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Abstract

Differential equations have long been used to describe the motion of
particles. Stochastic differential equations (SDE)s have been employed
for situations where randomness is included. This present work is mo-
tivated in part by seeking to describe the motion of mammals moving
in a constrained region. Interesting questions that arise include: how to
write down a pertinent (bivariate) SDE, how to include explanatories, and
boundaries and how to simulate realizations of a process?

1 Introduction

Differential equations have long been used to describe the motion of particles and
stochastic differential equations (SDE)s have been employed for situations where
there is randomness. Our work is motivated in part by the case of ringed-seals,
elephant seals, cows, elk and deer. The last three are moving about together in
an experimental forest in Oregon.

The study was influenced by emerging data sets in wildlife biology. Biologists
and managers wish to use these data sets to address questions such as: how
to allocate resources, can different species share a habitat, are changes taking
place? One large experiment, Star key, is described in [6] and [23].

There are technical questions arising of interest to both probabilists and
statisticians. Useful tools include: differential equations (DE)s, stochastic dif-
ferential equations (SDE)s, reflecting stochastic differential equations (RSDE)s,
and potential functions

The paper includes review and the results of some elementary simulations,
particularly for the case of constrained motion having in mind future data analy-
ses. The work is preparatory to employing simulated realizations of SDE models.

The sections of the paper are: Introduction, Some wildlife examples, Equa-
tions of motion, Stochastic differental equations, The constrained case, Results
of some simulations, Several particles, and Discussion.

2 Some wildlife examples

The work of the paper, particularly the need to consider bounded domains, may
be motivated by some examples from wildlife biology.

Figure 1 shows the motion of a ringed seal as recorded in the Barrow Strait,
North West Territories. The animal is constrained within an ice-covered lake
that has several air holes. The trip starts at the dot. The animal dives to the
bottom, swims around then returns to the air hole. It also looks at another air
hole. The locations are available at irregular time intervals. The researchers
were concerned with the animal's navigation, foraging and use of its underwater
habitat. To study its navigational sense the eyes of the animal were covered
during the dive graphed. The ecology of ringed seals is described in [14].
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Figure 1. A ringed seal swimming about in an ice-covered lake,
indicates the starting location.

The dot

Figure 2 shows the noonday positions of an elephant seal that started out
from and returned to an island off Santa Barbara [9]. The dots are the estimated
noonday positions. The outward and the inward journeys are shown. Also shown
for comparison is a great circle path. The animal's path fluctuates about it. The
natural characteristics of the elephant seals are described in [28].

Figure 3 shows the estimated locations of an elk moving about in the Starkey
Reserve in Eastern Oregon. There is a high benign fence about the reserve. The
animal's track is estimated by the curve of broken line segments, the brokedness
reflecting the sampling at disparite times. The positions are estimated about
every 1.5 hours. The animal keeps moving towards the fence on the southwestern
side of Starkey. Details of the experiment may be found in [6].

3 Equations of motion

Differential equations have long been used to describe the motion of particles,
see for example [12]. To begin consider one particle moving in the plane. Denote
its location at time t by r(ί) = (x(t),y(t)). Suppose that there is a potential
field, H(r,t). Such an H controls the direction and speed of the particle. In
particular it may be used to describe both attraction and repulsion, for example
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Figure 2. An elephant seal's migration path. The dots are the midday posi-
tions.

H(r) = |r—a|2, leads to attraction of the particle to the point a while l/|r—a|2,
leads to repulsion from a. Figure 4 includes a perspective plot of an attractive
potential in the top left panel.

Nelson, [19], Section 10 discusses the description of such motion. Letting v
denote velocity the equations he sets down are:

dr(t) = v(t)dt

dv(t) = -βv(t)dt - βVH(r(t),t)dt

Here V is the gradient V = (d/dx, d/dy). The quantity —βVH is the external
force, and β the coefficient of friction. In the case that the friction β is large
the equation is approximately

dr(t) = -VH(τ(t),t)dt

This leads to the usual form taken in the study of SDEs, see (2) below.
If H is given, the force field F is —VH. If there exists an H such that

F = — VH then the field F is called conservative. Writing F = (Fx,Fy) a
necessary condition for F to be conservative is

<Λ
 χ — o yoy ox

If the domain is simply connected, this is also also sufficient and one has

(1)

,y) = /
J(a,b)

F-dr
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Figure 3. An elk roaming about the fenced Starkey Reserve. The white blobs
are fenced-off areas.

see [29]. The "•" here indicates a line integral.
But, does an H exist? One may use (1) as a check. The Starkey Reserve is

not simply connected, see the blobs in Figure 3. Ignoring this, (the scientists
said that the fences around the blobs had fallen down), one data analysis, [6],
did not rule out the possibility of the existence of a conservative potential field.

4 Stochastic differential equations

Let {B(t)} denote a bivariate Brownian motion. Given the functional parame-
ters μ and Σ consider the equation

dτ(t) = μ(r(t),t)dt (2)

Conditions for the existence and uniqueness of solutions may be found in Bhat-
tacharya and Waymire [4], Stroock and Varadhan [30] and Ikeda and Watanabe
[13] for example. To tie in with the material of the previous section it may be
the case that

μ(r,ί) = -WΓ(r,ί)

for some H.
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The motion of {r(t)} may be periodic, for example when there is a seasonal
or circadian effect. The motion may be bounded. The parameters μ and Σ may
include explanatories, e.g. time of day, distance to nearest road.

4.1 Interpretations

Consider the model (2). Let Ht = {r(u),t, u < t} denote the history of the
process up to and including, t, then one has the expressions

E{dτ(t)\Ht] « μ(r(t),t)dt

vαr{dr(t)\Ht} « Έ(r(t),t)dt

As well as providing interpretations these relations suggest how μ and Σ might
be estimated given data. Examples are developed in [8].

4.2 Solutions and their simulation.

By a solution of the SDE is meant an r(t) existing given the Brownian process
{B(ί)}, see [4]. Often the way the existence of a solution is demonstrated
suggests an algorithm for simulating the process.

Let {r(t)} denote an approximation sequence and consider the so-called Eu-
ler scheme. It is

μ(i{tk\tk)(tk+1-tk) + Σ(r(ί f c),ί f c)(B(ί f c + i)-B(ί f c)) (3)

with an initial value r(£o), a discretization {tk} of the interval and k — 0,1, 2,....
Perhaps the tk will be equi-spaced. The points may be connected by line seg-
ments. This and other schemes are investigated in [15].

Next we consider the case where the motion of the particle is constrained.

5 The constrained case

The motion of an animal may be restricted to a region. The ringed seal was in
a lake, the elephant seal in a layer at the Earth's surface, and the elk's domain
had a high fence about it.

In what follows: a domain D will be given, with boundary dD. The con-
straint may be formalized as requiring r(t) to be in the closure D for all t

5.1 An example: diffusion on a sphere

Figure 2 shows the path of an elephant seal. Here the motion is confined to the

surface of the Earth, really to a layer at the surface.

The problem may be formalized as follows: suppose that a particle on the

sphere is migrating towards a target at an average speed δ and that the particle

is subject to Brownian disturbances of variance σ2.

In the case that δ = 0 this is the so-called spherical Brownian motion that

was studied by Perrin [20].
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In [5] the following equations were set down letting θ and φ be the colatitude
and longitude relative to the target with 0 < θ < π and 0 < φ < 2π. With
(Ut, Vt) 2 dimensional Brownian motion, consider the process

2

/ + σdUtdθt = ( δ + o / α ) d

2 tan θt

dφt = -β-ηrdVt
sin θt

Estimates of the parameters, including the variance of measurement noise, are
given in [9] for one data set. In the computations the likelihood function is
estimated by simulation.

5.2 Some simulation methods

There are a number of papers developing the existence and properties of vector
diffusions in restricted domains and there are a few that develop simulation
methods. References are given below.

Sometimes the parametrization does the constraining. A simple univariate
example might involve the path being positive. This could be implimented by
writing the process as the exponential of an unconstrained process. In the case
of the elephant seal the variables employed did the constraining to the surface
of a sphere.

To handle the constrained circumstance researchers often write

dτ(t) = μ{r{t),t)dt + Σ(τ(t),t)dB(t) - dA(r(ί),ί) (4)

where A is an adapted process of bounded variation that only increases when
r(ί) is on the boundary 3D. Its purpose is to reflect the particle back to the
interior of D.

Looking for a solution to (4) with appropriate conditions is the so-called Sko-
rohod's problem. Various results have been obtained concerning the existence
of solutions, references include: [30], [17], [1], [10], [24], [31], and [25].

Simulations are useful for: program checking, likelihood computation, boot-
strapping, and estimating H amongst other things. Three methods are de-
scribed next. These methods are illustrated in Section 6.

A basic point is that one cannot simply use (3) and throw away a point if
it goes outside the boundary for doing so would bias against certain types of
behavior.

Method 1. Build a sloping steep wall. That is have a potential term H rising
rapidly at the boundary dD, when moving from the interior. This leads to the
SDE

dr(t)= μ(r(t),t)dt + Σ(r(ί),ί)dB - VH{γ{t),t)dt (5)

The time sequence {tk} will be increasing and B(£fc+i) — B(t^) written
\/tk+i — tk Zfc+i where the Z^s and their entries are independent standard
normals. As above the approximant to the value at time tk will be denoted
r(ίfc). It is seen that Euler's method given at (3) may be used directly to obtain
an approximate solution as in,
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τχ(tk) + μ(rχ(tk),tk)(tk+1-tk)

+ Έ(rx(tk),tk)y/tk+1-tkZk+ι - VH(r(tk),tk)(tk+1-tk)

with e.g. iϊ"(r) = αd(r, cλD)̂  for d distance and scalars α, /?.
In the description of the next two methods ΐljj will denote the projection

operator taking an r to the nearest point of D.

Method 2. Penalization scheme. With λ j 0 let βχ(r) = {r - Π^
An approximate solution is now generated via,

1-tk Zk+λ - βχ(r(tk))(tk+1-tk)

Some points may lie outside of D, but small λ brings them close.

Method 3. Projection method. In this case the sequence of approximations
to the solution is

UD(r(tk) -f μ{τ(tk),tk)(tk+1-tk) + Έ(τ(tk),

These values do lie in D. The function A of (4) may be approximated by

tk<t

By a special construction for the case of hyperplane boundaries Lepingle [16]
gets faster rates of convergence. He remarks that the constructed process might
go outside D during some interval tk to tk+\ and provides a construction to
avoid this.

Some comparisons
From equation (4)

dr = μdt + ΣdB - dA

while from (5)
dr = μdt + ΣdB - VHdt

so one has the connection
dA « VHdt

A crucial difference however is that the support of dA is on the boundary ΘD
while the added term VH may be nonzero inside D.

References for specific methods of simulation are: [18], [21], [22], [26]. As-
mussen et al. [2] find that the sampling has to be suprisingly fine in the one-
dimnsional case if the Euler method is used. They suggest improved schemes.

One can speculate on how the animals behave when they get to the boundary.
They may walk along it for a while. They may run at it and bounce back. They
may stand there for a while. This relates to the character of the reflections
implicit in the simulation method employed. Dupuis and Ishii [10] allow different
types of reflections, including oblique. Ikeda and Watanabe [13] allow "sticky"
and "non-sticky" behavior at the boundary.
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6 Some simulations

Figure 4. Simulation of a region of attraction at (0,0) and a circular boundary.
The top left hand figure is the potential function employed, H. The top right
is a simulated trajectory using Method 1. The bottom left used Method 2 and
the bottom right Method 3.

To get practical experience, some elementary simulations were carried out.
A naive boundary, namely a circle was employed to make obtaining the result
of a projection easy.

Figure 4 shows results for the three methods. There were n = 1000 equi-
spaced time points and in each case the same starting point and random numbers
were employed. The potential function, μ, used is shown on the top left panel
of the figure. Its functional form is a standard normal density rotated about
the origin. The boundary is taken to be a circle of radius 1.

The top right panel shows the result of Method 1. The term added to the
potential function to force the particle to remain in D is proportional to

\ - 3

This function rises to oo on 3D. The path certainly stays within D and is
attracted towards the center. Since the term added is not zero in the region
D one is obtaining an approximate solution. When the point moves near the
boundary it is repulsed. The bottom left panel shows the result of employing
Method 2. The penalization parameter λ was taken to be tk+i — ίfc I*1 this
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case the trajectory goes outside of the circle making the method's approximate
nature clear. Of course, by choice of parameters one can make the excursions
smaller. The bottom left panel shows the result of employing Method 3, i.e.
projection back onto the perimeter of points falling outside. The path stays in
the circle.

We learned that the methods were not that hard to program and Method 1
was perhaps the easiest. The running times of the three methods were compa-
rable. Methods 1 and 3 lead to paths in D. The paths generated by the three
methods are surprisingly different despite the random number generator having
the same starting point in each case. The presence of the boundary is having an
important effect. The path behavior is reminiscent of the sensitivity to initial
conditions of certain dynamic systems.

7 Several particles

We begin by mentioning the work of Dyson, [11], [27]. For J particles moving
on the line Dyson considered the model

dxAt) = g Xjit)- Xtit)
dt +

j = 1,2,....,J
This corresponds to the potential function

This function differs from the models considered previously in the paper in being
random. One notes that there is long range repulsion amongst the particles and
they will not pass each other with probability 1.

Spohn [27] considers the general process

dxj(t) = - -J2H'(xj(t) - Xi(t))dt + dBj{t)

where H is a potential function. He develops scaling results and considers
correlation functions and Gibbs measures.

Figure 5 presents a simulation of Dyson's process for the case of 2 particles
and σ = .1. In the figure one sees the particles moving towards 0 repeatedly,
but consequently being repelled from each other.

Consider next a more general formulation. Consider particles moving in the
plane. Suppose there are J particles with motions described by {rj(ί)}, j =
1,..., J. Collect the locations at time t into a 2 by J matrix, s(i) = [rj(ί)] and
set down the system of equations

dτj(t) = μά{s{t),t)dt + ^(s(t),t)dBj(t), J = 1,2,... (7)

with the Bj independent bivariate Brownians. The Dyson model (6) is a par-
ticular case, with special properties.

The components may all be required to stay in the same region D. Questions
of interest, e.g. the interactions, now become questions concerning the entries
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Simulation of Dyson model for 2 particles
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Figure 5. A simulation of Dyson's model (6).

of μ and Σ. Attraction and repulsion might be modelled, e.g. attraction of the
animals i and j via setting

μij(s(t)) = -v\τi(t)-rj(t)\2

One may be able to express the strengths of connection. One might study the
properties of the distance \ri(t) — Tj(t)\ to learn about the dependence properties
amongst the particles. The /x, Σ might include distance to the nearest other
particle. There are phenomena to include - animals lagging, clumps, repulsion,
attraction, staying about the same distance, ... Lastly there may be animals of
several types.

The simulation methods already discussed may be employed here. With
data, parameters may be estimated and inferences drawn, e.g. one can study
differences of animal behavior. It does need to be remembered that behavior
may appear similar because both particles are moving under the influence of
the same explanatories rather than inherently connected as in the model (6).

8 Discussion

The paper is principally a review in preparation for statistical work to come.
SDEs are the continuing element in the paper. They provide a foundation for the
work in particular they offer processes in continuous time, there is an extensive
literature, and they have been studied by both probabilists and statisticians.
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To a substantial extent the concern of the paper has been with the effect of
boundaries. It turns out that there are a several methods for (approximately)
simulating processes that are constrained. A small simulation study was carried
out to assess relative merits.

Certain practical difficulties arise. These include: choice of sampling times,
choice of parameter values, goodness of approximation, the possible presence
of lags in a natural model, and the finding of functional forms with which to
include explanatories

The regularity conditions have not been laid out. They may be found in
the references provided. One can argue that the results are still far from best
possible for there is a steady changing of assumptions e.g. re boundedness,
convexity and closure.

Many problems remain. There has been some discussion of the case of inter-
acting animals here and in [7]. This is a situation of current concern. In practice
it seems that often the process can be only approximately Markov for once the
animal has finished some activity it seems unlikely to start it again immediately,
e.g. drinking. This means one would like equations including time lags. It is
easy to set down such equations, but not so easy to get at the properties of the
motion. As an example one might consider

drι(t) = μι(r2(t — τ))dt + noise

for some function μ\ and lag r. The deer may be following the elk at a dis-
tance. There are analytic questions such as the expected speeds. There is some
literature going under the key words "stochastic delay equation" see [3].

Other interesting questions include:
1. Given the diffusion process (2), how does one tell from the form of μ and Σ
if there is a closed boundary that keeps the process inside once it starts inside?

One could check to see if Σ(r(£),£) vanishes on dD and that μ(r(t),t) does
not point outside there.
2. How does one include in the model the possibility that the process may follow
along the boundary for a period? What are other important types of boundary
behavior?

Ikeda and Watanabe's sticky and non-sticky behavior has already been men-
tioned.

The focus has been on diffusion processes but Levy processes, with their
jump possibilities, seem a pertinent model for some situations. Work does not
appear to have been done on the Skorhod problem for Levy processes.

We have taken an analytic approach in the work and in particular have left
for later questions of statistical inference. The tools of model and simulation
are basic in the paper and are needed when one turns to the inference issues.
Simulation was used to estimate the invariant distribution of the elk in [6] and
the likelihood function of an elephant seals's journey in [9].
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