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Abstract

This paper serves as a quick and elementary overview of the recent
progress on a large class of Poincare-type inequalities in dimension one.
The explicit criteria for the inequalities, the variational formulas and ex-
plicit bounds of the corresponding constants in the inequalities are pre-
sented. As typical applications, the Nash inequalities and logarithmic
Sobolev inequalities are examined.
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1 Introduction

The one-dimensional processes in this paper mean either one-dimensional diffu-
sions or birth-death Markov processes. Let us begin with diffusions.

Let L — a(x)d2/dx2 + b(x)d/dx be an elliptic operator on an interval (0, D)
(D < oo) with Dirichlet boundary at 0 and Neumann boundary at D when D <
oo, where a and b are Borel measurable functions and a is positive everywhere.
Set C(x) = f* b/a, here and in what follows, the Lebesgue measure dx is often
omitted. Throughout the paper, assume that

Z := / ec/a < oo. (1.0)
Jo

Hence, dμ := a~1ecdx is a finite measure, which is crucial in the paper. We are
interested in the first Poincare inequality

| | / | | 2 : = ίDfdμ<A[Df'2ec:=AD(f), f € Cd[0,D], /(0) = 0, (1.1)
Jo Jo

where Cd is the set of all continuous functions, differentiable almost everywhere
and having compact supports. When D — oo, one should replace [0, D] by [0, D)
but we will not mention again in what follows. Next, we are also interested in
the second Poincare inequality

ll/-π(/)H2:= / (f-π(f))2dμ<AD(f) feCd[0,D], (1.2)
Jo

where π(/) = μ(f)/Z = J fdμ/Z. To save the notations, we use the same A
(resp., A) to denote the optimal constant in (1.1) (resp., (1.2)).

The aim of the study on these inequalities is looking for a criterion under
which (1.1) (resp., (1.2)) holds, i.e., the optimal constant A < oo (resp., A < oo),
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82 Poincare-type Inequalities

and for the estimations of A (resp., A). The reason why we are restricted
in dimension one is looking for some explicit criteria and explicit estimates.
Actually, we have dual variational formulas for the upper and lower bounds
of these constants. Such explicit story does not exist in higher dimensional
situation.

Next, replacing the L2-norm on the right-hand sides of (1.1) and (1.2) with
a general norm || ||B in a suitable Banach space (the details are delayed to §3),
respectively, we obtain the following Poincare-type inequalities

WfW® <ABD(f), /eqo,fl],/(O) = O. (1.3)

\\(f - τr(f))2\\ <ΆBD(f), f€Cd[0,D}. (1.4)

For which, it is natural to study the same problems as above. The main
purpose of this paper is to answer these problems. By using this general setup,
we are able to handle with the following Nash inequalities^23^

\\f-<f)\\2+ill/<AND{f)\\f\\\l1' (1.5)

in the case of v > 2, and the logarithmic Sobolev inequality[λ^:

fEnt(/2) := Γ
Jo

flog^—dμ<ALSD(f).
πU )

(1.6)

(1.7)

To see the importance of these inequalities, define the first Dirichlet eigen-
value λo and the first Neumann eigenvalue λi, respectively, as follows.

λ0 = inf{£>(/) : / G C\^D) Π C[0,D], /(0) = 0, τr(/2) = 1},

λi = inf{/?(/) : / G C^O,/?) Π C[0,D], π(/) = 0, π(/ 2 ) = 1}.

Then, it is clear that λ0 = I/A and λi = I/A. Furthermore, it is known that

The second Poincare inequality <=^ Var(Pt/) < Var(/) e~2λlt.

Logarithmic Sobolev inequality <=> Ent(P t/) < Ent(/) e~2t/ALS, (1.8)

Nash inequality <̂ => Var(Pt/) < C||/||i ί"-",

where | |/ | | r is the Z/(μ)-norm (cf., [8], [13], [18] and references within). It is
clear now that the convergence in the first line is also equivalent to the expo-
nential ergodicity for any reversible Markov processes with density (cf. [10]),
i.e., ||Pt(x, •) — πllvar — C(x)e~εt for some constants ε > 0 and C(x), where
Pt(x,-) is the transition probability. The study on the existence of the equilib-
rium π and on the speed of convergence to equilibrium, by Bhattacharya and his
cooperators, consists a fundamental contribution in the field. See for instance
[2]-[6] and references within. The second line in (1.8) is correct for diffusions
but incorrect in the discrete situation. In general, one has to replace "^=>" by
"^=^". Here are three examples which distinguish the different inequalities.

b(x) = 0
α(x) — xΊ

b(x) = 0
α = x2logΊx
α(x) = 1
b(x) = -b

Ergodicity

7 > 1

V

V

2nd Poincare

7 > 2

7 > 0

V

LogS

7 > 2

7 > 1

X

L1-exp.

7 > 2

7 > 1

X

Nash

7 > 2

X

X

Table 1.1, Examples: Diffusions on [0, oo)
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Here in the first line, "LogS" means the logarithmic Sobolev inequality, "L1-
exp." means the L1 -exponential convergence which will not be discussed in this
paper, "y/" means always true and "x" means never true, with respect to the
parameters. Once known the criteria presented in this paper, it is easy to check
Table 1.1 except the L1 -exponential convergence.

The remainder of the paper is organized as follows. In the next section, we
review the criteria for (1.1) and (1.2), the dual variational formulas and explicit
estimates of A and A. Then, we extend partially these results to Banach spaces
first for the Dirichlet case and then for the Neumann one. For a very general
setup of Banach spaces, the resulting conclusions are still rather satisfactory.
Next, we specify the results to Orlicz spaces and finally apply to the Nash
inequalities and logarithmic Sobolev inequality.

Since each topic discussed subsequently has a long history and contains a
large number of publications, it is impossible to collect in the present paper
a complete list of references. We emphasize on recent progress and related
references only. For the applications to the higher dimensional case and much
more results, the readers are urged to refer to the original papers listed in
References, and the informal book [13], in particular.

2 Ordinary Poincare inequalities

In this section, we introduce the criteria for (1.1) and (1.2), the dual variational
formulas and explicit estimates of A and A.

To state the main results, we need some notations. Write x A y = min{x, y}
and similarly, x V y = max{x, y}. Define

T = {/ e C[0, D] Π Cx(0, D) : /(0) = 0, /' | ( ( U>) > 0},

f = {/ G C[0, D] : /(0) = 0, there existsx0 e (0, £>]so that

/ = /( Λx0), /GC1(0,xo)and/ / | ( 0, : C o) > θ},

T1 = {/ e C[0, D] : /(0) = 0, / | ( O j D ) > 0},

T' = {/ G C%Ό\ : /(0) = 0, there existsx0 G (0,D]so that

) > 0}.

Here the sets T and T1 are essential, they are used, respectively, to define
below the operators of single and double integrals, and are used for the upper
bounds. The sets T and T' are less essential, simply the modifications of T and
T', respectively, to avoid the integrability problem, and are used for the lower
bounds. Define

[feC/a] (u)du, feΓ,
X

1 , x ,£>

= 7Γ\ / dVe~C{y) / [feC/a](u)du, f € P.
J\x) JO Jy

The next result is taken from [12; Theorems 1.1 and 1.2]. The word "dual"
below means that the upper and lower bounds are interchangeable if one ex-
changes the orders of "sup" and "inf" with a slight modification of the set T
(resp., J-f) of test functions.
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Theorem 2.1. Let (1.0) hold. Define φ(x) = f* e~c and B= sup φ(x)f^^-
xE(0,D)

Then, we have the following assertions.

(1) Explicit criterion: A < oo iffB < oo.

(2) Dual variational formulas:
A < inf sup Π(f)(x) = inf sup I(f)(x),

ftf e(0D) feT €(0D)xe(0,D) x€(0,D)

> sup inf //(/)(£) = sup inf /(/)(x) '
e(0D) G(OD

two inequalities all become equalities whenever both a and b are con-
tinuous on [0, D].

(3) Approximating procedure and explicit bounds:

(a) Define fλ = y/φ, fn = / n -i//(/ n -i) and Dn = sup x G ( 0 ? D ) //(/n) (x).
Then Dn is decreasing in n and A < Dn < AB for all n > 1.

(6) Fzxxo G (0,D). Define

Cn = s u p X o G ( 0 D ) inf^^^,^) H{fLX°\' Λ ̂ o))(^) ΓΛen C n Z5 m-
creasing in n and A> Cn > B for all n> 1.

We mention that the explicit estimates UB < A < AB" were obtained previ-
ously in the study on the weighted Hardy's inequality by [22].

We now turn to study A, for which it is natural to assume that

ίD ίs

/ e~c(s)ds / a^^e^^du =
Jo Jo

oo. (2.4)

Theorem 2.2. Let (1.0) and (2.4) hold and set f = f - π(/). Then, we have
the following assertions.

(1) Explicit criterion: A < oo iff B < oo, where B is given by Theorem 1.1.

(2) Dual variational formulas:

sup inf I(f)(x) < A< inf sup I(f)(x). (2.5)
f χe(o,D) fer )

The two inequalities all become equalities whenever both a and b are con-
tinuous on [0,D].

(3) Approximating procedure and explicit bounds:

(a) Define fi = y/φ, fn = fn-iH(fn-i) and Dn = sup ; r e ( 0 D) Π(fn) (x).
Then ~A<T>n<4:B for all n > 1.

(b) Fixxo G (0,D). Define
W

and Cn = s u p X o 6 ( 0 D ) inixe(OiD) Π{f^°\' Λ XQ)){X). Then A > Cn

for all n > 2. By convention, 1/0 = oo.
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Part (1) of the theorem is taken from [11; Theorem 3.7]. The upper bound
in (2.5) is due to [16]. The other parts are taken from [12; Theorems 1.3 and
1.4].

Finally, we consider inequality (1.2) on a general interval (p,q) (—oo < p <
q < oo). When p (resp., q) is finite, at which the Neumann boundary condition
is endowed. We adopt a splitting technique. The intuitive idea goes as fol-
lows: Since the eigenfunction corresponding to A, if exists, must change signs,
it should vanish somewhere in the present continuous situation, say θ for in-
stance. Thus, it is natural to divide the interval (p, q) into two parts: (p, θ) and
(θ,q). Then, one compares A with the optimal constants in the inequality (1.1),
denoted by A\Q and A2Q, respectively, on (θ,q) and (p,θ) having the common
Dirichlet boundary at θ. Actually, we do not care about the existence of the
vanishing point θ. Such θ is unknown, even if it exists. In practice, we regard θ
as a reference point and then apply an optimization procedure with respect to
θ. We now redefine C(x) = f£ b/α. Again, since it is in the ergodic situation,
we assume the following (non-explosive) conditions:

oo
Ip

pq rV

Z \ θ '•— I e / α < o o , Z 2 Θ ' — I e /a
Jθ Jp

pθ pθ
/ e~c(s)ds / ec/a = oo iip=-oo and (2.6)

Jp J s
pq ps
/ e~c ( s )ds / ec/a = 00 if q = 00

Jθ Jθ

for some (equivalently, all) θ G (p,q) Corresponding to the intervals (θ,q)
and (p,0), respectively, we have constants B\Q and B2Q, given by Theorem 1.1.

Theorem 2.3. Let (2.6) hold. Then, we have

(1) inf0€(p>g) (A10 Λ A20) < ~A < supθe{pq) (Alθ V A2Θ).

(2) Lei ^ 6e the medium of μ, then (Aiβ V A2Q) /2 < A < A\Q V A2Q.

In particular, A < 00 iff Bϊθ V i?20 < 00.

Comparing the variational formulas (2.3) and (2.5) with the classical varia-
tional formulas given in (1.7), one sees that there are no common points. This
explains why the new formulas (2.3) and (2.5) have not appeared before. The
key here is the discover of the formulas rather than their proofs, which are usu-
ally simple due to the advantage of dimension one. As an illustration, here we
present parts of the proofs.

Proof of the upper bound in (2.5).

Originally, the assertion was proved in [16] by using the coupling methods.
Here we adopt the analytic proof given in [9].

Let g E C[0, D] Π Cλ{0, D), π{g) = 0 and π(g2) = 1. Then, for every / G T
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with π(/) > 0, we have

\ = \ ί π(dx)π(dy)[g(y) - g(x)}2

Δ Jo

/

( fy q'(u)\ίΨTu) ^
π(dx)π(dy) ( / —du

,x<y} \Jχ yf'(u) ^

< [ π(dx)π(dy) Γ ^~du Γ f'(ξ)dξ
J{x<y} Jx J Λu) Jx

(by Cauchy-Schwarz inequality)

= / π(cLr)π(ch/) Γg'(u)2ec^^—^du[f(y) - f(x)]

J{x<y} Jx J \u)
rD χ -C(u) ru rD

= a(u)g'(u)2π(du)-—— π(dx) / π(dy)[f(y) - f(x)]
Jθ J \U) Jθ Ju

<D(g) sup ^ l ^
uG(0,D) / Ku)

<D(g) sup I(f)(x) (sinceπ(/)>0).
(0D)

π(dy)[f(y)-f(

Thus, D(g)-1 < s u p x G ( 0 D) /(/)(x), and so

3 = sup D(g)-1 < sup
S:ir(j)=0, π(flf2) = l x6(0,D

This gives us the required assertion:

A < inf sup /

The proof of the sign of the equality holds for continuous α and b needs more
work, since it requires some more precise properties of the corresponding eigen-
functions. •

Proof of the explicit upper bound "A < AB".

As mentioned before, this result is due to [22]. Here we adopt the proof
given in [11], as an illustration of the power of our variational formulas.

Recall that B = sup x G ( 0 D^ f* e~c Jχ ec/α. By using the integration by
parts formula, it follows that

B B

fφ{x)
- ί
2 Jx

D ,J 2B
(2.1)

ψ
,3/2

Hence

l{Vψ)(x) =

as required. •

O-C(x) rDW Γ ,/φe

\x)Jx «

o~C{x)Λ ίφ(x) 2B
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3 Extension; Banach spaces

Starting from this section, we introduce the recent results obtained in [14] and
[15], but we will not point out time by time subsequently.

In this section, we study the Poincare-type inequality (1.3). Clearly, the
Banach spaces used here can not be completely arbitrary since we are dealing
with a topic of hard mathematics. ^From now on, let (B, || | |B, μ) be a Banach
space of functions / : [0, D) —> R satisfying the following conditions:

(1) UB;

(2) Bis ideal: Ifft G Band|/| < |/ι|,then/ G B;

fD (3 1)

(3) II/IIB = sup / \f\gdμ,
geg Jo

(4) g 3 ^owithinf g0 > 0,

where Q is a fixed set, to be specified case by case later, of non-negative functions
on [0, D]. The first two conditions mean that B is rich enough and the last one
means that Q is not trivial, it contains at least one strictly positive function. The
third condition is essential in this paper, which means that the norm || ||© has
a "dual" representation. A typical example of the Banach space is B = Lr(μ)1

then g = the unit ball in L+(μ), 1/r + 1/r' = 1.

The optimal constant A in (1.3) can be expressed as a variational formula
as follows.

11/Λ B =sup{ i^ :/eC d [0,D],/(0)=0, 0< £>(/)< ooj. (3.2)

Clearly, this formula is powerful mainly for the lower bounds of A. However,

the upper bounds are more useful in practice but much harder to handle. For-

tunately, for which we have quite complete results.

Define φ(x) = JQ e~C a s before and let

\\φ(x Λ )2|L

DM = sup
xG(0,D)

Φ) '

Theorem 3.1. Let (1.0) and (3.1) hold. Then we have the following assertions.

(1) Explicit criterion: A^ < oo iff B^ < oo.

(2) Variational formulas for the upper bounds:

AB< inf sup /(x)-1 | |MxΛ )||B
JeJ~ xe(o,D)

e-c(x) (3-4)

- l^ί S U P "7773-
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(3) Approximating procedure and explicit bounds: Let BB < oo. Define / 0 =
y/φ, fn(x) = \\fn-iφ(xΛ )||B and DB(n) = sup x G ( 0 D ) fn/fn-i forn> 1.
Tften, i>e(n) is decreasing in n and

BB<CM<AB< DB(Π) <DB< 4 £ B (3.5)

for all n> 1.

We are now going to sketch the proof of the second variational formula in
(3.4), from which the explicit upper bound AB < 4BB follows immediately, as
we did at the end of the last section. The explicit estimates UBB < AB < 4 5 B "
were previously obtained in [7] in terms of the weighted Hardy's inequality [22].
The lower bounds follows easily from (3.2).

Sketch of the proof of the second variational formula in (3.4).

The starting point is the variational formula for A (cf. (2.3)):

e-C(x) rD rC e~C{x) pD

A < inf sup „,. . / = inf sup „,, x / fάu.
f^χe(o,D) f'(x) Jx a ferxe{OiD) f'(x) Jx

Fix g > 0 and introduce a transform as follows.

b -> b/g, a-+a/g> 0. (3.6)

Under which, C(x) is transformed into

This means that the function C is invariant of the transform, and so is the
Dirichlet form D(f). The left-hand side of (1.1) is changed into

Γ fgec/a= Γ fgdμ.
Jo Jo

At the same time, the constant A is changed into

e-C(x) rD

Ag < inf sup / fgdμ.
9 f^xe(0D) f'(x) Jx

Making supremum with respect to g e Q, the left-hand side becomes

sup
geG

/ f2gdμ =
Jo

and the constant becomes

e-C(x) rD
— sup Ag < sup inf sup / fgdμ < inf sup sup

9 g f x J [X) Jx f g x

e-C(x) rD

= inf sup sup / fI(XiD)9<iμ.
J x j yx) g Jo
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We are done! Of course, more details are required for completing the proof. For
instance, one may use g + 1/n instead of g to avoid the condition "g > 0" and
then pass limit. •

The lucky point in the proof is that "sup inf < inf sup", which goes to the
correct direction. However, we do not know at the moment how to generalize
the dual variational formula for lower bounds, given in the second line of (2.3),
to the general Banach spaces, since the same procedure goes to the opposite
direction.

4 Neumann Case; Orlicz Spaces

In the Neumann case, the boundary condition becomes /'(0) = 0, rather than
/(0) = 0. Then λo = 0 is trivial. Hence, we study λi (called spectral gap of L),
that is the inequality (1.2). We now consider its generalization (1.4). Naturally,
one may play the same game as in the last section extending (2.5) to the Banach
spaces. However, it does not work this time. Note that on the left-hand side of
(1.4), the term τr(/) is not invariant under the transform (3.6). Moreover, since
π(/) = 0, it is easy to check that for each fixed / G T, I(f)(x) is positive for
all x G (0, D). But this property is no longer true when άμ is replaced by gdμ.
Our goal is to adopt the splitting technique explained in Section 2.

Let θ e (p, q) be a reference point and let A$θ, B^Θ', C™, D^θ (fc = 1, 2) be
the constants defined in (3.2) and (3.3) corresponding to the intervals (0, q) and
Op, 0), respectively. By Theorem 3.1, we have

βkθ < Qkθ < j^kθ < jjkθ < ^βkθ fc = 1 2

Theorem 4.1. Let (2.6) and (3.1) hold. Then, we have the following assertions.

(1) Explicit criterion: A^ < oc iff B^θ V B^θ < oo.

(2) Estimates:

where K$ is α constant.

It is the position to consider briefly the discrete case, i.e., the birth-death
process. Let bi (i > 0) be the birth rates and α* (i > 1) be the death rates of the
process. Define

a i . . an ^ Z

C o n s i d e r a B a n a c h s p a c e (B, || | | i , μ ) of f u n c t i o n s E : = { 0 , 1 , 2 , •••} -^ R

sat is fying (3.1) . Define

* 1
ψi = y Z i > 1 # | | / | |

Clearly, the inequalities (1.3) and (1.4) are meaningful with a slight modification.
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Theorem 4.2. Consider birth-deαth processes with state space E. Assume that
Z <oo.

(1) Explicit criterion for (1.3): A® < oo iff B® < oo.

(2) Explicit bounds for A^: B^ < A^ < 4£?B

(3) Explicit criterion for (l-4): Let the birth-death process be non-explosive:

Then AM < oo iff BM < oo.

(4) Estimates for A^: Let E\ — {1, 2, } and let c\ and C2 be two constants

such that |π (/) | < c i | | / | | B and\π(fIEl)\ < C 2 | | //£7 1 | |B for all f G B. Then,

Similarly, one can handle the birth-death processes on Z.
An interesting point here is that the first lower bound in (4.2) is meaningful

only in the discrete situation.

Orlicz spaces. The results obtained so far can be specialized to Orlicz spaces.
The idea also goes back to [7]. A function Φ : R —> R is called an N-function
if it is non-negative, continuous, convex, even (i.e., Φ(—x) = Φ(x)) and satisfies
the following conditions:

Φ(x) = 0 iff x = 0, lim Φ(x)/x — 0, lim Φ(x)/x = oo.
x—>Ό x—> o o

In what follows, we assume the following growth condition (or Δ2-condition)
for Φ:

sup Φ(2x)/Φ(a?) < oo (<^=> sλxpxΦ'_{x)/Φ{x) < oo),

where Φ'_ is the left derivative of Φ. Corresponding to each N-function, we have
a complementary iV-function:

Φc(y) := sup{x\y\ - Φ(x) : x > 0}, y G R.

Alternatively, let φc be the inverse function of Φ;_, then Φc{y) = j ' 2 7 ' φc (cf.
[24]).

Given an TV-function and a finite measure μ on E := (p, q) C R, define an
Orlicz space as follows:

LΦ(μ) = if (E - R) : / Φ(f)άμ < 00}, ||/||Φ = sup f \f\gdμ, (4.3)
I JE ) gegJE
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where Q — <} > r : fε Θj (})dμ < oc k which is the set of non-negative functions

in the unit ball of L Φ c (μ). Under Δ2-condition, (Lφ(μ), || | |φ,μ) is a Banach
space. For this, the Δ2-condition is indeed necessary. Clearly, Lφ(μ) 3 1 and is
ideal. Obviously, (L φ (μ), || | |φ,μ) satisfies condition (3.1) and so we have the
following result.

Corollary 4.1. For any N -function Φ satisfying the growth condition, if (1.0)
(resp., (2.6)) holds, then Theorem 3.1 ( resp., 4.1) is available for the Orlicz
space ( L φ ( μ ) , | | | | Φ , μ ) .

5 Nash inequality and Sobolev-type inequality

It is known that when v > 2, the Nash inequality (1.5):

\\f-π(f)\\2+4^<AND(f)\\f\\t/u

is equivalent to the Sobolev-type inequality:

\\f-π(f)\\l,(v-2)<AsD(f),

where || | | r is the L r(μ)-norm. Refer to [1], [8] and [26]. This leads to the use
of the Orlicz space Lφ(μ) with Φ(x) — \x\r /r, r = vj[y — 2):

\\(f-π(f))2\\φ<AMf)- (5-1)

The results in this section were obtained in [19], based on the weighted Hardy's
inequalities.

Define C(x) = f# b/a, μ(m,n) = /^ ec/a and

lβφlβ{x) = Γ
Jθ

(x) = f
Jx

X>θ

e~C B™= sup φ2

x<θ

Here B™ {k = 1, 2) is specified from BM given in (3.3) with B = LΦ((Θ, q), μ) or
B = L φ ((p,^),μ), since || | |Φ = {r')1^'\\ | | r , 1/r + 1/r' = 1.

Theorem 5.1. Let (2.6) hold and v > 2.

(1) Explicit criterion: Nash inequality (equivalently, (5.1)) holds on (p,q) iff
Blθ V Bf <oc.

(2) Explicit bounds:

zl\{BlβhBf), [ l - ( | i e ^ 2 e ) 1 / 2 + 1 / T K

In particular, if θ is the medium of μ, then

[1 - {\/2γl2+1^}\Blθ V Bf) <A»< 4(Blθ V Bf).
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We now consider birth-death processes with state space {0,1,2, }. Define

oo v (I/-2)/I/

YV)

Theorem 5.2. For birth-death processes, let (4.1) /io/d αn<i assume that Z < oo.
Γfterc, we ftαve

K 2 \ 2 / z / Γ / 7 - 1 \ l / 2 + l / l Ί 2 Ί _

^ 5 Γ T ) ' ί1" ( - ? - ) J Γ " - ̂  - 16B" (5 3)

Hence, when v > 2, the Nash inequality holds iff Bu < oo.

6 Logarithmic Sobolev inequality

The starting point of the study is the following observation.

f I I ( / - * ( / ) ) Ί I Φ ^ A/) ̂  | | K / - ^ ( / ) ) 2 I I Φ ' (6-x)

where Φ(x) = |x|log(l + \x\), C(f) = sup c G REnt((/ + c)2) and Ent(/) =

JR /log ^yd/x, / > 0. Refer to [7] and [17; page 247], which go back to [25]. A

modification of the coefficients is made in [12]. The observation leads to the use

of the Orlicz space B = Lφ(μ) with Φ(x) = \x\ log(l + \x\). The results in this

section were obtained in [20], based again on the weighted Hardy's inequalities.

Refer also to [21] for the related study.

Define

rx z n

C(x)= / e c , μ(m,ή)= / e c/α;
Jθ Jm

o-C.

(6.2)

Biθ= sup φlθ(x)M(μ(θ,x)), B%θ = sup φ2θ(x)M(μ(x,θ)).
χe(θ,q) χe(p,θ)

Again, here Bφθ (k = 1,2) is specified from B® given in (3.3).

Theorem 6.1. Let (2.6) hold.

(1) Explicit criterion: The logarithmic Sobolev inequality on (p,q) C M. holds

iff
1 fx

sup μ(x,q)log— / e~c < oo and

sup μ(p, x) log — / e~c < oo
.P? x ) Jx

hold for some (equivalently, all) θ G (p,q).
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(2) Explicit bounds: Let θ be the root of B^ = Bf, θ G \p,q]. Then, we have

Wi < ALS < ̂ Bis. (6.4)

By a translation if necessary, assume that θ = 0 is the medium of μ. Then,
we have

) « V Bf) <ALS<
h4 « V Bf). (6.5)

0

We now consider birth-death processes with state space {0,1, 2, }. Define

where μ[i, oo) = Σj>i μj and M(x) is defined in (6.2).

Theorem 6.2. For birth-death processes, let (4.1) hold and assume that Z < oo.
Then, we have

lί /iere Z\—Z — \ and Φ " 1 zs ίfte inverse function o/Φ: Φ(x) = x2 log(l
/n particular, ALs < oo iff

sup </?i μ[z, oo) log — < oo.
μ[*oo)
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