On Ité’s Complex Measure Condition!

Larry Chen, Scott Dobson, Ronald Guenther, Chris Orum
Mina Ossiander, Enrique Thomann, Edward Waymire

Department of Mathematics
Oregon State University

Abstract

The complex measure condition was introduced by It6 (1965) as a suf-
ficient condition on the potential term in a one-dimensional Schrédinger
equation and/or corresponding linear diffusion equation to obtain a Feynman-
Kac path integral formula. In this paper we provide an alternative prob-
abilistic derivation of this condition and extend it to include any other
lower order terms, i.e. drift and forcing terms, that may be present. In
particular, under a complex measure condition on the lower order terms
of the diffusion equation, we derive a representation of mild solutions of
the Fourier transform as a functional of a jump Markov process in wave-
number space.

Keywords: Duality, multiplicative cascade, multi-type branching random
walk

1 Introduction

The complex measure condition was introduced by It6 (1965) as a sufficient con-
dition on the potential term #(x) in the one-dimensional Schréodinger equation
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for the so-called Feynman principle of quantization. More specifically, under the
condition that #(z) is the Fourier transform of a complex measure of bounded
variation on (—o0,00), It6 (1965) establishes the validity of the Feynman-Kac
path integral formula appropriate to (1.1). Throughout “complex measure” will
imply a regular measure with finite total variation without further mention. It6
(1965) further notes that his method is also applicable to the linear diffusion

equation ) o
%—1; = %% + c(z)u. (1.2)
Our first encounter with the complex measure condition arose in efforts to
better understand the branching random walk associated with incompressible
Navier-Stokes equations that was originally developed by LeJan and Sznitman
(1997) and elaborated upon in Bhattacharya et al (2002). From this point of
view the binary branching tree structure associated with the nonlinear Navier-
Stokes equation is replaced by a unary tree structure for the linear diffusion
equation. However in preparing the present article we learned about variants of
these results for the Schrédinger equation recently given by Kolokoltsov (2000,
2002) and in references therein. We have not found a specific reference to the
extension to lower order terms given here, but given the rather sizeable physics
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66 On Ité’s Complex Measure Condition

interests in this topic, it may be known. In any case, a main point of emphasis
for us is the apparent wide scope of applicability of the recursive branching
techniques in Fourier space for both linear and non-linear partial differential
equations.

In this paper we shall consider the n-dimensional linear diffusion equation
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1<i,j<n

with a view toward the complex measure condition. In particular we present an
approach which yields a natural probabilistic understanding of It6’s condition
for (1.2). Moreover, we will see that this condition extends to a general condition
on the lower order terms of (1.3). This is achieved by a “Fourier dual Feynman-
Kac formula” which also includes a Fourier dual to Duhamels’ principle for the
equation with source term g¢(t,z). In place of the continuous Markov diffusion
process associated with (3) via the Feynman-Kac formula and Duhamel principle
in real-space time solutions, we derive a representation of mild solutions of the
Fourier transformed equation as a functional of a jump Markov process in wave-
number space. Although not explicitly treated in this paper, the reader may note
that extensions to certain higher order and/or fractional differential equations
of the type described in Podlubny (1999) are also possible by this approach.

The organization is as follows. In the next section we consider a simple ex-
ample that reveals the basic idea. This also includes an alternative probabilistic
derivation of It&’s complex measure condition for (1.2). The third section in-
cludes the more general result which extends the complex measure condition to
each of the lower order coefficients with a source term g(t, x) given by (1.3). Fi-
nally, we explore more general conditions on non-constant diffusion coefficient
wherein mild solutions continue to have a representation as a multiplicative
functional of a Markov jump process in wave-number space.

While it is a special pleasure for the authors to submit this paper in celebra-
tion of Rabi Bhattacharya’s mathematical career, Rabi could easily have been
listed as a co-author in connection with his continued inspiration and working
relationship with this group at Oregon State University.

2 Itd’s Condition: A basic example

To understand the nature of It6’s complex measure condition for (1.2) and to
prepare the way for extension to (1.3), consider the specific example
ou  a?d%u
— = —— +cos(z)y, 0", 2) = uo(x), 2.4
= g eos(@)u,  u(0*,2) = uo(a) (24)
for positive constant a? > 0.
For an integrable function f on R™ the Fourier transform, as well as its
corresponding distributional extension, is defined with

1

f(g) = (271_)%

/ e T f(x)dz, ¢€R™ (2.5)

Letting S denote the Schwartz space, a tempered distribution F' € S’ has corre-
sponding Fourier transform F' € S’ defined by (F', ¢) = (F, ), $ € S. Similarly,
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the inverse Fourier transform is defined by (F,¢) = (F,¢),¢ € S, where for

integrable f, f(z) = f(—x),z € R™. In particular the Fourier inversion formula

is simply (F') = (F) = F for F' € §'. Thus for Dirac point mass at the origin
bo € §', one has (5o, 8) = (80,0 = $(0) = Ly [ (a)dw = (2m)~,8),6 €

S, ie. 5o = (27r)_%. Taking n = 1, the respective translates to point masses
at 1, 4, = 74100, therefore have inverse Fourier transforms 611 = \/—12=7rei”.

Thus for the special choice of cos(z) = iz—*%j—l = @(S.H(x) +4_1(x)) one

has Nor
&% = %(6“ +6.1). (2.6)

For reasons that will become clear and without loss of generality let us re-
write (2.4) as
ou a®d%u 1 1 N
ou_aoudu Ny — = = . 2.7
5 5 922 + (cos(z) + 2)u 5t u(0%, z) = up(x) (2.7)
By standard Fourier transform operational calculus, a solution v € &’ to (2.7)
will have Fourier transform satisfying the Fourier transformed evolution
oult, N 1 .
é_t O —MOUEE) + 541 + 81+ 8o) * a(t, €) (2.8)
N 1. 1. 1.

where

a2 , 1
)\(ﬁ) = ?f + 5, £ eR. (2.9)
Integrating with the help of the integrating factor e*€)?t gives the following
so-called “mild form” of the Fourier transformed equation

at,§)

= e MOtg(6) + /Ot e—*@)S%(a(t =56+ 1) +a(t—s,&—1)+at —s,£))ds
t 11 1

= M) + m(e) [ MOeNO UGGl -6+ 1) + gl = 5.1

+%ﬁ(t —5,8))}ds (2.10)

where the multiplicative factor m(€) = 3/A(§) is introduced to write the recur-
sion (2.10) in the form of an expected value. Namely,

U(t, &) = Egy=e{00(§)1[Se > t] + m({)reti(t — Sp,6<15)1[Se < 1]} (2.11)
where

242
i. Sp is exponentially distributed with parameter A(&y) = % + %

ii. Conditionally given & = &£, £<1> is € or £ £ 1 with equal probabilities % each,
independently of Sp.
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iil. kg is 0-1 valued symmetric Bernoulli (coin tossing) random variable, inde-
pendent of Sy, &g.

iv. m(§)A(¢) =3 for all £ € R.

In view of this structure one is naturally led to the jump Markov process
{&(t) : t > 0} defined on a probability space (0, F, P) starting at & = ¢ in
Fourier frequency space R having simple symmetric random walk &p,£<1>, ...
as discrete spatial structure and positive infinitesimal rates A(§); see Blumenthal
and Getoor (1968) for detailed construction of the strong Markov process {£(%) :
t > 0} so specified. Additionally, kg, k<1, k<2>,... is an i.i.d. Bernoulli 0-1
valued sequence independent of the jump process {£(¢) : ¢ > 0}. Now consider
the multiplicative random functional defined recursively by

’l]g(fg), if Sg >t
m(&p)tio(§<1>), if So <t < Sg+ 51,69 =1,
X(t,0) = ¢ m(&)m(€<1>)m(E<as)tio(€<2>) if So+ 51 <t < Sp+ 1+ So,
and if Rg = K«l1> = 1,

This stochastic recursion may be expressed more succinctly as

_f Go(&), ifSp>t
X(t,0) = { :gm(zfo)X(t —95'97< 1>) ifSp<t

Thus defining

N¢;—1 Ny—1

i(t, €) = Eey=X(t,0) = Bep=¢(tto(én,) exp{— Y log(\(§;)/3)} ] r<in),
7=0 1=0

(2.12)
where N; counts the number of jumps in {£(¢) : ¢ > 0} by time ¢, and using the
strong Markov property of the jump process {£(¢) : t > 0} one has

a(tvé) = E§9=5X(t,9)
= Egpe{(t,0)1[So > t] + X(t,0)1[Se < t]}

t
- " - 1
- e A(E)tu0(£)+/0 e )\(E)S(EEE<1>=£+1X(t_S’< 1>)

b 5B me a5, < 13) + SFe et =5, < 1 >))ds
t
= g +m(e) [ MO GGl -5+
+ %ﬂ(t CsE—1)+ %ﬁ(t — 5,6))ds (2.13)

That is, 4(t, £) defined by (2.12) solves the mild form of the Fourier transformed
equation. The complex measure condition was designed in this example to
provide the simple random walk as the “complex measure”. However, more
generally, under It6’s complex measure condition, by decomposing @ into its
real and imaginary parts and then by applying respective Hahn decompositions
of these into positive and negative parts, up to appropriate normalizations to a
mixture of probability measures which can be absorbed into the multiplicative
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factors m(£), one may obtain a random walk distribution. These details and
generalizations to additional lower order terms, including a Fourier-transformed
Duhamel principle, are the subject of the next section.

3 A General Complex Measure Condition

Let L denote the second order elliptic differential operator defined by

n

2 n
Lf(@) = Y g )+ ) g () (@) + o) (o) ~ef(0), (310
Jj=1

7,k=1

where A = ((ajr : 1 < j,k < n)) is a positive-definite matrix of real numbers
(constants), € > 0, b = (b;j(x) : 1 < j < n), and ¢(z) have the property that the
Fourier transform of each term is a complex measure. We will also permit an
additional forcing term g(t, z) for which the Fourier transform §(¢, £) is assumed
to exist as a function.

Precise conditions characterizing when a function is the Fourier transform of
a complex measure are not known to us, though various examples and sufficient
conditions are relatively easy to provide. For example, Bochner’s theorem may
be used to get a sufficient condition for this in terms of non-negative definiteness.

We consider the Cauchy problem

In view of the linearity of the equation, the term —eu, e > 0, appearing in (3.15),
for L defined by (3.14), causes no loss in generality for applications to equations
with € = 0. Let

M) =< AL, > +¢e, £€RT, (3.16)

where < -, - > is ordinary dot product. Then taking Fourier transforms in (3.15)
one has by the integrating factor method that

’&(t,g):e—)\(ﬁ)tao(é-)_{_/ )\(5)6—)\(5)3{
0

11 5 2i(n +1)¢; /Rn Wt — s,& —n)b;(dn)

2'n +1 = COENG)
1 2nt1) e s 12(t=5,8),
T /n (gﬂ)%,\@)“(t ,& —m)é(dn)] + 5 e }ds. (3.17)

A solution of the integral equation version (3.17) of the Fourier transformed
differential equation is referred to as a mild solution of the Fourier transform.

The hypothesis that the lower order coefficients each contributes a complex
measure provides a set of up to four probability measures by considering the
positive and negative parts of each of the real and imaginary parts. To obtain a
random walk distribution we proceed as follows. Define positive measures ¢, Q
on R™ by

o(B) = [¢l(B) + S [bs1(B), BB, (3.18)
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and assuming g(R"™) > 0,

_ a(B)
q(R™)’

Q(B) Be B, (3.19)

we leave the case ¢(R™) = 0 as a simple but illuminating exercise for the reader.
Then Q is a probability distribution which dominates each of the complex mea-
sures i)j, ¢,7=1,2,...n. Let the corresponding Radon-Nikodym derivatives be
denoted by

rolin) = 5,1 (3.20)
and )
ri(n) = %(")’ j=1...n (3.21)

Now let {&, = €<n> : n = 0,1,2,...} be the random walk on R™ with
distribution of i.i.d. displacements 7;,7s,... given by Q. That is, {, = £ and
&€n = &1 — M for n > 1. Also let {£(¢) : t > 0} denote the corresponding
pure jump Markov process on R™ with holding times Sy, S1,... defined by
the positive rates A(&,) =< A&, & > +e,n = 0,1,2,..., respectively. Let
{N¢ : t > 0} denote the corresponding counting process of the number of jumps
by time t, and let kg, K<1>,... be ii.d. Bernoulli 0-1 valued random variables
on (2, F, P) independent of the jump process {£(¢) : t > 0}. The Bernoulli coin
tossing sequence will induce “virtual states” upon the occurence of x; = 0. Let

_ 2(n+1)
mo(§) = ENEND (3.22)
and
m;(§) =igmo(§), Jj=1,2,...,n. (3.23)
Substituting (3.22) and (3.23) into (3.17) gives
a(t, §)
— O, e @i L[S
i) + [ AN Olg s [ > 6o
At — 5,6 —n)Q(dn)
lzg(t _8,5)]d8
2 A8
= E¢,—{1[So > t]iio (&) + [ma(§o)rs(m)a(t — So, <15 )rko
(1= k)28t =50:80) 1310 (3.24)
A(éo)

Recursively define a times functional by

Go(&p), if Sp >t
X(tv 0) = ‘P(t - 59759)7 if SG <t ke =0,
ri(m)m;i(§e)X(t — Sp, < 1>) if Sy <t,kg=1,Jp =j€{0,...,n}
(3.25)
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where {J; 14 =1,2,...}, {k; : ¢ = 0,1,2,...} are respectively i.i.d. uniformly

distributed over {0,1,...,n}, and are i.i.d. symmetric Bernoulli 0-1, mutually
independent and independent of the jump process, and
29(t,€)
e(t, &) = 3.26

Define the number of generations to the first “virtual state” by
K=inf{n>0:k,=0}, K;,=NAK. (3.27)

Iteration of the stochastic recursion leads to

Nt
i(t, €) =Be,=eX(t,0) = Bey=e{ [ [ s, )M, (Gim1)mio1 - dlo(én,)
=1
K
+ H TJi s (ni)mJi—1(§i~1)1[Nt > K](p(t —So—-— SngKt)} (3'28)
i=1
where an empty product is assigned value one. Note that [x; = 1,4 =1,2,..., N;—

1] = [Ny < K] so that the two terms in (3.28) are complementary.

Theorem 3.1. Assume that there is a number B such that |4o(§)| < B, and
|G(¢,8)| < BA(£)/2,€ € R™,t > 0. Then the expectation

ﬂ(t,g) = E€9=§X(t» )
is finite for each £ € R™,t > 0.

The proof will follow from (3.28) via a series of lemmas. Throughout fy
denotes the probability density of the designated random variable Y.

For £ € R", let T¢ be an exponentially distributed random variable with
parameter A(§); i.e.

fre(s) = M€)e ®*  for s > 0. (3.29)
Lemma 3.1. For any £ € R™ and s >0

mo(§) fre (8) < mo(0) fr, (s)- (3.30)
Proof. The matrix A is positive definite, giving A(0) = € < e+ < A&, € >= A(§)
for any £ € R™. Then

mo(§) fr.(s) = %)in};e—k(f)s

mo(0) fr, (5)- (3.31)

O

For r > 0 let g(r,-) denote the density of a gamma random variable having

shape parameter r and scale parameter ¢; that is g(r,s) = €"s"~'e~/I'(r) for
s > 0. Also define

IN

€51
= _ > (. 3.32
O R V< A € > (3.92)

Since A is positive definite, « is finite.
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Lemma 3.2. Forany £ € R, j=1,...,n, and s >0
€m

m5(€)l 2, (5) < mo(0)a(:

Proof: First note that sup, ye_y2 = (2¢)~/2. Then for any £ € R", s > 0,
and j=1,...,n

)/29(1/2, 9). (3.33)

m;(E)lfr(s) = mo(0)elg;le O
< mo(0)aey/< AE € >e<AGE>s—es
< mo(O)ar e(2es) Ve~
= mo(0)a < )1/2 (1/2,5). (3.34)
O
Lemma 3.3. For >0
ﬂk 20 32
Proof: For j > 1
MG+0)=G-1) 5 Va2 G- =1() Y,
SO
ﬂk _ /82] ,62j+1
k%%l“(kﬂ-i—l) - 2y trg )
B 20
< Z e +1)(1+ﬁ)
_ 28\ p°
= (1+ —ﬁ)eﬂ . (3.36)
O

Remark The function Ey(z) = > oo, W&}‘:Jr—l) is the Mittag-Lefller function,
and E}(2) = e {1 + % Iy e~t"dt}, e.g. see Feller (1971), Podlubny (1999).
However the simple bound in the above lemma is adequate for the present

development.
Proof of Theorem 3.1: We can rewrite (3.28) as

KAN;
Wt,&) = Ee [ romma_, (&G-1)ldo(En,) 1N, <xk)
1
+o(t— 8o — - = Sk, Ek) 1N, >k (3.37)

where K is a geometrically distributed random variable with parameter 1/2,
independent of the &;’s and the S;’s; that is P(K = k) = 27%~! for k > 0.
Observe that for any £ € R™, j =0,...,n

5 ()] < ¢(R") := g < oo. (3.38)
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The hypothesized bounds on 4y and § along with P(K < oo) =1 give

) KAN;
(.6 < BB I almy, (6]

k
= BY Eed"[[Ims . (E-1)likan,=x- (3.39)
k>0 1
For k > 1, set
k
Ay = Eg H Img,_y (Gim1) 1 g AN, =k)
1
k

= E& H lmJi—l(é’i“l)l(l[N:=k,K2k] + 1[K=k, Nt>k])
1

k t
= E€H|mJ,-_1(£i_1)|(2"“/ fyioi g, (8)e €9
1 0

k-1 /0 fsg s, (5)ds) (3.40)

It is helpful to introduce the binomial random variable
k-1
Y=Y 1y,-q (341)
=0
with parameters k and 5. Setting mo(0) = M, and 8 = a(r/2e)'/?, Lemmas

3.1 and 3.2 give

Mg(1l,s) ifJ;_1=0

Imyg,_, (&=1)|fs,_.(s) < {,661/2Mg(1/2,s) if J_y £ 0. (3.42)

Combining this with the convolution properties of gamma densities gives

k—_zlk‘g(ﬁ—'__yk’s)' (3.43)

k
1:[ lmJi_l(gi—l)lfzg—1 Sm(s) < Mkﬂk_yke s

Thus

t
A, < 2~kMkE£ﬁk-Yke—&k—2y (/ g(w s)e"\(gk)(t_s)ds
— 2 ?
0

t T
4271 / / g(k R )A€ )e A E =) g dS)' (3.44)
o Jo

2
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This is bounded as follows:

t
kE+Y,
/0 g(_g_ﬁ,s)e_)‘(gk)(t_s)ds

1 (" k+Y
Sz/o g( 5 k,s)g(l,t—s)ds
1 k+Y;
(et) k:+Yk
(A 41
k+Y,c
2(et) =2
< W—) (3.45)
and
t
k Y}
/ / q( + E r)AER)e MG dr ds
0
t ¢
k Y;
:/ FLaRL + kA Y e <5k>r/ AEw)eEs s dr
t_ k+Y; )
:i/ of 2 E ) (1 = e ME ) gy
r=0
¢ EYE R4YR
/ crr- dr
>~ —o F(k+2Yk)
(et) 2" 2(et) "7
- < = (3.46)
Combining the above bounds one has
3Mb2* E—Yy P Yk ktYe
Ay, 47T1/2F(§—|—1)E&6 €z (et)
3 Me Bnt!/? + )
= ( k . (3.47)
ml/222(n+ 1) 't +1)
Then (3.39) together with Lemma 3.3 gives
it &)l < B+ Y q"A)
k>1
< 3B ( MG(Bntl/Q + t) )64%”'1) t(5n+t1/2)2
= T2 T12(n + 1)
B —n
= 31/2(1 F 2 (Bt  £))e ) B o (3.48)
O

It is convenient to introduce the Fourier dual operator L defined for £ € R™

by
L) = (< A6 > +Of(©) + —= - b f(O) — —
’ V2m 27

ex f(6), (3.49)
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where the middle convolution is componentwise, b f(¢) = (Jgn f(E— n)Bj(dn) :
1<j<n).

Corollary 3.1. Under the conditions of the Theorem 3.1 one has that 4(t, )
is a mild solution of (3.17).

Proof. Conditioning (3.28) one has by independence of {(&,, kn,Sn) : 7 > 1}
and Sy, kg, using the substitution lemma for conditional expectations, that

u(t, &) = Be,=¢(1[Se > tIX(t,0) + 1[Se < t]X(t,0))
= e Mgy (¢)
+E€<1>(1[Se <t ko= l]rJe (nl)mJe (g)X(t - Se’ <1 >))
+E¢_,. (1[Sp < t, k0 = 0]p(t — Sp,E<1>)X(t — Sp, < 1 >)).
(3.50)

|

4 Nonconstant Diffusion Coefficient and the Com-
plex Measure Conditions

In this section we explore the complex measure condition on the lower order co-
efficients when the highest order diffusion coefficient is not necessarily constant.
Since the results are somewhat exploratory, we restrict to one dimension and
consider the Cauchy problem

% =Lu+g, u(0,z)=ug(x) (4.51)
for
Lf(z) = (a(z)f(2))zz + (b(2)f(z))e + c(2)f(z) — f (z). (4.52)

Letting A(§) = e+ a({ 0})5 the Fourier transformed equation may be expressed
in the mild form

W8 =@ 1 [ Ao
0

£? N i X 5
{m /Ru(t —8,& —n)a(dn) + m /Ru(t —s,§& —n)b(dn)

T o € )+ = 5, ) (459)
where « is the complex measure defined by
. \/12_”(61({0})50 —a). (4.54)

For later notational convenience let

_ a({0})
v = ik (4.55)
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To make the probabilistic construction in Fourier frequency space under the
complex measure condition on the lower order coefficients we will require a
condition of the following form on the leading order coefficient a(x).
CONDITION A: Assume that & is a complexr measure and

a({0}) > |a|(R\{0}), (4.56)

where |a| denotes the corresponding total variation measure. One may note that
in the case of constant coefficient a(z) = a, Condition A is merely the condition
that a > 0.

The stochastic jump Markov process {£(t) : t > 0} and multiplicative func-
tional ) in this setting are defined as follows. First let g, @ denote the measure
and probability distribution defined by the coefficients b, ¢ exactly as in (3.18)-
(3.19) with dimension n = 1. Similarly, one defines

deé db
= — = — 4.57
To aQ’ T1 aQ ( )
precisely as in (3.20)-(3.21). In addition, let ag = ITX% be the probability
defined by normalizing the total variation measure of the complex measure «
defined above in (4.55). Now define

da

= oo (4.58)

T2

Next let {J; : i > 1} and {k; : 4 > 1} be mutually independent sequences of

i.i.d. symmetric Bernoulli 0—1 random variables as defined earlier for (3.25) with

n = 1. Additionally, let {o; : ¢ > 1} be a sequence of independent Bernoulli 0—1

random variables, independent of {J; : ¢ > 1} and {k; : ¢ > 1}, and distributed
according to the law

Ploy=1)=p= HEBMD ¢ o ) (459)

a({0})
For future reference, one should also note that p = v~!|a|(R).

Now the increments {n; : ¢ > 1} of the jump Markov process are i.i.d. and
independent of the above coin tossing sequences {J;}, {;} with

P(n; € dnlo;—1) = i—1a0(dn) + (1 — 0:-1)Q(dn). (4.60)

Accordingly the skeletal jump process starting at £, = £ is given by

k
§k=§—z7h’» kE>1. (4.61)
=1

Conditionally on the spatial random walk {{x} the holding times {Si : k > 1}
for the jump Markov process may be defined by specifying infinitesimal rates
A(&k), (e.g. see Blumenthal and Getoor (1968), Bhattacharya and Waymire
(1990)), where

L a{o})

A(§) =e Wor

€2 = e+ €% (4.62)
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Recall that € > 0 is a parameter of (4.52).
Finally, the multiplicative times functional ¥ is recursively defined with scale
factors

— . ifj=0,
A-p)y2ma©)’ 7

m;(€) = 4—(1_21,)@“@, ifj=1 (4.63)
£ if j =2,

pA(E)

and rescaled forcing term ¢(t,&) = 2((1 — p)A(€))~14(t,€), by the following
stochastic recursion

ﬁo(fg), if Sy >t
X(2,6) = o(t — Sp, &), %fS.9<t,I€e=O, '
’ ri(m)m;(&e)X(t — Se, < 1>) if Sg <t,kg =1,09 =0,Jp = j € {0,1}
ro(n)ma(&e)X(t — Se,<1>) if Sg<t,kg=100=1,Jp =35 €{0,1}
(4.64)
We are now ready to state the theorem in this setting.

Theorem 4.1. Assume that the diffusion coefficient a satisfies Condition A. If
b and é are complex measures and if there is a number B such that |40 (€)| < B,
and |§(t,€)| < BA(€)/2,€ € R™,t > 0. Then a mild solution 4(t,£) for the
Fourier transformed equation is given by the stochastic representation

a(t,€) = Be,—e(t,0), €€R™,t>0.

Proof. The focus is on the implied convergence of the expectation. We leave it to
the reader to use the strong Markov property of the underlying jump process to
verify the equation from the stochastic recursion defined by the times functional
X. To establish integrability first note that

Ira(n)| < lal(R) = |a|(R\{0})

and .
0<me(é) < (py) ' = M-
Thus
lra(mma(§)] < 1, Vn,&. (4.65)

Now with counting random variables K, Ny, and K defined exactly as in (3.27),
where N; is again the number of jumps by time ¢, one has upon iteration of the
stochastic recursion that

K
u(t, ) = Eg=e(t,0)= E§a=£HTJH(Wi)mJi_l(fi—l))l_Ui“
i=1
- (ra(mi)ma(&i=1))7 " ki1 {to (En, )1[N: < K]
+ ot —So — -+ — Sk,, €K, )1[N: > K]} (4.66)

where an empty product is assigned value one. Therefore, letting ¢ = ¢(R), one

has
k

ji(t,€)| < BY | Beyme [ [ lamui_s (G-1)['™ 71K A Ny = k],
k>0 0
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For each k it is helpful to introduce the mutually dependent pair of binomial
distributed random variables

k—1 k—1
X = 2(1 —o)l[Ji=1], Y= Z(l —0:)1[J; =0]. (4.67)
i=0 ;
Also in the case that o9 = -+ = 0x_1 = 0 set hy = 1, else let hy denote the

density of Z’g_l 0;5; conditional on the o;’s, J;’s, and §;’s. Then, proceeding
similarly as in the proof of Theorem 3.1, consider

k—1
A :=Ee,—¢ [ [ lams, (€)' LK A Ny = k]
0

k-1
< Bepe [] lams (€)' 1[N, > KIP(K > k)
0
k-1
= 27 Efe EqumJ {z / leg 1g
—k Xr+Y) _& ¢ X
< 2 M Bedama(O ) F [ g Vi)t - s)ds
ey 0 2
Xk
(1[7 + Y > 141X, =1,Y, = 0] + 1[X + Y = 0])
X x%'i‘yktx%—l—yk 1
< 27FE m X4V T (€ —+Y>1
< ¢o=¢1lqmo(0)] (26 ) e 1] > 1)

+qmo(0)( 7)1/21[)( =1, = 0] + p*}

$FEHYe—1

4q° 4 X
27* By { (e ) F (—— L 15+ Y > 1]

(1-pey” “(1-pv2r' T(3+Yi)
2q
+W1[Xk =1,Y; = 0] +p*}

Setting 8 = (14_‘11)) max{ (1_‘;)67, \/%}, we have

2-* (B F+Y X, kg pu_
A < G Pe—ep iy g T Y2 ) By 4 By,
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Thus we obtain

) t/\l) (Bt)F+Ye X,
8| < B Ee,— 1 +Y,>1
la(t, &I {;;) 5F(%+Y)[ k> 1]
n 2q + 2
Ver2-p)?  2-p
= Bt'(tAD) Z ﬂt) P(Xy 4 2Y; =n)
k>12<n<2k /2)
2B
1
*-2—11(\/_(2—1@)Jr )
Sy (BY2)F
< 2B(tA1)tE 1
: I R p‘r< R
< BtADB(L+ /2 E .
< B(tA +/26t/T)e 2 > \/_( )+1)
This establishes the desired convergence. O
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