
^-expansions and the generalized Gauss map

Santanu Chakraborty
Reserve Bank of India

and

B.V. Rao
Indian Statistical Institute

Abstract

Motivated by problems in random continued fraction expansions, we
study ^-expansions of numbers in [0,0) where 0 < Θ < 1. For such a
number θ, we study the generalized Gauss transformation defined on [0, θ)
as follows:

if a; = 0

One of the problems that concerns us is the symbolic dynamics of this
map and existence of absolutely continuous invariant probability.

AMS (MSC) no: 37 E 05; 60 J 05

1 Introduction

Suppose that μ is a probability on the real line. Consider the following law
of motion: If you are at x pick a number Z according to the law μ and move
to Z + x. Continue the motion with independent choices at each stage. This
is nothing but the familiar random walk. Suppose that by an error the law is
transcribed as : move to Z + ̂ , then what happens? To make sense of the
problem, from now on we consider the state space to be (0, oo). Let μ be a
probability on [0, oo) which drives the motion. If you are at x move to Z + ̂
where Z is chosen independent of the past and has law μ. This leads us to the
Markov process

Xo = x > 0; Xn+ι = Zn+1 + — for n > 0

where (Zn;n > 1) is an i.i.d sequence of random variables, each having law μ.
The purpose of the paper is to discuss this process.

2 Generalities

If μ is 50, the point mass at zero, then Xn — x or 1/x according as n is even or
odd. Unless x = 1 the process does not converge in distribution. For each x > 0
, \ iβx + δι/x) is an invariant distribution for the process. In fact any invariant
probability is a mixture of these. If μ — δa where a > 0, then the process starting
at x is deterministic and is the sequence - in the usual notation of continued
fractions - [x; ] , [α; x] , [a;a,x] , which converges to the number given
by the continued fraction [a;a,a,- •]. We leave the easy calculation involving
convergents to the interested reader. The point mass at this point is the unique
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50 θ-expansions and the generalized Gauss map

invariant distribution for the process. From now on we assume that μ is not
a degenerate probability, on [0, oo). It may however have some mass at zero.
Then Xn = [Zn; Z n _i, , Z\, x] has the same law as \Z\\ Z2, , Zn, x] and
consequently Xn converges in distribution to

simply denoted by \Z\\ Z2, Z3, ]. The almost sure convergence of the expres-
sion on the right side is argued as follows. Since Zi are i.i.d with strictly positive
mean, we have Σ Zn = oo a.e and for nonnegative numbers (αn) the continued
fraction \α\\ α2, α3, ] is convergent iff Σ αn = oo (Khinchin [9], Th 10,p. 10).
Since Xn converges to X^ in distribution irrespective of the initial point x we
have the following:

Theorem 1 (Bhattacharya and Goswami [1]):

(1) The Markov process Xn has a unique invariant distribution Π ; and Xn

converges in distribution to Π.

(2) Π is the unique probability on (0, oo) characterized by Π = μ * ^ in
the sense that whenever X, Z are independent random variables with X
strictly positive, Z ~ μ and X ~ Z + -^ f then X ~ Π.

In view of the last part of the theorem, each explicit evaluation of Π leads
to a characterization of Π as the unique distribution satisfying the convolution
equation above. It is in this context the problem was first discussed by Letac and
Seshadri [11],[12]. They observed that when μ is exponential then Π is inverse
Gaussian, thereby obtaining a characterization of the inverse Gaussian distribu-
tion. A systematic study of the markov process was initiated in Bhattacharya
and Goswami [1] motivated by problems in random number generation. They
showed , among other things, that Π is always non-atomic. An excellent review
is in Goswami [8].

3 Positive integer driver

One problem that concerns us here is the nature of the invariant probability -
whether it is absolutely continuous or singular. Since the invariant probability Π
is nothing but the distribution of XOQ = \Z\ Z 2, Z^, ], the problem reduces
to studying the nature of the distribution of Xoo Let us assume that the
driving probability μ is concentrated on the set of strictly positive integers. In
this case note that the representation \Z\(ω)\ Zi{ω), Z$(ω), • • ] is already the
usual continued fraction expansion of the number Xoo(ω). Well known results
about usual continued fraction expansions lead to an interesting consequence.
The range of 1/XQQ is contained in (0,1). Under the distribution of 1/Xoo,
the digits in the continued fraction expansion are i.i.d so that it is an invariant
and ergodic measure for the Gauss transformation. So it must be same as the
Gauss measure or must be singular to the Gauss measure and hence singular.
But as one knows the digits are not independent under the Gauss measure. So
the distribution of 1/Xoo is singular. Consequently the distribution of Xoo is
singular too. Thus,
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Theorem 2: Suppose μ is concentrated on strictly positive integers. Then Xoo
has singular distribution. This is perhaps known, but we have not found in the
literature. Thus we here have a naturally arising family of singular distribu-
tions.

4 Bernoulli driver

The arguments used above fail when μ has mass at zero. Due to the presence
of zeros, [Z\(ω)] Z2(ω), Z%{ω\ ] is no longer the usual continued fraction ex-
pansion of the number X^iμj). Let us assume that the driving probability μ
puts mass a at 0 and 1 — a at 1. Since each Z{ takes only two values 0 and 1,
it is not difficult to discover the continued fraction expansion of X^ω) This is
what we obtain now. Let us assume that Zχ[ω) — 1 or equivalently, consider
the set Ωi = {cϋ : Z\(ω) — 1}. Define the stopping times for the process (Zi)i>ι
as follows :

TQ(UJ) = First even integer i such that Zi(ω) φ 0.

rι(ω) = First odd integer i > τosuchthatZ;(ω) φ 0.

τ2(ω) = First even integer i > τ\ such that Zi(ω) φ 0 &c.

Let us now define,

α o (α;)=

Then, we have for a.e. w G Ω i , [αo(ω); αi(ω), 02(^)5 * ]• is the usual continued
fraction expansion of Xoo(ω). If Sk = X ] κ κ f c Zι, then a$ = 5T o_i; a\ = STl-\ —
STQ-ι; - - so that,

s
By the SLLN, we conclude that, lim Tk~ι converges to 1 — a a.e. Further,

k—>oo T^ — 1

To — 1, τ\ — To, T2 — τi, are i.i.d. random variables taking values 1,3,5, with

probabilities I—a; ail—α); α 2 ( l—a), .So, again by SLLN lim — = .
k—>oo k + 1 1 — α

Thus
1 ^

lim V^αifu;) = 1 + α for a.e. α GΩi.
2 = 0

Thus for almost every ω G Hi, the average of the digits in the (continued
fraction) expansion of Xoo(^) has a finite limit. This argument can be repeated
from the first nonzero Zz to get the same conclusion a.e. This shows that the
range of Xoo is Lebesgue null ([9], Th. 30, p. 63 or * below). In fact the proof
shows more.

Theorem 3:

(i) Let Ua be the distribution of Xoo when μ takes values 0 and 1 with prob-
abilities a and I — a respectively. Then each Π α is singular. The family
(Πα : 0 < a < 1) is a uniformly singular family.
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(ii) If μ is concentrated on the set of nonnegative integers and has finite mean
then XQO is singular.

Singularity of Π α in (i) above was shown by Bhattacharya and Goswami [1],
using again the properties of the Gauss transformation, by different methods.
The case when the driving probability μ puts mass a at 0 and mass 1 — a at
0 where 0 < 0 < 1, leads to the interesting concept of 0 expansions and a
generalization of the Gauss transformation.

5 θ - expansions

Throughout our discussion we fix a 0 with 0 < 0 < 1. We start with a discussion
of continued fraction expansion w.r.t 0, analogous to the usual expansion which
corresponds to the case 0 = 1.

Let x > 0. Let αo = max{n > 0 : nθ < x}. If x already equals aoθ,

we write x = [CLQΘ]. Otherwise, define r\ by x = a$θ -\ where 0 < — < 0.

Then τ\ > - > 0 and let a\ = maxjn > 0 : nθ < r i } . If τ\ = αi0, then we
0

write x — [αo0,αi0], i.e., x — αo0 Λ - . If a\θ < 7*1, define r 2 by r\ = a\θ Λ

where 0 < — < 0. So, r 2 > - > 0 and let α2 = maxίn > 0 : nθ < r 2 } . Pro-
r 2 0 ~ L " ~ J

ceeding in this way, either the process terminates at, say, n steps or it continues
indefinitely. In the former case, we write x = [αo0;αi0, ••• ,αn0] and we call
this the continued fraction expansion of x with respect to 0 terminating at the
n-th stage. In the latter case, we write x = [αo0;αi0,α20, •] and it is called
the infinite or non-terminating continued fraction expansion of x with respect to
0. From now on, unless otherwise mentioned, we refer to this expansion as the
continued fraction expansion of a number in (0, 00). Since during any discussion
a particular value of 0 is fixed, we shall omit the phrase 'w.r.t 0'. We shall now
briefly argue that the infinite expansion does converge to x. To do this, as with
usual expansion, we define the n-th convergent of a number x G (0, 00) as

7)
— = [αo0; a\θ-> , anθ\ n > 0.
Qn

In case x has terminating expansion, say, x = [αo#;αi#, ,«&#], then clearly
Pk

— — x. We make the usual convention that in this case

— = x for n > k.
Qn

When x < θ, we have α0 = 0 and instead of writing x = [0; a\θ, α2#, ], we
write x — \a\θ, α2#, ] which is same as writing, in the usual notation,

1
x —

1 a2θ + --

Let 0 < x < 0, x — [αi0,α20, •]. In what follows α n , pn and qn depend
on x. The following are routine to verify ( The stated identities hold for all n
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in case x has non-terminating expansion and they hold for n < k in case x has
expansion terminating at the k-th stage):
For n > 1,

and

pn = αnθpn-i +pn-2

qn = αnθqn-ι (5.1)

Following the convention of the usual continued fraction expansions, namely,
_i = l , p 0 = 0, q-ι = 0, q0 = 1, we arrive at

Pn-ιqn - Pnqn-i = (~l)n for n > 0

1

(5.2)

Let n > 1, and x = [α\θ, α2#, , αnθ H ]. Then a little algebra shows that

Pn

qn

+

+ 1

rn

1

1

1

(5.3)

qn{rnqn + qn-i)

Now, an+iθ < rn < (an+i + l)θ. Using these estimates in (5.4) and noting

(5.1(i)),(5.1(ii)), we get,

x —
Pn,

Qn
(5.5)

Observing that qo = 1 > θ and q\ — α\θ > θ, using (5.1(ii)), we obtain that
q.n > θ, Vn > 1. Further, (5.1(ii)) also gives

qn = αnθqn-ι + 9n-2 > θ2 + gn-2 Vn > 2

Using this inequality, we have, by induction on n,

(5.6)

Pn
As a consequence qn —> CXD. SO, from (5.5), | x | —> 0 as n—>oo. This was

already observed in Bhattacharya and Goswami [1]. We shall now improve upon
the estimate (5.6) which will be used later. To do this note that from (5.1(ii)),
qn > iβ2 + l)9n-2 for n > 1. Now using induction on n, we get,

qn> Vn. (5.7)

[αiθ,dϊθ, - •} arises as the continued fraction expansion of a number x smaller
than θ. It is easy to see that a sequence [αo^ αi^,^^? * •] arises as the con-
tinued fraction expansion of a number if and only if [αχ#, α2#, ] arises as the
expansion of a number smaller than θ. To understand the idea, note that, for
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the usual continued fraction expansion (case 0 = 1), [0; 2,1] does not arise as
the expansion of any number - the correct one being [0; 3] . In fact, in the usual
case this is the only restriction. More precisely [αi,α2, •] arises as the usual
expansion of a number smaller than one iff (i) each αι > 1; (ii) in case it is
terminating the last α& is strictly larger than one.

Let us start with the most simple case, namely, 1/0 is an integer w.r.t 0 -
i.e. 1/0 = nθ for some integer n > 1.

Theorem 4: Let 1/0 — nθ for some integer, say, n > 1. Then [αi0,α20, •]
arises as the expansion of a number smaller than θ iff

(i) each aι > n;

(ii) in case it is terminating the last ak is strictly larger than n.

Proof: Suppose [a\θ, α20, , a^θ\ is the continued fraction expansion of a num-

ber x < θ. Then nθ — - < - shows that a\ > n. Now - = a\θ H where
θ x x r 2

0 < — < θ implying as earlier α2 > n. Proceeding this way, we get that α̂  > n

for all i < k. Since r& = a^θ > - = nθ, we get α^ > n as claimed. Conversely,
6

suppose we have integers aι for 1 < i < k so that aι > n for i < k and α^ > n.

Then, since α^ > n, we have a^θ > nθ or < θ. Also, α^_i > n implies
akθ

that αfc_i0 H > nθ or [αfe_i0, αfe0] < θ. Proceeding this way, we can show
dkθk

[α^0, , akθ] < θ for 1 < i < k. Thus if we define x = [a\θ, , akθ] then x < θ
and indeed [a\θ, • , akθ] is the continued fraction expansion of x. Similar but
simpler argument applies to show that in the non-terminating case, it is neces-
sary and sufficient to have each α̂  > n. To consider a slightly more general case

suppose that - = [n\θ;n2θ]. Thus we have
θ

< θ <

(ni + 1)0 mθ

and
1

1
— -
n2θ

It should be observed that in such a case n 2 > (ni + 1). In this case [αi0, α20, • ]
arises as the expansion of a number smaller than 0 iff the following conditions
hold:

(i) Each ai > n\

(ii) In case an a^ = n\ then α i + 1 < n 2;

(iii) In the terminating case the last a^ must satisfy α^ > ^i

This can be seen as follows. Suppose [αi0, • , αfc0] is the continued fraction ex-
pansion of a number x < θ. If k = 1, it trivially follows that a\ > n\ as claimed.
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Let us assume that k > 2. Arguing as in the previous case, we obtain that

di > ni for each i and dk > n\. Suppose that for some i < k, αι = n\. Then

[diθ, di+iθ, , dkθ] < θ implies that d$ + [α i+i0, , αfc#j > n\θ Λ . But
n2θ

since aι = ni, this immediately implies [α;+i#, , α t̂f] > — - so that α;+i# +

2

[αϊ+20j , αfc#] < n 2 # and consequently, α i +χ < n 2 . Conversely, suppose that

αi, , αfe are integers satisfying the conditions of the claim. As in the previous
case, ak > ni implies [dkθ] < θ. Now if dk-ι > n i , dk-iθ -\ > n\θ H

dkθ Π2Θ

implying that [α/e_i^,αfc^] < θ. On the other hand, if α^_i = ni , then using

the hypothesis that dk < n 2 , we get dk-\θ H = n i ^ H > n\θ -\ .

dkθ dkθ Π2Θ

So, [dk-\θ, dkθ] < θ. One can now proceed as in the earlier case and show that

[d\θ, - ,dkθ] is indeed the continued fraction expansion of a number x < θ.

The non-terminating case is dealt with in an analogous manner.

D

The ideas used above, executed with a little care, will lead to a proof of the
following theorem which considers the case when - is rational w.r.t θ - i.e. it

θ
is a ratio of two polynomials in θ, with integer coefficients. We shall not go into
the details.

Theorem 5: Suppose that — = \n\θ\ n2#, , nmθ]. Then [d\θ, α2#, ] arises
θ

as the expansion of a number smaller than θ iff the following conditions hold:

(i) Each di > n\.

(ii) In case for some i > 1 and p < m, (α^+i, , di+p) = (ni, , np) then

we should have α^+p+i < n p + i ifp+1 is even while α; + p + i > n p + i ifp+1

is odd. Moreover if m is even andp-\~ 1 equals m, then α^+ p +i < n p +i.

(in) In the terminating case the last dk must satisfy dk > n\ and further if

for some even p < m, (i.e, p + 1 is odd) (α^-p, , α/c-i) = (^ij * >np),

then dk > %>+i

The case when - is irrational w.r.t. θ - i.e. has a non-terminating expansion
θ

can also be discussed in a similar fashion leading to the following theorem.

Theorem 6: Let - = [niθ; n2#, ]. Then [d\θ, d2θ, ] arises as the expan-
θ

sion of a number smaller than θ iff

(i) each di > n\.

(ii) In case for some i > 1 and p > 1, (α^+i, , di+p) = (ni, , np) then

< n p + i if p + 1 is even while α^+p+i > n p + i if p + 1 25 odd;

(Hi) In the terminating case the last dk must satisfy dk > n\ and further if for

some evenp > 1, (i.e, p+ 1 is odd) (dk-p, ,αfc-i) = (ni, ,n p) then,

The above discussion gives necessary and sufficient criteria for an expression

; d\θ, - - ], to be actually the continued fraction expansion of a number. How-
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ever these conditions depend on the expansion of - . More precisely the condi-
θ l

tions depended on the sequence of integers ni, 712, where - = [n\θ; n20, ],
u

It is natural to enquire as to how the expansion of - itself looks like. This is
θ

what we do in the next section.

6 Expansion of 1/(9

We shall now discuss the following problem: Given a finite sequence of integers

ni, Π2, "' > nk, find conditions so that there is a number 0, 0 < 0 < 1, such that

- = [m0;n20, ,Πfc0]. In case such a number exists, is it unique? Unfortu-

nately we do not have the complete solution. One can easily observe that when

such a 0 exists each πi must be at least as large as n\ and n^ > n\. However

this is not a sufficient condition. For example we can not have - = [20; 30], a
V

simple algebra shows that the correct expansion is - = [30;].

u

The situation k — 1 is very simple. In this case for any integer n\ > 1 there

is indeed a unique 0 and it is given by 0 = 1/y/rϊϊ.
The situation k = 2 is a little more involved. Note that the quadratic in 0,

namely, - = ni0 H can always be solved for 0; but it does not ensure that
0 TI2Θ

the resulting - has the required expansion. In fact we must necessarily have

nz > ni + 1. To see this, observe that if nχ0 H is the expansion of - , then
7 i 0 "

we have - > ΠΛΘ and — - < 0. so that n 2 > n\. Further if n 2 = ni + 1, then
0 n20

+ 1)0

reduces to - = (n 1 + 1)0, which is not the required expansion. Thus we must
0

have ri2 > n\ + 1. Moreover when this condition holds there is such a 0 and it
is given by 0 = y/(ri2 — l)/niΠ2. Indeed, for this 0

1 Λ n\ Λ 1
0 = m 0 + — λ — θ = m θ +

1
0 m 0 +

θ Π2 — 1 TΪ2 — 1

Further such a 0 is unique, because the quadratic equation to be satisfied by 0
has only one positive root.

The situation k — 3 is more complicated. It is necessary to have ri2 > n\
and also nz > n\. Further when this condition holds there is such a 0 and it is
given by

/ \/{nι + n 3 - n2n3)
2 + 4nin 2 n 3 - (m + n 3 - n 2 n 3 )

V = 1/
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In fact the equation to be satisfied by θ is of fourth degree having two nonreal
complex roots, one positive and one negative root. Thus such a θ is unique as
well. With this choice, 1/θ has the required ^-expansion. Thus we have proved

Theorem 7:

(i) For the existence of α number 0 < θ < 1 such that 1/θ has the θ-expansion
[πiθ; 7i2#] it is necessary and sufficient that ri2 > ni + 1. When this holds,
such a θ is unique.

(ii) For the existence of a number 0 < θ < 1 such that 1/θ has the θ-expansion
[n\θ\77,2$,ri3#] it is necessary and sufficient that rt2 > n\ and n% > n\.
When this holds, such a θ is unique.

However the situation for values of k larger than 3, eludes us. For the exis-
tence of a number θ, 0 < θ < 1 such that 1/θ has the ^-expansion [n\θ] n<ιθ, , n m #]
the following conditions appear to be necessary and sufficient:

(i) ni > ni for i = 2, m where as n; > n\ for 2 < i < m.

(ii) If for some i and p with i + p < m, (ni+i, , n^+ p) = (ni, , n p ) , then
we should have n ^ + p + i < n p +i if p + 1 is even where as n ; + p + i > n p +i if
p + 1 is odd.

Before proceeding further, we mention that in the literature, there exist
several generalizations of the usual continued fraction expansions. See, Bissinger
[3], Everett [7] and Renyi [14] Kraikamp and Nakada [10] and the references
therein.

7 Generalized Gauss Transformation

Recall that the Gauss transformation on the interval [0,1) associated with the
usual continued fraction expansions is defined by

U(x) = \ x [χl

V J \ 0 if x = 0

The Gauss measure μ defined by dμ(x) = - — dx on [0,1) is ergodic

and invariant for U [2]. Further

( x αi + h α n

(*) > oo a.e.

lim — log qn = 7 a.e. for some finite number 7,
n—>-oo n

As in section 5, an are the digits in the continued fraction expansion and
Pn / Qn is the n-th convergent. And a.e. refers to μ, or equivalently to Lebesgue
measure. These properties play a crucial role in [1].
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The analogue of this transformation for the θ expansion is the transformation
T - referred to as the generalized Gauss transformation - defined on [0, θ) as
follows :

T(x) =

For several values of θ < 1 it was shown in [5] - by using the concept of Markov
maps - that T has an ergodic invriant measure equivalent to Lebesgue measure
and moreover (*) and (**) hold. We shall not go into the details for two reasons.
First, there may be simpler argument. Second, even after establishing these
properties , which are no doubt interesting, we have not been able to draw
conclusions about the distribution of X^. Theorems 4, 5, 6, and 7 are nothing
but a description of the symbolic dynamics of this transformation. As remarked
to us by Professor R.F Williams, this transformation is piecewise C2 and is
expanding - with derivative (in modulus) bounded below by 1/θ2. By using
well -known results (see [6] or perhaps implicit in [14]) we get.

Theorem 8: The generalized Gauss transformation T on [0, θ) defined above
admits an absolutely continuous invariant measure. A tractable special case of
this transformation will be discussed in the next section.

Before proceeding further, we remark the following. One can define a map
on [0, θ) to itself by putting U\{x) = 0(f - [f ]) and one can also define a map
on [0, | ) to itself by putting [^(x) = \{j^ — ί^D Obviously, these maps are
conjugate to the Gauss map U on [0,1). However, the map T that we defined
above is different from U\ and U2 and this map Γ is relevent for our discussion.
We could not see if this is conjugate to the Gauss map U. Professor Y.Guivarch
informed us that for several values of #, T and U have different entropies and
hence can not be conjugate.

8 Invariant Measure for T when — e iV

In this section we assume that —r E W. Thus for some integer, say /, - = W.
0 0

Thus - has continued fraction expansion terminating at the first stage itself,
u

- = [lθ]. Throughout this section θ and hence the integer / is fixed.
u

We shall now extend the usual argument (see Billingsley [ 2] ) to get an
absolutely continuous invariant measure for the above transformation.
In fact, we claim that

dP(χ) = Γ^TTT -τr—dx

which is same as saying

dP{x) =
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is the required invariant measure for T. In the present case, we are lucky enough
to explicitly write down the invariant measure which is perhaps not possible in
general.

Since we could not see any direct way of connecting the transformation
T with the usual Gauss transformation {/, we shall verify the above claim by
carrying the same steps as in Billingsley referred to above. In order to show that
T preserves P, it is enough to show that P[0, Θu) = P(T-λ[0, θu)) for all u G
[0,1).

0 0 1 1
Since T~ι [0, θu) = I ) (— —, — ) (equality is upto a set of Lebesgue mea-

I Kι ~τ~ U)U rvU

sure zero), it is enough to verify the following :

The sum on the right side, after evaluation of the integrals, is a telescopic
I + u

sum which equals log ( ) same as the left side.
L

We now show that P is ergodic too.

As in Billingsley[ 2], we introduce the sets Δ α i j α 2 j . . . >αn and the maps /0αi,α2, ,αn

[0, θ) —> [0, θ) as follows. Δα i > α 2 j... ? a n is the set of all x such that αι{x) = αι for
i = 1, 2, , n. In view of the discussion in section 5, Δ α i j α 2 ) . . . ^n

 m a y be empty
for some n-tuples (αi, α2, , α n ) . In what follows we assume that Δα i > α 2 )... ^n

is non-empty for the n-tuple (αi,α2, * ̂ αn) under consideration. ψαi,α2, ,αn

is given by,

1
• + anθ + t

Then Δ α i 5 α 2 Γ . . j α n is the image of [0,0) under <0αi,α2, ,αn O n e c a n show

that ψaiia2i-tan(t) = Pn + tVn~1 for t e [0,0) just like in (5.5). Recall that

ΐ)

— = [αi0,α20, , αn0]. Also -0αi α 2 ... αn(ί) is decreasing for odd n and in-
Qn
creasing for even n. So,

' Γ Pn Pn+θpn-l 1 .-
— , — if n even,

L Qn Qn + Vqn-i J

I Γ Pn+θpn-l Pn 1 .- , ,

, — if n odd.
I L Qn + 0^n-l Qn J

Using (5.2), we see,

A ( Δ α i | O a , - , O n ) = _f , (8-1)

where λ, as usual, denotes Lebesgue measure.
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Let us denote Δα i > α 2 j... ) α n and ψαi,α2, ,αn by Δ n and ψn respectively. Here
wefixαi,θ2, ,α n Then Δ n has length | ψn(θ) — ψn(Q) | . Also,for 0 < x <
y < θ, the interval {ω : x < Tn(ω) < y} Π Δ n has length | ψn(y) — φn{x)

So, using the notation, X(A\B) = λ(A ΓΊ B) / λ(B) , we have,

v — x
In absolute value the numerator equals -. r-, r and the de-

(qn + xqn-i)(qn + yqn-i)
θ

nominator equals — -.

After some algebra,

Ψn(y) - Ψ n ( χ ) y - χ

Now -^— > θ and hence, the right hand side of (8.2) > ~^-.
qn-ι 2Θ

Again, — ^ < \ so that 1 - ^ ~ ^ 9 " - 1 > - and hence the right
qn + θqn-i ~ 2Θ qn + θqn^ ~ 2 6

hand side of (5.2) is < 2^y~x\ Thus,
θ

Hence, for any Borel set A also, we have,

λ(A)

~w-Λ(τ w\*«>^—r-
Now, since 0 < x < θ,

1 θ 1 θ θ

( 8 _ 3 )

log(l + 6»2) 1 + θ2 ~ log(l + 6»2) 1 + to - log(l + 6»2)'

Hence, for any Borel set M, we have,

(8 4 )

So, λ(M) < ^ T - l o g ( ! + ^2)-P(M) and λ(M) >

Therefore, using these inequalities together with (8.3) and (8.4), we get the

following :

Cι(θ)P(A) < P(T-n(A)\An) < C2(Θ)P{A)

where C\,C<ι are constants depending on θ only. Now if A is invariant, the
above inequality becomes

Ci(θ)P(A) < P(A\An) < C2(Θ)P(A).

Assuming P(A) > 0, we get,
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i n ) < P(Δ n | i4) < C2(θ)P(Δn).

Hence, for any Borel set E,

Ci(θ)P(E) < P{E\A) < C2(Θ)P(E).

Taking E = Ac, one gets P(AC) = 0 so that P(A) = 1. Therefore, Γ is
ergodic under P, as claimed.

We now prove (*) and (**) also hold - again following Billingsley closely.
By ergodic theorem, if / is any non-negative function on [0, 0], integrable or

not, we have,

1 ?~ί 1 Γθ βf( )

n - ^ o o n ^ log(l-h#2)70 1 + θx
k=0

Taking / = αi, the right hand side becomes,

l + <92) 7 0 l + fe X~\^{ log(l + <92) y ^ g T

Thus,
n—1 n

lim S^ αι(Tk(ω)) = lim y^α f c(cj) = oc a.e. [Pi.
n—>oo

This proves (*). Towards (**), first notice that,

ΓTT^T (8-5)
Ί / t v y fc=i

Also, from (5.5),
I Pn

~ qn{x)qn+1{x)

Or,
T. 1 1

Or,

7ϊ i /Ί9\<n / — /1 i Z)9\TΪ \ /

9n

So, using (8.5) and (8.6),

| l o g [ α k ( ω ) θ , α k + i ( ω ) θ , •••] -

M ) - log[αi(Γ f c - 1 M)β,α2(T f c - 1 M)0, • • , α n _ *
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Using this in (8.5) we get

i, _J_ 1,
n °g

 ς ( ω ) n 1O
n ς n ( ω ) n =

for some numbers Cn?fc which are smaller than one in modulus. Moreover since

V^ 7 2\ϊ *s fin^e? the s e c o n d term on the right side converges to zero.

The ergodic theorem implies that the first term on the right side converges

to -Γg / —dx which is finite, say, 7. This proves (**). Thus we have

the following:

Theorem 9: Let θ = —=, I G IN'. Then μ given by

is invariant and ergodic for the generalised Gauss map T on [0, θ) defined by

I 0 if x = 0

Moreover, for a.e. x — [aiθ, α2#, ] we have,

r αi H \-anhm = 00.
n->oo Π

Further, there is a finite number 7, such that if — denotes the n-th convergent

of x, then for a.e. x, we have,

lim - log qn = 7.
n—>-σo 77,

9 Remarks

We conclude with few remarks. The entire investigation above is directed to
finding the nature of the distribution of the random continued fraction

Xoo = [Z\ Z2, Z%, ]

where (Zi) is a sequence of nondegenerate iid random variables with values in
[0, (X)). It makes sense to talk about the expression even when the variables are
not identically distributed.

Thus assume that (Zi) are independent random variables with values in
[0,oc). By the zero - one law, we know that ΣZn is either almost surely
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finite or almost surely infinite. In the first case the continued fraction does
not converge (K, Theorem 10, page 10). So let us consider the case when it is
infinity almost surely. Then XOQ is defined a.e. The question is whether one
can establish results similar to sums of independent random variables.

Towards this end, suppose that each Z{ is discrete. One can show that
the purity law of Jessen - Wintner holds. Here is the argument which is an
adaptation of a well known argument - see for instance [4]. Let S denote the
range of all the variables Z^. Note that S is a countable set. Put

D = SU (~S) U {0} = {x : x G 5 or - x G S or x = 0}

For any two sets A and B of R , let A + B = {x + y : x G A,y G B},
B+ = {x : x G J5, x > 0} and 1/B = {x : x = 0 or x = \/y for some y G
B}. For any Borel set B c [0, oo) define £ 0 = (B + £>)+ U (1/5) and in
general for n > 0, let £ n + 1 = (Bn + £>)+ U (1/Bn). Finally, B ^ = U n > 0 £ n .
Note that D being countable, these are all again Borel sets. Moreover if B
is countable then so is B^ and if B is Lebesgue null then so is i ^ . We
claim that for every Borel set B the event (Xoo G .Boo) is a tail event for the
sequence (Z*). Indeed if \Z\\ Z2, Z 3, ] G S n , then [0; Z 2, Z3, ] G £ n + i and
[Z2; Z3,' ']e Bn+2. Conversely if [Z2; Z3, ΐ| G Bn then [0; Z2, ̂ 3, ' ] ̂  £ n + i
and [Zi;Z 2,Z 3, ] G 5n+2 Thus for any Borel B, the event (X^ G J5oo)
has probability one or zero. If for some countable B this has probability one
then Xoo is discrete, otherwise it has continuous distribution. Suppose it is
continuous. If for some Lebesgue null B, this event has probability one then
Xoo is singular, otherwise it has an absolutely continuous distribution. Thus we
have

Theorem 10: If Zi are independent discrete nonnegative random variables with
Σ Zi = °°; then the law of the continued fraction Xoo = \Z\\ Z 2, Z 3, ] is pure.

Suppose that the sequence (Zi) is equivalent to a constant sequence in the
sense of Khinchin - that is, there is a sequence of numbers (zι) such that
ΣP(Zί Φ Zi) < oo. Then it is clear that X^ is discrete. Perhaps the con-
verse is also true as in the case of sums (see Levy [13]).
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