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Abstract

For nested models within the PEB framework of george and Foster
(Biometrika,2000), we study the performance of AIC, BIC and several
relatively new PEB rules under 0-1 and prediction loss, through asymp-
totics and simulation. By way of optimality we introduce a new notion
of consistency for 0-1 loss and an oracle or lower bound for prediction
loss.The BIC does badly , AIC does well for the prediction problem with
least squares estimates. The structure and performance of PEB rules de-
pend on the loss function. Properly chosen they rend to outperform other
rules.

1 Introduction

Our starting point is a paper by George and Foster (2000), abbreviated hence-
forth as [6]. [6] propose a number of new methods using PEB (Parametric
Empirical Bayes) ideas on model selection as a tool for selecting variables in
a linear model. An attractive property of the new methods is that they use
penalized likelihood rules with the penalty coefficient depending on data, un-
like the classical AIC, due to Akaike (1973), and BIC, due to Schwartz (1978),
which use constant penalty coefficients. The penalty for a model dimension q
is usually λg, where λ is a penalty coefficient. [6] compare different methods
through simulation.

Our major contribution is to supplement this with some theoretical work for
both prediction loss and 0-1 loss. The former is supposed to be relevant in
soft science, where one only wants to make good prediction, and the latter is
relevant in hard science, where one wants to know the truth. It is known in
model selection literature that these different goals lead to different notions of
optimality.

Our theory is based on the assumption that we have nested , orthogonal models
- a situation that would arise if one tries to fit an orthogonal polynomial of
unknown degree. This special case receives special attention in [6].

Our paper is based on Chapter 4 of Mukhopadhyay (2000), subsequently referred
to as [9]. A related paper is Berger, Ghosh and Mukhopadhyay, (2003), which
shows the inadequacy of BIC in high dimensional problems.
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The BIC was essentially developed as an approximation to the Bayesian inte-
grated likelihood when all parameters in the likelihood have been integrated
out. The model that maximizes this is the posterior mode, it minimizes the
Bayes risk for 0-1 loss. It is shown in Berger, Ghosh and Mukhopadhyay, (2003)
that BIC is a poor approximation to this in high dimensional problems.

The optimality of AIC in high dimensional prediction problems has been proved
in a series of papers, e.g., Shibata (1981), Li (1987) and Shao (1997).

Both the BIC and AIC are often used in problems for which they were not
developed.

We examine the penalties of [6] in Section 2 and make some alternative recom-
mendations. All the model selection rules are studied in Sections 3 and 4 from
the point of view of consistency under 0-1 loss.

In section 5 we follow the predictive approach, using the consistency results
proved earlier. For the situation where least squares estimates are used for
prediction after selection of a model, we define an oracle, a sort of lower bound,
in the spirit of Shibata. In the PEB framework it is easy to calculate the limit
of the oracle, namely, the function B( ) and show that the Bayes prediction rule
and the AIC attain this lower bound asymptotically. This is not always the case
for the PEB rules, which are Bayes rules for 0-1 loss.

Section 5 ends with a study of the case where Bayes (shrinkage) estimates are
used instead of least squares estimates. Then the PEB rules are asymptotically
optimal and can do substantially better than AIC. However, the benefit comes
from the better estimates rather than more parsimonious model selection.

Simulations in Section 6, for both 0-1 and squared error prediction loss, bear
out the validity of asymptotic results in finite samples, they also provide useful
supplementary information.

Results similar to those outlined above are studied, in the Frequentist setting
of Shao (1997), in Mukhopadhyay and Ghosh (2002) and for Shibata's Frequen-
tist setting of nonparametric regression in Berger, Ghosh, and Mukhopadhyay,
(2003). The assumptions, priors, results and proofs differ in the three cases.
The PEB formulation of [6] provides a PEB background for the simplest as well
as cleanest results of this type.

2 PEB Model Section Rules for 0-1 Loss

The problem of variable selection in nested orthogonal models can be put in the
following canonical form in terms of the regression coefficients.

The data consist of independent r.v's Y^ , i = 1, 2, ,p, j = 1, 2, , r. There
are p models Mς, 1 < q < p. Hardly any change occurs if q = 0 is also allowed.
Under Mς,
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= ei:j, q + l < i < p , j = 1 ,2 , - r ,

with €jj's i.i.d. iV(O, σ2). For simplicity we assume σ2 is known. If σ2 is
unknown the same theory applies if σ2 is replaced by a consistent estimate of
σ2. If r > 1 and p is large, then a consistent estimate of σ2 is available from the
residuals Y^ — ί*. In our asymptotics r is held fixed and p —> oo. The sample
size is n = pr. Clearly, the model Mg of dimension q specifies that /3g+i, , /?p

are all zero.

In the PEB formulation, see e.g. Morris (1983), the dimension of parameter
space is reduced by assigning the parameters a prior distribution with a few
unspecified (hyper-)parameters which are estimated from data and integrating
out original parameters. [6] assume, as in Morris (1983), that /?i, >βq are
i.i.d. ΛΓ(O, c σ2/r). In our work we have used c σ2, both choices have validity -
see our discussion in Berger and Pericchi (2001). In any case in the simulations
r — 1, so that our prior is the same as that of [6].

As indicated in Morris (1983), a PEB formulation is a compromise between a
classical Frequentist approach and a full Bayesian approach.

In many decision theoretic examples based on real or simulated data, Efron and
Morris (1973), Morris (1983) and others have shown that the PEB formulation
permits borrowing of strength from estimates of similar parameters, leading to
estimates that substantially improve classical estimates even in a Frequentist
sense. However, this does not follow from PEB theory.

The PEB theory works well, i.e. provides better estimates than classical ones
in the sense of cross-validation or being closer to a known true value, when the
normality (or other prior) distributional assumption is checked by comparing
the expected and empirical distribution of Ϋ^s. If Mq is true, then Ϋί, Ϋ2, ,Ϋq

are i.i.d. JV(O, cσ2 + σ2/r).

In the PEB formulation here there are two unknown remaining parameters,
namely c and the true q denoted as q0. The PEB solution adopted by us is to
estimate c from data and put a prior π(q) on q. We make one final assumption
that σ2 = 1 which can be ensured by a suitable scale transformation.

Suppose c is known and π(q) is a prior on q. The Bayes solution is to maximize
with respect to q. The likelihood with /?i, , βq integrated out namely,

L ( q , c) = A τr(<7)(l + r e ) - " ' 2 expiy^SSq} ••• ( 1 )

q
where SSq = rY^Y2 and A doesn't depend on q or c. Since c is not known, one

1

choice - referred to as a conditional maximum likelihood estimate of c - is to
maximize the expression in (1) with respect to c, giving

^ - 1,0} (2)

We now take π(q) uniform on 1 < q < p. Then the PEB Bayes rule will choose
Mq if q maximizes the expression in (1) after replacing c by cq. This amounts
to maximizing with respect to q,
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TC
Λ(g) = A(q,cq) = 2logL(q,c) = r—^SSq - ςdog(l + rcq)

1 ~r TCq

(3)

If instead of estimating c, we put a prior on c and then use Laplace approxima-

tion we should maximize

ψ (4)
Details are given in [9].

Later we provide some evidence that a single estimate of a c across all models
is preferable. A natural PEB estimate is obtained by taking π(q) = 1/p, and
summing the expressions of the likelihood in (1) over 1 < q < p and then
maximizing with respect to c. This estimate cπ is referred to as the Marginal
Maximum Likelihood estimate in [6]. One then gets a third penalized (log)
likelihood

K(q) = SSq - 9 { ^ ^ lθg+(l + re*)}

In this paper cπ will also stand for any estimate which converges a.s. to c as

true q0 —> oo.

George and Foster [6] discuss the relative advantages and disadvantages of each
estimate of c and refer to unpublished work of Johnstone and Silverman (2000).

The new model selection rules are to be compared with AIC which maximizes
SSq — 2q/r and BIC which maximizes SSq — q{log(pr)}/r. As indicated before
both these classical rules are inappropriate for high dimensional problems with
0-1 loss.

The rule based on A(q) is essentially due to [6] except that, instead of our
uniform prior, they choose the "binomial" prior.

π(q) = wq(l-w)q (4α)

where, according to [6], w is to be estimated also by maximizing (1). For a given
q, it is clear that w appears only in the prior π(q) and not on the likelihood of
the data given Mq. The maximizing w, namely,

wq = q/p (5)

can hardly be called a PEB estimate in the same spirit as cq. Also for q/p
bounded away from zero an one, the penalty in (log) integrated likelihood due
to this π(q) is 0(q) whereas this part of the penalty vanishes at the end-points.
In other words, irrespective of the data, the models in the middle range of q are
being unduly penalized.

The binomial prior seems more appropriate in the all 2P subsets model selection
problem, where the models in the middle have cardinality ( p) which is much
bigger than the cardinality of, say q = 1 or p.
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Even for all subsets model selection, there is some confounding between w and
c in the following sense. The Bayesian "non-centrality" parameter is

?) =pu;c (6)

An estimate of this can only help determine the product we. Separate estimation
of w and c will require the use of the normal likelihood in a way that is not
robust. We will return to this problem elsewhere.

3 Consistency

We first consider the case where c is known, so in the PEB criteria estimates
cq, cπ are to be replaced by c.

It is clear that if Mqo remains fixed (as p —» oo), then the likelihood ratio of
Mqo with respect to any other fixed M ς, remains bounded away from zero and
infinity. Hence it would be impossible to discriminate one of them from the
other with error probabilities tending to zero as p —> oo. That can happen only
when I (jo — Qi\ —> oo as p —> oo. The following definition is motivated by this
fact.

Definition Let g0 —* oo as p —> oo. A penalized likelihood criterion A(q,Y,p)
for model selection is consistent at go if given e > 0 and for sufficiently large p
and go, there exists a fc, (depending on e, p, go? such that

Pqo{A(qo,Y,p) > A(q,Y,p),V\q - qo\ > k} > 1 - e (7)

Of course we could take fixed go a n d examine consistency from the right only.
The treatment is exactly similar.

Let

A(q,Y,p) = SSq-qλ (8)

for some λ > 0. Then for gi > g0 and gi — go —• oo

Q

X,p) - A(q,Y,p) = -rJ^V + fai " <Zo)λ - (gi - gO)(λ - 1 + op) (9)

Similarly for g < gi and go — gi —̂  oo,

A(q0, Y,p) - A(q, Y,p) = (Ql - φ,)(l +rc-λ + op(l)) (10)

We thus have

Proposition 3.1. The penalized likelihood criterion A(q,Y,p) with constant
penalty coefficient λ is consistent at all go —> oo iff 1 < λ < 1 + re.



234 Parametric Empirical Bayes Model Selection

For AIC, λ = 2, so one would have consistency if re > 1. If re < 1, one can
show that

A(l,Y,p)-A(q,Y,p)^oo α.s. (11)

if q —• oo, i.e., AIC chooses Mi or models not far from M\. It is shown in
section 5 that this is a good thing to do, if one wants to make predictions and
least squares estimates are used.

The usual BIC with λ = log n is inconsistent, this extremely high penalty also
leads to poor performance in prediction. A modified version due to several
people, see [9] or Mukhopadhyay, Berger and Ghosh (2002) for references, has
log p instead of log n. That also is not consistent in general. For consistency
one requires r > 3 and 1 + re—log r > 0.

We now turn to the three PEB rules with estimates cq or cπ. It is easy to check
that the rule based on Aπ(q) is consistent if cπ is a consistent estimate for c. To
prove this we need to show

1 4- re
1 < ——logίl + re) < 1 + re (12)

re

The right hand inequality follows from

log(l + re) < re (13)

which is proved by the fact that the second derivative of log(l + x) is negative.
The left hand inequality follows from

(1 + rc)log(l + re) > r (14)

which is proved by the fact that the second derivative of (1 + x)log(l -f x) is
positive. The other two PEB criteria differ from each other by a quantity which
is op(q), hence they are either both consistent or both inconsistent. Since cq has
undesirable properties as an estimate of c (vide Section 4) neither of these rules
is consistent in our sense. This does have some effect on their performance in
prediction problems.

All one can show for these two cases is that A(qo,Y,p) — A(q,Y,p) —> oo if
\Q — Qo\ —> oo and (qo/qi) is bounded away from zero. To prove this, one has to
use the behavior of cq for q > q0 which is studied in the next section.

4 Estimation of c.

By the law of large numbers, for large
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= 1 = c (approximately), for q < qo

= (approximately),q > q0 (15)

Clearly, for large incorrect models, cq decreases the penalty for each additional
parameter, namely, 1-flog (1 + cq). This is counterintuitive. Plots of cq for
simulated data in [9] shows that cq tends to die out for large incorrect values of
q. This is the main reason why consistency became a problem for A(q, cq).

If the true qQ is fixed and not large, one cannot have a consistent estimate of c.

If qo —• oo at a rate faster than some known q, then a consistent estimate is

-l\+. (16)

However such knowledge of q is unlikely. A plot of cq provides good visual
information about both c and true (?o

An estimate of c, which is easy to calculate and has a nice Bayesian interpreta-
tion is the model average

Cπ = lJqCq (17)

where

ph(q,cq)

- . A ^ ( 1 8 )

Asymptotic behavior of cπ is difficult to study. It is unlikely to be consistent
in general for the following reason. For values of q much larger than q0, cq will
be much smaller than c but such g's will have large weights πq inappropriately.
The net effect of this will be to pull down the average cπ away from c. Some
evidence of this based on simulation is provided in [9].

We now make two rather strong assumptions which ensure consistency of a

slightly modified version of c π .

Al) As p —» (X), qo/p is bounded away from zero

A2) There is a known positive number k such that c < k.
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The modified version, also denoted by the same symbol, is

p

^ g, k) (19)

Under our assumptions cπ —> c a.s. We sketch a proof. For slight simplicity,

we take r = 1. For q < qo

cq = c + Op(q-λ*) (20)

This can be used to show for all q < qo(l — e), 0 < e < 1, δ > 0 and sufficiently
small,

, cg) - Λ(g0, cqo) < (q0 - <?i{log(l + cqo) - c + δ} + gi{log(l + c ς o) - log(l +
(4.1)

(21)

(where 7 > 0) with probability > 1—e. We have used the fact that log (1+c) < c.
We can now show as in the proof of Proposition 5.1 that

Σ exp{Λ(ς,c9) - A(qo,cqo)} - 0 (22)

9<9o(l-e)

with probability tending to one as p —> oo. For q > qo

where by the strong law, sup | r ς | ̂ 0 in probability. So, by concavity of log(x),
q>qo

there exists δ > 0, such that for p > ̂  > qo(l + e)

where r g is a generic term such that sup \rq\ is op (1). Then for p > q > go(l + 6)>
q

A(q,cq)-A(q0,cqo) = (q-q0)(l+rq)+qo(l+log(l+cqo))-q(l+log(l+cq) (25)

where sup q^ι\rq\ = op(l)
q>qo(l+e)

The expression in (25) is, by (24),

δ

Once again an analogue of (22) for q > qo(l + e) is true. So the contribution to
cπ from (/ > qo(l + e) and q < qo(l — e) is negligible. But for |g - qo\ < e, c ς can
be made as close to c by choice of e. This proves the consistency of c π .
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5 Bayes Rule for Prediction Loss and Asymp-

totic Performance

It is well-known (see, e.g., Shao (1997)) that the loss in predicting unobserved
Y's, for an exact replicate of the given design, on the basis of given data is the

Q _

sum of a term not depending on the model and the squared error loss ^2(Yi — βi) .
1

So in evaluating performance of a model selection rule it is customary to ignore
the term not involving the model and focus on the squared error loss. We do so
below.

For a fixed c the Bayes rule is described in the following theorem. We need to
first define a quantile model. A model Mq is a posterior α-quantile model if
τr(i + 1 < q\Y) < OL < π(i < q\Y) or equivalently.

Theorem 5.1. The Bayes rule selects the smallest dimensional model ifrc< 1
and the posterior Σ^^ quantile model if re > 1

Proof Let Mq stand for the true (random) model with prior π(q) The posterior
distribution of βi given Mq is

ττ(βi\q,Y) = N(
1

re
i,/( )),

re

= point mass at zero, i > q

Hence

Similar ly , E{(βτ - 0 ) 2 | g , F } = {φ-J2 + φ - c , i<q

Suppose we ignore the fact that we have to select from among nested models
(i.e., we have to include all j < i if we include i in our model) and just try
to decide whether to set βi non zero or zero. The posterior risks of these two
decisions are

Φ(i included \Y) = —^—π(q > i\Y)+Ϋ2{(--^—)2π(q > i\Y)+(l-π(q > i\Y)},
~ l + rc ~ 1-f-rc

c — re

Φ(i excluded \Y) = - ^ { φ > i\Y)} + ΫH(γ—)M<l > i\X)}
Hence inclusion of i is preferred iff

^ > i\Y) + (1 - π(ς > i\Y)) < (j^—fφ > i\X)
J re

^ )
-j- rc
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which implies

Suppose re > 1. Then we choose all i such that π(i < q\Y) > ψ^- Given the
obvious monotonicity of π(i < q\Y), this means we choose the γ=^ posterior
quantile model. Clearly this is the Bayes rule. More formally if d(qι) is the
decision to choose model Mq, corresponding posterior risk

q\ b

]Γ Σ *(* excluded|y).
i=q1-\-l

z included I F),Φ(i excluded|F)} = Φ(— quantile model|F)
~ ~ 2rc

Similarly if re < 1, it is easy to see that the simplest model minimizes the
posterior risk among all models. This completes the proof.

To define asymptotic Empirical Bayes optimality, we define an oracle, i.e., a
lower bound to the performance of any selection rule.

Let Mqo be the true (unknown) model and d(q\) the decision to select Mqi.
Given y, the PEB risk of d(q\) under Mgo, after division by qo, is

E{β*\qo,Y}]

1 q

1 + rc go(l + r c ) 2 ^ i ^ z q0 (1 + re)2 q0 -

for ρx < q0

+

for ςfi > go-

Using the strong law of large numbers we obtain a heuristic approximation to

A(qι) namely

q 1 qo — q c2r,2

c ) r + q0

1 , 9-9o
1 + re (1 + re) r

which reduces to

c c2r2 q (1 — re)

1 + re r(l + re) go r
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and
c , 1 q-qol

*

Clearly qoβ(-) is a non-random approximation to the posterior risk under Mqo.
Note that /?(•) is minimum at qo if re > 1 and at q = 1 if re = 1, then /?(•) does
not depend on q.

Theorem 5.2. Let A (•) and β{ ) be defined as above. Then

inίA(q)
lim sup\A(q) - β(q)\ = 0 and lim q = 1.

qo^oo g go-^oo mi p(g)

Proof We consider the case q < qo- The other case follows similarly.

A(q)-β(q)= ^ _

qo-q ~2~2 " "0

We show that sup |TΊ(^)| —>> 0 a.s. One can show the other part —> 0 in a
q<qo

similar way.

9 _
By SLLN, given e > 0, we choose a Λ such that for q > Λ, | ΣY{

2/q-(l-\-c)\ < e.
1

Since q0 > q and (1 + c)2 > 1, |TΊ(ςr)| < e for Λ < q < qλ. The remaining |Ti(ςro)|
for q < Λ can be made smaller than e if we choose q sufficiently large.

By repeated application of this kind of elementary argument one proves the first
part of the theorem.

The first part implies

lim I inf A{q) - miβ{q)\ = 0
qr0-+oo q q

Since,

mίβ(q) =c if c < 1

= 1 if c > 1

is positive, the second part of the theorem follows.

Theorem 5.3. For known c, the optimal model MQc is asymptotically equiva-
lent to the oracle q minimizing A(q) in terms of posterior predictive loss, i.e.,
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posterior predictive loss of Ma under qo
_ 2Ξ. ^ \n β

(qomΐA(q))
Q

as qo —>• oo

To prove this we need the following result, which has some independent interest.

Proposition 5.1 Let qo be the true model,. As qo —> oo, π(\qi —qo\ > δ\Y) —> 0
for any δ —> oo such that δ = o(qo).

This is in the spirit of posterior consistency at qo except that δ is not fixed but
goes to infinity at a relatively slow rate.

Proof of Theorem 5.4 Without loss of generality take r = 1. If c < 1, the model
Mqc always chooses the simplest model. Hence its posterior risk (under qo) is
qoA(qc). Since β(q) is minimized at q — qc in this case, we are done.

For c> l,mίβ(q) = 1.
q

Also by Prop 5.1, — a.s. —>• 1

We consider the cases where qc < qo The other case is similar. The posterior
risk of Mqc for qc < qo is

which —>• 1 a.s. since — —> 1 a.s.
Qo

Proof of Prop. 5.1. We take r = 1 as before and let λ(c) = ^ ^ log(l + c).
It has been proved before that 1 < λ(c) < 1 + c. Using the strong law, given
e > 0, there exists k > 0 such that for q > qo + fc, with probability tending to
one

i.e. Λ(<7) - A(q0) < —(q — qo)j, for some 7 > 0.

Hence

π(ς > qo + k\Y) < J2 t(q~q<>) w h e r e * = e~7

q>qo-\-k

= tk/{l-t)->0

One can similarly show π(q < qo — k\Y) —> 0, using λ(c) < 1 + c

Remark 5.1. Theorem 5.1. holds for unknown c if c is a consistent estimate
and we use qa of the Empirica Bayes model selection rules but replacing cq by
c. The same result holds for AIC also, which is interesting since AIC does not
need to estimate c consistently. We prove this below.

One simply notes that in Section 3 we prove that for re > 1, AIC is consistent
for qo, if <?o —• oo. Also for re < 1, AIC (q)- AIC (1) —> -oo, if q —> oo. Using
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these facts one shows, as in the proof of Theorem 5.4., AIC attains the same
risk as the oracle.

So far we have been looking at several Bayesian model selection rules from
the point of view of prediction or squared error loss in a situation where after
selection of model least squares estimates are used. Results differ in a major
way if least squares estimated are replaced by the Bayes estimates E(βi\q, Y) =
jjβ^Ϋi if Mq is chosen and i < q. Since the proofs are similar we merely state
the main facts.

For a known c, the Bayes rule becomes the posterior median rule. This is a
special case of a general result of Barbieri and Berger (2000) but can also be
derived like Theorem 5.

To define a Bayesian oracle, we redefine

qo

'qio — q\) if <7i < go
q0 1 + re qo l + re l + re

9+1
and

1 + re qo 1 + re ^—** 1 + re
qo

The heuristic nonrandom approximation is

z—γ— 1 {γ— H j——} Q < Qo

and
c t (Qi-Qo) f c 1

= τ-x— + {r^— + Γ^—} Q>Qv
1 + re qo 1 -\- re 1 + re

mίβ(qι) = j η ^ , attained at q0, for all c.

The posterior median Bayes rule as well as the PEB model selection rules fol-
lowed by Bayes estimation attains the risk of the Bayesian oracle, namely q
minimizing A(q), provided c is known or a consistent estimate of c is used.

The advantage of using the (shrinkage) Bayes estimates can be seen compar-
ing the inf β(q) for the two cases, namely jφ^ for Bayes estimates and £ for
least squares estimates. For all fully Bayes rules reduce the posterior risk per
component in the model by ^ p which can be very large if both r and c are
small.
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Figure 1: Behavior of cq in a nested sequence of models.

6 Simulations and Discussion

A plot of cq against q is a good Bayesian data analytic tool that provides in-
formation about both c and the true dimension go- This is true of all the four
graphs in Figure 1 but it is specially noticeable when c if not too small.

The second set of simulations describe the performance of different model se-
lection rules for 0-1 loss. We have taken r — 1 In addition to AIC, BIC and
the three PEB rules defined in section 2, we consider the Conditional Maximum
Likelihood rule (CML) of [6], in which both cq and wq are used as indicated in
Section 2, even though the binomial prior seems unintuitive in the nested case.

In simulation c = 0.5 or 3. Higher values of c are considered in [9], the results
are very similar to those for c = 3.

It is clear from Tables 1 and 2 that the BIC and CML are disastrous, as expected.
AIC does well for c = 3 but badly for c =0.5, again as expected from Section 3.
However, inconsistency is preferable to consistency in the prediction problem,
vide the proof of Theorem 5.1 and Proposition 5.2. This is borne out by the
third set of simulations.

The third set of simulations (Tables 3 and 4) describes performance of these
criteria under prediction loss. Once again, A*(q) seems to do substantially better
than A(q) and Λπ is somewhat worse than the other two. AIC is competitive
for c > 1 and dramatically better than c < 1 This is because with least squares
estimates neither of the three PEB rules are asymptotically optimal if c < 1. Of
course the Bayes rule q^ for prediction loss would have done much better and
be comparable to AIC.
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Λ*(9)

K(q)

BIC

AIC

CML

4

5

38

310

1

3

7
12

136

475

1

1

1

1
1
3

1

1

999

5

5

44

270

1

3

10
14

102

444

1

1

1

1
1
3

1

1

999

10

8

28

199

2

4

10

16
80
384

1

1

1

1
2
5

1

1

999

20

15
26
104

2

8

20
20
48
242

1

1

1

1

2

8

1

1

999

40

26

40

78

3

21

40

34

50

150

1

1

1

1
3
11

1

999

999

500

476

498

515

475

497

510

478
498
516

1

1

1

1
3
10

999

999

999

800

774

796

810

771

795

809

775
796
812

1

1

1

1
4
12

999
999
999

900 |

873

895

908

873

895

908

874

895

908

1

1

1

1

3

9

999

999

999

Table 1: Quartiles of the dimensions selected by different criteria for c = 0.5,
r = 1.

| Qo

Λfa)

Λ*(<7)

M<z)

BIC

AIC

CML

4

3

5
22

2

3
4

4
8
64

1
1

2

2
4

4

1
1

999

5

4

5
12

2
4

5

4
5

38

1
1
2

3
4

5

1
1

999

10

8
10
11

6
9
10

8
10
14

1
1

3

6

9

10

1
2

999

20

17

20
21

16
19
20

17
20
21

1
1

3

16
19

20

1
999

999

40

37
39
41

36
39
40

37
39
41

1
1

3

36
39

40

999
999
999

500

497

500

500

497
500

500

497
500

500

1
1

3

497
499

500

999
999

999

800

797

799

800

797
799
800

797
799

800

1
1

3

797
799

800

999
999
999

900 |

897
899

900

897
899
900

897
899

900

1
1

3

896
899

900

999
999

999

Table 2:
r = 1.

Quartiles of the dimensions selected by different criteria for c = 3,
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Λfa)
A*(q)

Λπ(<z)
BIC
AIC
CML

4

227.94

35.77
293.53

2.63
5.18

425.15

5

211.53

20.66
297.17

3.05
4.91

412.92

10

205.26

37.06
297.28

5.5
7.86

466.09

20

178.71

42.47
235.44
10.54
13.68

499.04

40

138.14

54.76
180.23
20.69
25.82

574.25

500

522.19

518.25
522.89
250.74
258.63
998.05

800

818.44

816.34

818.57
401.06
409.8

1000.51

900 ||

909.33

908.1
909.44
450.62
457.95
998.57

Table 3: Prediction loss of the models selected by different criteria for c = 0.5,
r = 1.

]_Qo

Λfa)

M<7)
BIC
AIC
CML

4

94.92
14.36
146.83
6.85
6.56

331.95

5

113.44
19.09
145.46
9.51
7.09

371.34

10

39.42
15.6

53.61
21.74
13.13

446.24

20

31.23
24.45
31.21
50.36
23.23

635.56

40

44.6
44.22
44.6

108.76
43.62
847.6

500

503.71
503.65
503.71
1489.84
503.66
998.85

800

804.03
804.08
804.03

2392.47
804.32

998.6

900 J
904.4

904.36
904.35

2693.92
904.23
999.55

Table 4: Prediction loss of the models selected by different criteria for c = 3,
r = 1.

We have not done any simulations on the posterior median Bayes rule, which
uses PEB shrinkage Bayes estimates. It is expected to outperform AIC as seen
from the comparison of β(')fs for model selection followed by least squares and
model selection followed by Bayes estimates. The three PEB criteria of Section
2, followed by Bayes estimates, are expected to do much better than evident in
Tables 3 and 4 but not as well as the posterior median rule.

It may be worth pointing out that there is a basic difference between the median
Bayes rule and AIC. Whether c > 1 or < 1, the median Bayes rule is consistent
at qo~ a proof can be constructed using Proposition 5.1 But it then shrinks the
estimates towards zero appropriately, depending on values of c. AIC doesn't
have this option, it uses least squares estimates. So for critically small values of
c, namely c < 1, it has to choose a much lower dimensional model to have some
sort of shrinkage.
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