis for G~1( ). Consequently, Lemma 6.1 below, applied to

(0, \) and ( i , 1) respectively, yields

(6.9) 5 n ( G - i ( . ) ) ( )

The strong unimodality of g implies that

(6.10) g(G-1(s))= ί Φ(t)dt
J S

has a nondecreasing integrand ψ( ) = —g'/g{G~ι{-)). The same holds for

9n{G~ι(')). Consequently, Lemma 6.1 can be applied again to yield

(6.11) φn Λ ψ.

By (6.6), limsupn_> o o σ
2

Gn — limsupn_^oo EcnX
2 > EQX2, and dominated

convergence we obtain

(6.12) I(Gn) =

and hence the theorem. D

In this proof we have used the following lemma repeatedly.

L e m m a 6 . 1 . Let (α, 6) be an interval and let f, fn, n G N , be measurable

nondecreasing functions on (α, b). If for all s , ί E (a,b) the convergence

rt rt

(6.13) / fn{u) du —• / f(u) du, as n —> oc,
J s J s

holds, then

(6.14) fn(s)-+f(s), asn^oo,

for all s G (α, b) at which f is continuous.

Proof. Let / be continuous at s and assume that there exists a positive e
with

(6.15) liminf/n(s) <f{s)-e.
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By the continuity there exists a positive δ with

(6.16) f(3-s)>f(8)-ie.

Choose the subsequence (nf) of (n) in such a way that

(6.17) lira /„,(«)= lim inf/n(β)

is valid. From these relations, the monotonicity, (6.13) and Fatou's Lemma
we get the contradiction

(6.18) δ(f(s)-e)= ί (f(s)-e)du> ί lim sup fn, (u) du
Js—δ Js—δ n'—>oo

Γ fs

> lim sup / fnf(u)du= / f(u)du
n'—*oo Js—δ Js—δ

> S(f(s) - ie). D

Applying Theorem 6.2 to any compact subset of Ge,κ for any e G (0, \]
and any K > 1 we obtain a global uniformity result for strongly unimodal
densities. Needless to say that this global uniformity carries over to adaptive
estimation.
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