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Abstract

Truncations of stable laws have been proposed in the econophysics litera-
ture for modelling financial returns, often with imprecise definitions. This paper
sharpens definitions of exponential truncations and attempts to expose underlying
structure. Analytical comparisons are made with alternative models, leading to a
tentative conclusion that the generalized hyperbolic family is more attractive for
empirical work.
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1 Introduction

Extensive empirical research shows that (log-)return data obtained from frequently

sampled financial time series is not well fitted by a normal (Gaussian) law. Rather,

the 'true' population law is more peaked around its median and it has fatter tails. Many

analytically specified laws have been proposed and found to give a good fit to selected

data sets. For example McDonald [22], Rydberg [31], and Voit [35, §5.3,5.4] are re-

cent reviews representing the finance, statistics, and physics disciplines, respectively.

In particular, Mandelbrot [23, E14,15] champions validity of non-normal stable laws.

In fact, many return series exhibit tail behaviour which is intermediate to normal and

non-normal stable behaviour. As a result, various more complicated models built from

stable laws are found to mimic the stylized features of real data; see [31, 3].

The 'econophysics' school of modellers support use of so-called truncated Levy

(i.e., stable) laws. See [7] for a general discussion of their use in finance, and [25] for

pricing options. Let g(x; α) denote the density function of a stable law having index

α G (0,2) and symmetric about the origin, and let X be a random variable having this

law. If 1 < α < 2 then E(X) = 0 and var(X) = <», but if 0 < α < 1 then neither the

mean nor the variance can be defined. Econophysicists hold this to be unsatisfactory on

the reasonable grounds that returns cannot be arbitrarily large in magnitude, and hence

admissible models should possess finite moments of all orders. In general terms, the

solution they propose is to use weighted densities

/(x;α,w) = w(x)g(x;a), (1.1)
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where w(x) > 0 is a weighting function satisfying w(x) -> 0 as \x\ —>«», / / ( * ; oc, w)dx =

1, and / |JC|7(X; α, w)dx < <*> for all r > 0.

This idea was introduced by Mantegna and Stanley [24] in the specific case w(x) =

cl[_/ /] (x) where 0 < / < °° is a truncation level and c is a normalization constant. Let

Sn denote the sum of n independent copies of a random variable having this truncated

stable law, let fn(x) denote its density function, and v/ = E(S\). The local version of

the central limit theorem asserts that

^ (1.2)

Mantegna and Stanley [24] provide simulations showing that the asymptotic regime

(1.2) is approached more and more slowly as / increases. In addition, they found ev-

idence of a quite long-lived pre-asymptotic regime during which /Λ(0) decays in pro-

portion to n~ι/a, the asymptotic behaviour for the parent stable law.

This modification of stable laws is analytically awkward and hence Koponen [19]

recommends versions where w(x) > 0 for all x but decaying exponentially fast as |JC| —»

oo. In fact, the precise nature of his definition is not clear. He asserts (for the symmetric

case) that the truncated density function is

f(x)=c\x\-ι-ae-M, (1.3)

where γ > 0 is an additional parameter and c is the normalizing constant. But clearly

(1.3) does not define a density function since Jj_ε εi f{x)dx = °° for any ε > 0. Koponen

[19] mentions a lengthy calculation of a characteristic function (CF) whose symmetric

version is

Paul and Baschnagel [29, p. 123] specify (1.3) holding in an asymptotic sense as |JC| ->

oo5 thus removing the singularity problem. They give a detailed derivation of (1.4) (see

their Appendix D) where it is evident that the right-hand side of (1.3) is taken as the

density of the Levy measure of an infinitely divisible law. Consequently the nature of

the law whose CF is (1.4) is unresolved.

Our aim here is to illumine this obscurity. We will distinguish three operations: (i)

truncation as envisaged by Koponen [19], that is, exponential down-weighting a parent

density function; exponential tilting, which involves multiplying a parent density by a

decreasing exponential function (thus inflating the left-hand tail); and (iii) pruning an

infinitely divisible (infdiv) law by truncating its Levy measure. Pruning is implicit in

Paul and BaschnageΓs calculation. Briefly, it seems that truncation does not support a

useful theory, whereas shrinking and tilting are almost equivalent, and they support a

richer theory.

A key reason for considering truncated/pruned stable laws is to give a parametric

family which exhibits a wider spectrum of tail behaviours than the stable laws, normal
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and non-normal. Thus in §2 we review relevant results about infinite divisibility and

convolution equivalent laws. In particular, Theorem 2.1 gives conditions ensuring the

right-hand tail of the law is asymptotically proportional to the right-hand tail of its Levy

measure. This is a simple extension of known results for one-sided laws, and its proof

is given in Pakes [27]. In §3 we define an exponential truncation operation on two-

sided laws, observing that even though tail behaviour is in principal accessible, other

structural properties such as determination of its moments present substantial analytical

difficulties.

Section 4 reviews a tilting operation, familiar in other contexts, and relates it to the

pruning of spectrally positive infinitely divisible laws. Particular application is made

to extreme stable laws, and some limit distributions are obtained which illuminate the

simulation results in Mantegna and Stanley [24]. In §5 we define the pruning of two-

sided stable laws as the difference of independent tilted extreme stable random variables

and Theorem 5.1 gives its characteristic function. Representation as either a tilted or

truncated law is examined. We explore the representation of differences of tilted laws

in terms of a truncated law, showing in particular that these pruned stable laws can-

not be represented as a truncation of any two-sided stable law. In §6 we observe that

pruned stable laws are generalized gamma convolutions, (GGC's) and hence their sym-

metric versions are normal-variance mixtures. This form of mixing is significant in

financial modelling as a representation of stochastic volatility. Unfortunately, the mix-

ing law appears to be quite complicated. Simpler representations as GGC's are found.

These representations suggest comparisons with other laws which can be obtained from

normal-variance mixing and tilting, and we look briefly at two special families, one be-

ing the generalized hyperbolic laws. Process and series representations of tilted and

pruned stable laws are examined in §7. Here we give a self-contained and elementary

account of random series representations of a broad class of infinitely divisible laws,

and demonstrate that although there are many representations of tilted and pruned stable

laws, finding one with simple explicit generating elements is problematic. Some final

comments are given in §8, where we recommend the generalized hyperbolic family as

being far better suited for empirical work than truncated or pruned stable laws.

2 Infinitely divisible laws

Our context will be the infinitely divisible (infdiv) laws, and there are several equivalent

ways of defining this notion. We will agree that the random variable X with distribution

function F(x) has an infdiv law if its characteristic function (CF) φ(/) = E[eitX] has the

form φ(/) = exp(—ψ(0) where the characteristic exponent is

= -Ait + Wt1 + ί [1 - eitx + itx] v{dx) + ί [1 - eitx] v{dx), (2.1)
J\x\<\ L J 7|x|>i L

A is a real constant, V > 0, and v is a measure on (-oo^oo) satisfying v{0} = 0 and

/(x 2 Λ l)v(dx) < oo, and called the Levy measure. (We use the notation vΈ to denote
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the measure assigned by v to the set Έ.) Thus L(X), the law of X, is comprised of three

independent components, the constant A, a Λ£(0, V) normal component, and a superpo-

sition of compound Poisson laws (Sato (1999) for example). Infdiv laws comprise the

totality of laws which satisfy the partition property: For any integer n > 1, X can be

written as a sum £y = 1 εjn of independent and identically distributed random variables

(and clearly their law has the CF (φ(/)) l^n))> The centering term itx in the first integral

of (2.1) is often expressed in different ways, but this only affects the value of A. Infdiv

laws are always unbounded in at least one direction and hence the Mantegna-Stanley

[24] truncation always results in a law which is not infdiv.

We identify the important special case of spectrally positive infdiv laws (SPID

laws), defined by the constraint v(—°o7θ) = 0. In this case the Laplace-Stieltjes trans-

form (LST) E(e'QX) := Z,(θ) = exp(-κ(θ)) is finite (θ > 0) where the cumulant func-

tion has the representation

κ(θ) =AΘ- IKΘ2 + ί [l - e~Qx - θx] v(dx) + Γ [l - £ΓΘ*] v(dx). (2.2)

To minimise algebraic details, we will always assume that V — 0. It is clear that the

general infdiv law can be decomposed as X — A +X\ - X2, where X\ and X2 are inde-

pendent SPID random variables with zero constant terms. In this sense SPID laws are

fundamental.

There are two types of SPID law. Type 2 is defined by the condition /J xv(dx) = °o5

in which case supp(L(X)) = R; X can assume any positive or negative value. But

since Z,(θ) < °o if θ > 0, the left-hand tail P(X < —x) (x > 0) decreases to zero faster

than any exponentially decreasing function. Indeed, Ohkubo [26, p. 78] shows that

P{X < -x) = O(exp(-xlogx)) for large x. Thus L{X) is 'almost' one-sided.

Type 1 is defined by the condition /Q1 xv(dx) < «> in which case the cumulant func-

tion has the slightly simpler representation

[}{dx), (2.3)

where B—A- / Q ~ JCV(JX), and L(X) is one-sided with support [5,«>). This includes

the fundamental compound Poisson case where p = v[0,<») < °°. In this case p - 1v[0,x]

is a distribution function and we can write

where N has a Poisson(p) law and the η y are independent with distribution function

p^vfΰ,*] and independent of N. We shall see below that the asymptotic behaviour of

P(X — A > x) is determined by the rate at which v[jt,°°) tends to zero as x —» <*>; in

other words, it is determined by the compound Poisson component of the infdiv law. It

typically is the case that an infdiv or SPID law is such that it is not possible to explicitly
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exhibit its distribution function, whereas its Levy measure often has a simple form.

(This is certainly true for stable laws which we later consider.) Thus, it is important

to somehow relate the upper tail P(X > x) to properties of v(dx). Sato [33] discusses

these matters for cases where there exists a constant γ > 0 such that the transform

v(θ) = f~e~txv(dx) converges in the open interval (-γ,°°) and diverges otherwise.

Here we are concerned with cases where γ > 0 and v(—γ) < <». The following concepts

embrace this situation.

We begin the following definition, slightly extending Definition 1 in Cline [10].

Denote the survivor function of a distribution function G(x) by G(x) := 1 — G(x).

Definition 2.1. A distribution function G( ) has an exponential tail with rate γ > 0,

written G( ) G £γ, if

lim ^ " ^
G

e ( < J < ) .
G{x) f

For eachy > 0 the limit holds uniformly fory < yf if γ > 0, and uniformly in [—y^y1] if

γ = 0. Speaking of an exponential tail with rate γ = 0 is somewhat contradictory, and we

observe that, for our purposes, LQ is a very substantial class of long-tailed distribution

functions in that lim^oo e£JCG(x) = °° for each ε > 0.

We will see that stable and pruned stable laws belong to the following general class

of laws. Denote the convolution of distribution functions G and H by G*H, and con-

volution powers by, for example, G*2.

Definition 2.2. If G G Ly for some γ > 0, say that it is convolution equivalent, written

G G 5y, if

(2.4)
G(x)

where M < °o.

Bingham et ah [5] make some remarks about convolution equivalence on the line,

and the unpublished report [37] develops some properties of two-sided convolution

equivalence. Apart from these references, general theory for convolution equivalent

distribution functions assumes that G(O-) = 0, that is, that the corresponding random

variables are non-negative. In this case Cline [11, p. 355] shows that M — MQO) '•—

j eΊxdG{x)i the moment generating function of G. (Unrestricted integrals are taken

over the real line.) Pakes [27] extend this to the two-sided case. For positive laws,

G(0—) = 0, the boundary case γ = 0 usually is defined by (2.4) alone with the addi-

tional condition M — 1, giving the so-called subexponential class S, which is a proper

subset of ϋo The subexponential class was introduced by Chistyakov [8] for estimat-

ing the long-term mean size of certain population processes, and it contains virtually
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any long-tailed law occuring in financial modelling and other applications. We de-

fine S to comprise the laws satisfying (2.4) with M = 1. An important example is

G G H^a, the class of regularly varying (at infinity) functions with index — a. Another

is G(x) = const. exp(-cxα) (x > 0) where c > 0 and 0 < a < 1. In these cases G € 5 .

The definition (2.4) is equivalent to lim^ooG n(x)/G(x) = nλf1"1 for some (and

hence all) integers n > 1. Thus if γ = 0, the definition has the probabilistic meaning

p(γι + + γn>x) =

χ-*-P(mia(Yι,...,Yn)>x) '

where the 7y are independent with distribution function G( ). If γ > 0, then G(x) =

e-^T^ t), where f~x(x)dx < <*>. Bingham βί α/. [5] thus use the term 'close to expo-

nential' for members of Uγ>oiγ. Observe that exponential and gamma laws with scale

parameter γ belong to L^ but not to Sy. Cline [10] gives several criteria for membership

of 5 γ (γ > 0). The following lemma, embracing the laws we consider here, is a direct

consequence of his Corollary 2.

Lemma 2.3. Suppose that

where γ,c > 0, ω < 1, L( ) is normalized slowly varying, and if c = 0 then either δ > 1

or δ - 1 and f~{L{x)/x)dx < ~. Then G € iγ.

Proof. Observe that if c = 0 then MGO) < °° iff the conditions on δ hold. Write

G(x) = exp[—ξ(jc)] and observe that

ξ'(x) = γ + cωχω-1 + δ/jc - ε(x)/χ

where ε(x) -> 0 (JC -> ©o) is the index function of L( ); see [5, pp. 12-15]. The function

ξi (JC) = yx + cxω + δlogx is concave and *|ξ'(x) - ξj (x)| -* 0, thus fulfilling Cline's

conditions. •

The following theorem relates the asymptotic behaviour of F(x) for an infdiv law

and the distribution function

where λ = v(l,<»), of its positive jump components exceeding unity. Its proof with

other details and references are given in Pakes [27].

Theorem 2.1. Suppose that γ > 0 and F is an infdiv distribution function. The fol-

lowing assertions are equivalent:
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(ii) J G Ly and

As an application of his results for two-sided convolution equivalence, Willekens
[37] proved the equivalence of (i) and (ii) and that each implies (iii). In addition to
the Tauberian converse, Pakes [27] shows Theorem 2.1 is essentially a consequence of
the one-sided case. We emphasize that for our purposes the most significant part of
Theorem 2.1 is the assertion that (i) implies (ii) and (iii). Observe also that reflection
about the origin shows that if J(x) = v[—x, - l)/v(—«>? -1) £ Sy then

r P(X<-x) λ/f ( λlim — f =MF{-y).

Consider the important case of the general stable law with index α € (0,2), denoted
by stable(α, £,/?). This is defined by the absolutely continuous Levy measure v(dx) =
n(x)dx where

{
p

Γ(2-α)
^ |χι-l-α i f χ < 0

Γ(2-α) \X\ II X <. U,

where b > 0 and 0 < p~ \—q< 1. Then the CF is given by

fc|ί|α(l-/βsgn(Otan(iπα)) i

where

\\bπ if α = 1,

and β = p — q. Note that many textbook renditions err in the sign attached to β; see
[15]. The most error-proof derivation of this result is synthesizing it from the cumulant
function of the spectrally positive version, p = 1. In this case

Ψ ( O ^ I / + \c |/ | (l + ίβsgn(0|log(|/|) i f α = l ,

v ' [έθlogθ i f α = l ,

obtained by integrating the relation κ"(θ) = /0°°e~Qxx2n(x)dx = -αfeθ~2 + α. Some ma-
nipulation with complex algebra leads to the above CF.
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Stable laws are subexponential (γ= 0), and hence Theorem 2.1 gives the asymptotic

estimate

P{X >x)~ v(*,~) = p ^ ^ * - α (x -> ~) (2.6)

For later reference observe that the parameter b functions as a scale constant, and that

it affects only the constant multiplier in (2.6). In particular, all one-dimensional laws of

the embedding process are tail equivalent in the sense that

l i mf(A(τi)>χ)=τL

χ-+» P(A(τ2) >x τ 2

3 Truncating the density

Suppose a random variable X has a density f(x) > 0 for all real x, and with γ > 0 let XΊ

denote the random variable having the symmetrically truncated density

where K is a normalizing constant. In principle, this specifies an explicit density func-

tion with easily determined tail behaviour. Thus if/(•) is a stable density, it follows

from (2.6) that P(Xy > x) ~ const.x~ι~ae~Ίx. However, it seems difficult to gain further

structural information, such as moments or the CF, or to determine if L(Xy) is infdiv, or

to give a probabilistic characterization of this construction. In addition, it is hard to see

how truncation could be put into a process framework. Specifically, if X = Λ(l) where

(A(s)) is a Levy process then is there a process (Λγ(.s)) such that Λ γ(l) has density

fy(x) and properties which are relevant to the modelling context?

Recalling that φ(ί) is the CF of /(•) and observing that the Fourier transform of

the kernel e~y^ equals γ/(γ2 +1 2 ) , we can write the CF of the truncated density as the

convolution (or Poisson integral)

: : rwdu.

This however seems to offer little insight into the nature of L(Xy), even for quite specific

cases such as symmetric stable laws.

One exception is the Cauchy density f(x) = c/n(c2 +x2). In this case, reference to

a table of integrals [14] shows that the truncated law has the LST

2/(γ) VI ' "

where
Γ°° c

/(θ) = / e~*x— ^dx = ci(cθ) sin(cθ) - si(cθ) cos(cθ)
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and
Γ°cosv

ci(χ) = - / dv & si(x) -
Jx V

are cosine and sine integrals, respectively. In addition, E(XΊ) — 0 (by symmetry) and

F(x;y) = ! 1 - e ^ F { x ) (*€*). (4.1)

We conclude that truncation is not a fruitful concept.

4 Tilting and pruning

In this section, we recall an asymmetric exponential weighting operation which has
been much studied in other contexts. So we let X be a random variable with arbitrary
distribution function F(-) satisfying I (θ) = fe~θxdF(x) < <~ for all θ > 0. Fix a con-

stant γ > 0 and define the law of a random variable Xy, the (exponential) γ-tilt ofL(X),

which has the distribution function

The LST of Xy is

The family of laws obtained by varying γ through the largest open interval such that

L(y) <oo is called the natural exponential family (NEF) generated by L(X). See Se-

shadri [34] for these matters, but note that we adopt an opposite sign convention for

the exponent parameter. Tilting is used for obtaining asymptotic expansions for sums

of random variables, and in the theory of random walk. See Feller [13] for the latter

application, where he uses the term 'associated distribution'.

If X has a SPID law, as defined by (2.2), we can define an operation of pruning

whereby v is replaced by the truncation

vy{dx)=τe-*v{dx), (4.2)

where τ > 0 is a constant. Some manipulation shows that the cumulant function K is

transformed into

κ(θ;γ,τ)=τ[κ(θ + γ)-κ(γ)+5 7 θ],

where

By= ί
J oy

A random variable Xττ with this pruned law has the LST is
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This shows that the exponential tilt of L{X) is equivalent to weighting v according to

(4.2) with τ = 1, together with a shift BΊ to the left of the pruned law. For the reverse

direction, let (Λ(τ) : τ > 0) denote the spectrally positive Levy process with cumulant

function κ(θ). Then the transformation (4.2) maps L(X) to £(Λ γ (τ) + τi?γ), the expo-

nential tilt of the process at time τ with a translation τBΊ to the right. In particular, if

τ = 1 then, in obvious notation,

sLy —— Jί.y i x?γ

In the Type 1 case, we can apply the tilting operation to (2.3) to obtain the same

form with B unchanged (i.e.,By = 0) and Levy measure (4.2) with τ = 1. In any event,

we see that the non-symmetric tilting operation thins the right-hand tail of L(X) in the

manner recommended by [19, 24]. In contrast, the left-hand tail, if it is non-trivial, is

inflated by exponential tilting but it still decreases faster than exponential. In addition,

if v( ) has a density n(-), that is V(0,JC] = fon(y)dy, then F ( ) has a density function

/(JC), and L(Xy) has a density function and an absolutely continuous Levy measure

given respectively by

f(x;y) = e-Tf{x)lL{Ί) & vγ(rfjc) = e^n{x)dx.

Finally, any relation connecting the tail behaviours ofF{x) and v(dx) translates to a par-

allel relation between F(x γ) and vΊ(dx). In general, it is analytically more convenient

to work with tilting rather than pruning.

We shall now consider the effect of these transformations on the spectrally positive

stable law stable(α,fe, 1). First, ignoring the change of location, note that the effect of

the parameter τ in (4.2) is simply to multiply the parameter b. Consequently, for our

present considerations, we lose no generality in setting τ = 1, and we do this until fur-

ther notice. Tilting shrinks the Levy measure to vy(dx) — [αδ/Γ(2 — ά)]e~yxx~ι~adx,

yielding the cumulant function

l ' (4.4)
\ -γlogγ] i f a = l .

We denote this tilted law by t-stable(α,ό;γ), where the notation is understood to imply

that the asymmetry parameter β = 1. The case α < 1 defines the so-called Hougaard

laws [17], used to model lifetime distributions in a heterogeneous population. Seshadri

[34] mentions some earlier formulations. The special case α = \ gives the inverse-

Gaussian law whose density function in the case A — 0 is

/(x γ) = -T^exp \τb^- (- +γc)] , (x> 0).
V 3 L \x )\

The gamma laws occur as the limit of the t-stable(α,Z?/α;γ) as α —> 0. In no other case

is it possible to express f{x;y) in terms of elementary functions. This is a consequence

of the corresponding intractability of stable densities. However Hoffmann-Jorgensen
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[16] gives expressions for stable densities in terms of an incomplete hypergeometric
function, valid in all cases except α = 1 and β / 0. Williams [38] gives an elegant
demonstration that the stable density for the case α = 1/3 and β = 1 has a simple form
in terms of a Bessel function. See Zolotarev [39, pp. 155-158] for some representations
in terms of Whittaker functions.

The mean and variance of XΊ are given respectively by

^(1+logγ), r [ f i f α = l .

These quantities are finite, and indeed all moments are finite. Observing that

(JL.X
/

oo /.oo / \ i-r**

i_a^_^ =e-yχ _Λ_) e-Ίydy „ Ί-\e-Ί*

Jo \χ+yj
we see that Theorem 2.1, or the tilting construction itself, implies that

Note that in the case of heavy tilting, γ > 1, μΊ « 0 if α < 1 and μy « — oo if α >
1, and σγ « 0 in both cases. It is easy to show that (XΊ — μy)/ay is approximately
standard normal when γ is large, a regime which is unlikely to be relevant for financial
applications.

As mentioned in §1, Mantegna and Stanley [24], on the basis of simulations, iden-
tify two limit regimes as n increases for the sum Sn of n identical copies of random
variables having their version of the truncated Levy law. In addition, they assert a value
of n, denoted by nx, which is claimed to characterize the transition from stable limit
behaviour to ultimate normal limit behaviour. The basis for this is an assertion that the
density function of Sn, evaluated at the origin, has a stable form when n is small and a
normal form when n is large. (The precise nature of these forms result from local limit
theorems.) The critical value nx is obtained by equating the two density values.

The following considerations identify three limit regimes for the tilted spectrally
positive stable law. The cumulant function of Sn is nκ(θ;y) and since, from (4.4), the
factor n merely inflates the paramter b we can, and shall, set n — 1 and let b —> °o. We
will see that the limit behaviour of L{XΊ) is determined by a critical parameter ξ = atrf*.
There is some tension in the literature on modelling financial returns between whether
they exhibit algebraically decreasing (heavy) tails or whether there also is a truncation
factor e~^ present (called semi-heavy tails by some). If this factor is present, then it
may be that γ < l : see §8 for further remarks. In such a case we can envisage that
even with b large, there are three possible regimes, ξ « 0, ξ = 0(1), and ξ > 1, the
last being attained in the limit b -> oo. The following theorem deals with the first two
possibilities. The proof is omitted since it involves only a straightforward manipulation
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Theorem 4.1. Let b -> ~ and ξ ->• αζ where 0 < ζ < oo. If α φ 1 then

I f α = 1 then
:= b'1(Xy-A - logb) 4:= b'1(Xy-A - logb) 4 t-stable(l, l ζ).

The proof shows in the case α = 1 that the limit actually is an identity in law if ζ Ξ ξ/α.
(We define ζlogζ := 0 if ζ = 0.) Theorem 4.1 asserts that if b is large but γ is so small
that ξ <C 1 then L(Vb) is close to stable. As b grows further so that ξ is moderate, then
L(Vb) retains the tilted stable form.

As b becomes larger still the critical parameter ξ becomes large. A straightforward
application of the binomial theorem to the cumulant function of the normed variable
Zb := (Xy — μy)/θy yields the expansion

where

logE (e-*z) = {&+Σaj(-β)Jξ-b+ι, (4.6)

J y!Γ(2-α)

This expansion is valid for 0 < α < 2. The following result characterizing the third
(limiting) regime follows immediately.

Theorem 4.2. If ξ -> <~ as b -* oo then Zj, -> fAί(0,1), the standard normal law.
Observe that the norming in Theorem 4.1 when ζ > 0 is equivalent to that used for

Theorem 4.2 since σγ ~ y/aζ{b/Qι/a and, if α φ 1, (μy-A)/θy -> ( α - I ) " 1 yfol,. It
is not at all clear how one might quantify the transition from one regime to the next.

The expansion (4.6) makes it clear that the normal limit is approached only after \J%
becomes large. Indeed, this expansion can be inverted using the Fourier methodology
described by Feller [13, Chapter XVI]. If gb{x) denotes the density function of Z^ and
φ(x) is the standard normal density function, then

gb(x) - φ(*) = φ(x)

where Pj(x) is a polynomial of degree j which is independent of ξ. The case r < 5 gives
the approximation

gb(x)-φ(x) = iφW l ^ \

where

is a (version of a) Hermite polynomial. Thus Hi(x) = x3 — 3JC, H^{X) — JC4 — 6x2 + 3 and
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5 Pruning two-sided stable laws

The construction implicit in the calculation of Paul and Baschnagel [29] can be ex-
pressed in general terms as follows. LetX(y) (j = 1,2) be independent random vari-
ables having a SPID law with Levy measure Vj, constant term Aj, and LST L/(θ). Next,
iQtXy(j) denote a random variable with the pruned law obtained from (4.2), that is, with
Levy measure vJ)y(dx) = ije~ΊXVj{dx). Thus the scaling constant, but not the shrink-
age parameter γ, may depend on j . Alteration of details below allows relaxation of this
restriction. Then X = XΊ{\) -Xy{2) has a two-sided infdiv law, and from (4.3) its mgf

which is finite in an interval containing [-γ, γ]. Equivalently, we can defineX=Xy( 1) -
Xy(2), in which case the exponential factor is absent.

AssumeX is centered so that 1\{A\ +£i, γ) — 12{A2Λ-B2;1) = 0. If

then Theorem 2.1 implies that

J

with a similar relation for P(X < — x).

In the sequel, we will work with the tilted rather than the pruned version. So we
let X(j) -Aj ~stable(α,&/, 1) (j = 1,2) where bj > 0, Aj is real, γ > 0. The CF of
X = Xy{l) —XΊ{2) can easily be computed from (4.4) by substituting θ = — it and con-
verting to the polar representation y-it= Λ/Y2 + t2e~iωsgn^ where ω = arctanflf |/γ).
Algebraic manipulation yields the following result, agreeing with Paul and Baschnagel
[29], and with Koponen [19], apart from scaling of some of the parameters.

Theorem 5.1. The CF of the pruned law L(X), where X=XΊ(l) -ΛΓγ(2), is exp(-ψ(f))
where

__JL_ |(γ2 + ί 2)α/2[ c o s ( α ω ) _ z β S gn(/)sin(αω)]-f*} ifaφ 1

• V / i i i / i , . i \ i f i i / - . ? , . ? \ • - - D / *\ / i Λ /.2 i ^2\ _i_ , , i ^ M vincvV if Π 1

where

A=Aι-A2, b = τιbι+τ2b2, & β =

We shall, without any real loss in generality, take τi = τ 2 = 1, and let p-stable(α, έ, β γ)

denote the resulting law.
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Moments of L(X) and its asymptotic behaviour for large b can be inferred from the
results in the previous section. For later reference we record tail estimates, assuming
the location parameter A = 0:

p(χ) ~ ^t jc" 1 -^-^ & F(-JC) - — x-l-ae-y (jc->~) (5.2)

where

obp L2{2y)
-O- =+ Γ(2-α)Z!(γ)Z2(γ) " Γ(2-α)L,(γ)I 2 (γ)

The following considerations will make it clear that L(X) cannot be realized as a two-
sided exponential truncation (1.1) of a stable law.

We can gain some appreciation of the structure of L(X) as follows. Suppose for
now that ̂ (y) (y =1,2) are independent with density functions fj(x) positive at least
in (0,oo) and that Lj(Q) = fe-Qxfj(x)dx < 00 if 0 < θ < 2γ. Then the density of X =

Observe that

which is finite if 0 < θ < 2γ. Hence,

is a density function positive on the real line and with (bilateral) LST

LG(θ)=L1(θ)L2(2γ-θ)/L2(2γ).

This is the LST of a random variable U := X(l) — ^2γ(2), which clearly is infdiv if
the Jf(y') are SPID. In particular, ifX{j) has a stable(α,fey, 1) law then U has the Levy
density

showing that L(U) is asymmetric with tail probabilities P(U > x) — O(x~a) and

Returning to the general case, we now can interpret (5.3) as specifying the expo-
nential tilt L{X) = L(Uy), noting that L{U) depends on γ. This interpretation can be
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extended to show that L(X) can indeed be represented as an exponential truncation of
a two-sided law. Denoting the integral in (5.3) by I(x), observe that

Kx := f I(x)dx= [Fx(y)f2(y)e-2iydy = L2{2γ)P(<X(l) >X2y(2)).
JO J

Similarly

K2:=

Thus h+(x;y) := (I(x)/Kι)l(0oo)(x) is the conditional density of X(\) -X2y(2), given
this difference is positive. Similarly h-(x;y) := (e~2yxI(x)/K^I^Q^X) is the condi-
tional density of X2y(l) —X(2), given this difference is negative. Now define the family
of two-sided densities hr(x;y) = rh+(x\y) + (1 - r)h-(x;y), where 0 < r < 1. For each
such r let mλ{r) = (Kλ / rLλ(y)L2{y)) and m2(r) = (£ 2/(l -r)L!(γ)L2(γ)). Then we
have the truncation (c.f (1.1))

\nι2(r)^Ar(jc;γ) if JC < 0,

thus representing /(JC) somewhat in the manner (apparently) envisaged by Koponen
[19]. We emphasize that the law we are truncating here depends on the parameter γ,
and it is obvious that this construction gives the only possible truncation representation.
Observe however that in the stable case (5.2) implies that f(x) ~ Bi.x~ι~ae~yx (x -»<*>)
and hence that hr(x;y) ~ const.\x\~λ~a as |x| -> °o? with a different constant for each
tail. Hence the truncated density has tails which decay at the same algebraic rate as a
stable(α, ,β) with |β| < 1. The nature of these laws is an open question, for example,
it is not clear whether or not they are infdiv.

6 Normal-variance mixtures

Following Bondesson [6], let % denote the class of extended generalized gamma convo-
lutions, that is, the closure of laws obtained as finite linear combinations of independent
gamma distributed random variables. The subclass T of generalized gamma convolu-
tions (GGC's) is generated from the linear combinations having positive coefficients.
Members of % are infdiv and absolutely continuous. Moreover the symmetric members
of % are normal-variance mixtures. More specifically, if L(X) G % a^d it is symmetric,
then X = Zy/Ϋ where L(Z) = 3\£(0,2), L{Y) G T and Y and Z are independent. The
parametrization for L(Z) is chosen so that

Mf\Ό) — JVLQ\Ό J, V^ IJ

where G( ) is the distribution function of 7, and we assume the mgf's are finite. Normal-
variance mixing is important in financial modelling as a way of modelling stochastic
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volatility. More precisely, if (Y(τ) : τ > 0) is the Levy process with 7(1) — Y and

{B(τ) : τ > 0) is a Brownian motion process with B(\) =Z then the subordinated pro-

cess Λ(τ) := B(Y(τ)) is an embedding Levy process, Λ(l) = X. Many marginal laws

used for financial modelling can be represented in this way. See [18] for a catalogue

and references. The following considerations show that pruning is accomodated by this

framework.

The Laplace transform relation

vdv

implies that t-stable(α,Z?;γ) £ T and p-stable(α,6,β;γ) G %\ see Bondesson [6, pp.
30,107]. In particular, p-stable(α,δ,0;γ) is a normal-variance mixture, a fact which is
not evident from inspection of its CF in Theorem 5.1 or its cumulant function

(6.2)

finite if |θ | < γ. The following results will show that the mixing law arises from tilting
another positive law, and that this more basic law has a complicated form.

Suppose that L(X) =p-stable(α, b, O γ) and denote its Levy density by n(x). Hence,

n{x) = (oΛ/2Γ(2 - α))\x\-ι-αe~^ (all real JC). As above, X = ZVΫ, and m(x) will
denote the Levy density of the mixing law L(Y). The general relation (6.1) can be
expressed for infdiv laws as

logMF(θ) - j (e#y - l) m(y)dy. (6.3)

We use the following general result relating the Levy densities of a normal-variance
mixture.

Lemma 6.1. Suppose F(x) is an absolutely continuous and symmetric infdiv law and
that it is a normal-variance mixture as specified by (6.1). Then the corresponding Levy
densities are related by

or

= ί e-svm{l/4v)v-3/2dv. (6.4)
Jo
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Proof. The right-hand side of (6.3) has the representation J^E [eθz^ - l] m(y)dy.
Equating this expression to κ(—θ), as obtained from (2.3) with A = V = 0, and differ-
entiating twice with respect to θ yields the identity

JeQxx2n(x)dx = =E \z

where δ( ) is the Dirac delta-function. Interchanging the integrals on the right-hand
side and inverting the bilateral Laplace transforms yields

x2n(x) =E

Evaluating the expectation and cancelling the x2 factor common to both sides leads to
(6.4). •

Lemma 6.2. If ή(θ) is the Laplace transform of the function η(x), then f\(y/s) = h(s)
where

Proof. Simply observe that h(s) = Jo°° e~u^r\(u)du and that the exponential factor in
the integrand is the Laplace transform of the stable( \, {u, 1) law. D

Theorem 6.1. The Levy density of the mixing law L(Y) for the p-stable(α, b, O γ) is

m W"Γ(α)Γ(l-α)J/ Γ(l-α) Ύ[2a,2,Tx),

(6.5)

where Ψ is the Kummer (confluent hypergeometric) function of the second kind.

Proof. The left-hand side of (6.4) has the form ή(\/ϊ) where

Vπoώ_ [(»-γ)+Γ
η W ~ Γ ( 2 - α ) '

and hence Lemma 6.2 leads to the evaluation

But h(s) must equal the right-hand side of (6.4), that is, h(v) = v~3/2rn(l/4v). Inte-
grating I(x) by parts leads to the integral representation in (6.5). The final form comes
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from a substitution in the identity /0°°w
α λe "2 2uzdu = Γ(α)i/_α(z), where the Her-

mite function H-a{z) = 2~αΨ(iα, i z2) [20, pp. 285,290]. •

Expanding the exponent in (6.5) yields m(x) = e~^xί{x) where

*

Lemma 6.3. The mixing law is a tilted law, Y — W^ where L(W) is a positive infdiv

law with Levy density ί(x). Moreover, /Q1 ί{x)dx = °o? and

μ-1-01/2 (x -> 0) & φ ) - 5 _ ϊ _ ^ - _ ^ χ - i - « (* -> oo).

Proof. We show first that ί(x) is a Levy density. Clearly ί(x) 10 as x f oo, and £(0+) =

oo. The substitution v = w ^ yields ί(x) - 2oKχ-χ-al2 ^ v " - 1 ^ - 2 ^ and the

integral converges to \T{\a) asx -> 0. Consequently $xl{x)dx < oo. Next, observing

that v 0 1 "^"^ ~ v""1 as v —> 0, a Tauberian theorem implies that the last integral is

asymptotically equal to r(a)(2yv5)~ a as x -)• oo? and the second asymptotic relation

follows. In particular f™ ί(x)dx < oo. •

It is clear from Lemma 6.3 that L{W) is not stable, although P{W > x) is asymptot-

ically proportional to the right-hand tail of a stable (α) law (provided it is not spectrally

negative). We have not been able to relate L(W) to simpler known laws. The integral

expression (6.6) yields the Laplace transform expression

/ xί(x)e-Qxdx = 2oK Γ -^ du =
Jo Jo w2 + 2γw + θ

α - l

sin(απ) z+(θ)-z_(θ)

(6.7)

where z± — γ ± y^γ2 — θ, |θ | < γ2, and the second equality follows from Gradshteyn

and Ryzhik [14, 3.223,#1], and it holds for α φ 1. The expression for α = 1 is given by

2^[log(z+(θ)/z_(θ))]/[z+(θ)-z_(θ)].

A further integration yields the explicit expression for the cumulant function of L(W)9

f°° ,Λ _θχ\ / \ , 2πέ (2γ)α — (z+(θ))α — (z_(θ))α . .

I (i—e )m(X)ux = — —r—. — , ( o c ^ i )
Jo Γ ( α ) γ ( 2 - α ) sin(απ)

valid for θ < γ2. This representation is too narrowly defined to give the cumulant func-

tion of Y = Wyi. An explicit expression for the cumulant function of Y can be given in

terms of trigonometric functions, but it yields little insight.

We now explore the GGC properties of L(W) and L(Y), beginning by rendering

Bondesson's [6, p. 29] definition as follows. We say that the positive law L(W) is a
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GGC if

E{e~m) = exp ί-ΔΘ - jΓlog (l + ̂ ) dV(x)] , (6.8)

where Δ is a constant and V(x) > 0 is non-decreasing on (0,°°) and satisfies the con-
ditions /Q^ I \ogx\dfl;(x) < oo and f~x~ιdV{x) < <*>. We have the following stochastic
integral representation,

W= ί τ-ιdτς{V(τ)) (6.9)

where (^(τ) : τ > 0) is a (standard) gamma process with cumulant function log(l +θ),
and V(τ) functions as a deterministic time transformation. This representation arises
from the easily demonstrated result for the stochastic integral / = fjk(τ)dΛ(ΊS(τ)),
where k(τ) and T < <*> are deterministic, and the L'evy process Λ has characteristic
exponent ψ(ί): The CF of / is exp[- / 0

Γψ(^(τ))^^(τ)].
The following result shows that L(W) is a GGC.

Lemma 6.4. The cumulant function κ^(θ) of L{W) has the canonical form (6.8) with
Δ = 0 and

Proof. Observing that the left-hand side of (6.7) is κ^(θ), integration of the second
term yields

The change of variable y = u2 + 2yu reduces this to the GGC canonical form (6.8)
as asserted. The density v(x) of the measure (6.10) satisfies v(x) ~ K(x/2a)a~ι as
x —> 0+, showing that /J | logx\v(x)dx < ©o, and v(x) ~ aKχϊa~ι as x —>>«», showing
/ Γ ^ W A ] ^ < °° Thus all conditions for GGC membership are satisfied. •

A little manipulation with (6.8) shows that the α-tilt of a GGC is again a GGC
with canonical measure V{x-ά). Applying this to (6.10) shows that Y = Wψ is a GGC
with canonical measure Ί/y(x) = K ([y/x — γ]+)α. The stochastic integral representations
(6.9) of these laws could form the basis of data simulation.

The above decompositions leading to Lemma 6.3 shows the existence of a positive
law L{W) which can be tilted, then used to mix a normal variance, thus yielding the
symmetric pruned stable law X = Z^JW^. If desired, asymmetry can be introduced by
a further tilting operation as follows. Let —γ < ζ < γ, and define the law L(Xζ) whose
density is proportional to e~&f(x). From (6.2), we see that its cumulant function is

^ θ ) α + ( γ ~ ζ " Θ Γ " 2 f ] '
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showing that this law is realized as Xζ = Jγ+ζ(l) - Jγ-ζ(2) where the V(j) are indepen-
dent stable(α,6,1) variates.

This chain of construction can be applied to any initial positive law. For example, a
structurally simpler way of truncating the tails of stable laws could begin with W having
a positive stable(α,6,1) law where 0 < a < 1. Then Wψ has LST

L ( θ ; ζ ) = e x p ( - τ ^ - [ ( γ 2 + θ ) * -

As before, let Z be independent of Wψ. with a normal Λ£(0,2) law and X —
The CF of X is φ(ί) = exp(-ψ(ί)) where

where α = 2a. The normal inverse Gaussian family corresponds to α = 1 [1], and the
normal-variance gamma laws arise as the limiting case α —» 0 after replacing b with
2b/a. Note the similarity of (6.11) and the case α φ 1 and β = 0 of Theorem 5.1; there
is no cos(αω) term or dependence on the sign of α— 1 in (6.11). The following result
lists properties relevant to our theme of this tilted-stable mixture law. L e t ^ ( ) denote
the modified Bessel function of the third kind.

Theorem 6.2. The law defined by (6.11) is infdiv with a symmetric Levy density

\+i(γ|x|). (6.12)

A s x -> oo?

and

- ' - " e - ^ . (6.14)

The density function has the series representation

A χ ) = _ ^ Σ HU T ^ U . V , _ p g KaMm, (6-15)
\x\j=ι J L Vzr,

where p = b/{\ - a) and M — (2π)~3ί/2γ~ϊ exp (pγ01).
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Proof. The Levy density of Wψ is

Lemma 6.1 yields a standard integral [14, p. 340,#9], giving (6.12). The asymptotic

form (6.13) immediately follows [14, p. 963, #6], and then (6.14) from Theorem 2.1.

For (6.15), let gψ (x) be the density of Wψ and observe that the specification of f(x) as

a normal-variance mixture entails

Λ*) = Λ= Γe-^ygf(y)y-Uy^^l Γ e - 1 / ^ (1/v)v-3/2Λ
ly/Tί JO ly/Tί JO

where go{x) is the stable(α,fe, 1) density. Inserting the power series representation of

go(l/ v ) and integrating term-by-term leads to (6.15). D

A key difference between the symmetric pruned stable law and this variance mix-

ture is seen in the differing algebraic factors in the expansions (5.2) and (6.14), x " 1 " "

and x" 1 ""/ 2 , respectively. The pruned stable law allows a little more scope for fitting

tails than the tilted stable mixture. Another difference lies in their variances,

2 a b χx-2 p 2 a b xx-2

for the pruned stable law and the tilted-stable mixture, respectively. The first is obtained

by differentiation of the characteristic exponent in Theorem 5.1 and the second from

There is no reason to expect a closed expression for the sum (6.15), just as there is

no closed expression for general stable densities. By contrast, the density for the pruned

stable is completely intractable. The case α = 1 for the tilted-stable mixture admits the

explicit result

_
J\x) ~

which we recognize as the symmetric normal inverse Gaussian law because the base

law is the positive stable Q) law whose tilt is an inverse Gaussian. See [1,2] for finan-

cial applications. An asymmetric extension of (6.11) is produced by a further ζ-tilting

operation, that is, multiplying the Levy density (6.13) by e~&.

An algebraically even simpler starting point gives the very flexible generalized hy-

perbolic (GH) family. Define a measure μ on (0,°o) by μ(dx) = xλ~ιe~^2/χdx, where

δ > 0 and λ G R. This measure is finite iff λ < 0 and δ > 0, in which case normalization

gives the density of the reciprocal gamma family. A normal-variance mixture using this

family gives the Student Maws. If δ > 0 then the γ2-tilt e~^xμ(dx) after normalization

gives the generalized inverse Gaussian family [34]. Using this family to form a normal-

variance mixture gives the symmetric GH family, and ζ-tilting (with |ζ | < γ) gives the

full GH family, which we denote by GH(λ, δ γ, ζ). Note that we use a parametrization
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differing slightly to the usual accounts in order to more easily compare with the p-stable
and t-stable mixture laws. Specifically, the mgf of the GH(λ,δ;γ,ζ) law is

JCλ(2δ,

and there is an explicit expression for the corresponding density, also in terms of a
Bessel function. The tail behaviour of the GH law can be expressed via its density as
f(x) ~ Cxλ~ι e~^~^x (x -» oo). Note that the exponent in the algebraic factor can take
any real value. See [12] and references therein for accounts of the GH family.

A related construction of the GH family (e.g., [3, p. 173]) is via X = ζ7 + ZΛ/Ϋ9

where Y has the generalized inverse Gaussian law. The random mean term accom-
plishes the second tilting operation, but with the modified parametrization
GH(λ,δ; V r + ζ?ζ) Analagous outcomes occur if Y has the mixing law of Theorem
6.1, or the t-stable(α,έ;γ2) law.

Rydberg [31], and Barndorff-Nielsen and Shephard [3, 4] are recent surveys of the
application to financial data of the GH and related models and the highly developed
methodology developed for them.

7 Process and series representations

It hardly needs saying that t-stable and p-stable random variables can be embedded in
a Levy process. The random measure representation of this embedding process does
not significantly simplify, except insofar as discussed by Eberlein [12, p.326] whose
remarks apply whenever the process has a finite mean. Barndorff-Nielsen and Shep-
hard [4] construct stationary models of Ornstein-Uhlenbeck (OU) type built on the fact
that a law L(X) is self-decomposable iff X — J^e~τd/B(τ) where the integrator is a
Levy process, called the background driving Levy process (BDLP). The corresponding
stationary OU process is X{τ) = e~τX{0) +tie-(τ-uϊd<B(u), where X(0) = X. If* and
ί denote the Levy densities of X and CS(1), respectively, then ί(x) = —(d/dx)(xn(x))
[4, p. 302]. This construction forms-therbasi^of ίheir coherent modelling methodology
mentioned above.

Barndorff-Nielsen and Shephard [3,4] choose the GH family for L(X). In principle
their general approach is applicable to t-stable and p-stable laws. For example, if we
fix A > 0 and let L(X) have the Levy density

then

which clearly is a Levy density. It follows that the t-stable law is self-decomposable
and its BDLP is the sum of two independent Levy processes. The first has Levy density
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α«γ(jc) corresponding to the time dilated embedding process (Λ(ατ)). If α < 1 then the

second component is a compound Poisson process having a gamma jump law which in

obvious notation we denote by Gam(l — α,γ). If α = 1 then the second component is

a gamma process, and if 1 < α < 2 then it is generated by a t-stable(α — l,Z?;γ) law,

where b = (A/a)Γ(2 — α) . Similar representations hold for p-stable laws, even in the

asymmetric case.

The tilted-stable mixture law of Theorem 6.2 being a normal-variance mixture with

a GGC mixing law is a member of %, and hence it too is self-decomposable. It follows

that

The proof involves differentiating (6.12) and using the fact xK{, (x) + vKv (x) = xKv- \ (x).

So again the BDLP resolves into independent components with the first a time di-

lated version of the embedding process. The second component can be shown to be a

compound Poisson process of normal-variance mixture type, C τ = Σ!J=\ Zjy/Vj where

(Nτ) is a Poisson process with rate 2abf /(I —a), the Zy are independent copies of

Z ~ ίA£(0,2), and the Vj are independent Gam(α,γ2) variates. This decomposition gen-

eralizes Proposition 6.2 in [4] (a = ±) and it represents the second component in a

simpler and more explicit form than they achieve.

Motivated in part by the search for prior laws for Bayesian nonparametric inference,

there is a body of work on random series representations of stable, and more generally,

of infdiv variates. See [21, 30, 32, 36] for a fairly complete listing of the literature.

Practicable ways of simulating stably distributed data appears to be a subsidiary moti-

vation, but it is generally agreed now that the series converge too slowly to be useful

for this purpose. As we now show, an elementary treatment results from imposing a

regular variation condition on a Levy measure. This condition holds for all modelling

applications we know of.

Let (Nτ) be a unit rate Poisson process with event times T\ < Tz < --. Given a

Levy measure μ, define M(x) = μ(*,°°) and suppose there is a constant β > 0 and a

function L slowly varying at infinity such that

that is, M is regularly varying at the origin. The constraint /J x2μ(dx) < °° implies that

β < 2. The function M has an asymptotic inverse

p(v) = ( v L # ( v ) ) - 1 / β > 0 , ( x > 0 ) (7.1)

where L# is the slowly varying conjugate of L [5]. Finally, let {Yn : n > 1} denote

independent copies of 7 which has CF σ and first moment ξi, when it is defined.
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Theorem 7.1. (i) Suppose 7p := f\°p(v)dv < °°. Then the series

oo

χ=Σγ»p(τ») ( 7 2>
n=\

converges absolutely almost surely iff

β < 1 &

or

β = l & Έ\Y\t{\Y\)<-i

where ί(x) = f~y~ιL(γ)dy < oo. If either condition holds then the CF of X is

φ(ί) = exp — / (1 — c(tx))μ(dx) . (7.3)

(ii) Suppose 1 < β < 2, 7p = oo? ζj is finite, and L is normalized slowly varying. Then
the series

X=Σ(Ynp(Tn)-ζip(n)) (7.4)
n=\

converges unconditionally almost surely if E\Y\P < oo for some p > β. If ζi = 0 then.?
has the CF (7.3). If ζj φθ then

0 0 / /V2+1 \

= Σ μ;p(^)-ζi / P(v)rfv) -5,
11=1 V Jn J

μ ( ) / ( ) ) (7.5)
11=1 V Jn J

where 5 = ζi /j ^p(v)Jv, converges unconditionally almost surely under the above
moment condition, and its CF is

φ(ί) - exp J- ̂ " ( 1 - σ{tx))μ(dx) - £(1 - c(tx) + i

Proof, (i) The law of large numbers and (7.1) imply that p(Tn) ~ p(n) and the absolute
convergence assertions are an immediate consequence of general convergence criteria
for random Dirichlet series: See Corollary 2.2(b,c) in Pakes [28], observing that β < 1
is necessary for 7p < «>.

The form (7.5) of the CF is derived essentially as in [21]. lfXn = Σ%\ YjP(Tj)

E (eitXή = E[E {eitXή \Nn] = E in'1 Γ a(tp{v)dv
Nn

= exp f- Γ ( l -σ(ίp(v)))rfvl = exp f- Γ (l-σ(tx))μ(dx)] (7.6)
I Jθ J L Jp(n) J
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and (7.3) follows since Xn

 aA X.
(ii) Our assumptions imply that /p = °° whence Σ r t > 1 Ynp(Tn) is almost surely divergent
(Pakes [28, Corollary 2(a,c)]). Express the summands in (7.4) as Yn[p(Tn) - p(/i)] +
% - ζi]p(n) = Um + Uln and let ic - sup{κ > 1 : £ | 7 | κ < ~}. Now Σn>ι U2n is a
random Dirichlet series if it is regarded as a function of β" 1 , and Theorem 3.2 (b)
of Pakes [28] asserts that its abscissa of unconditional convergence is max(i,ic~1).
Choose p < 2 and note that since β" 1 > \ we have β" 1 > p~ι > Ίnι, and hence this
series is almost surely unconditionally convergent under our moment hypothesis.

Observe that the normalization assumption on L implies that Z,# is normalized
slowly varying, and hence that \L#(Tn)/L#{n) - 1| = o(\Tn - n\/n). This estimate and
the mean value theorem imply that

We infer from the Marcinkiewicz-Zygmund strong law [9, p. 122] that a.s. \Tn — n\ =
o{nι/P) and hence that |p(Γπ) - p(n) \ = o{n~x~^~l-P'^Ln{n)). It follows that Σn>\ Uχn

is almost surely absolutely convergent. If ζi = 0 then (7.6) still holds and hence the
integral has a finite limit as n —»<χ>.

If ζi φ 0 write the nth partial sum of (7.5) is

*{n) = Σ PjPPj) ~ ζiPt/)) + Σ fp(Λ - Γl PMrfv) -B.
7=1 y=i V JJ J

The terms in the second sum are non-negative and bounded above by p(y') - p(y + 1),
and hence that sum converges as «—><». This establishes the unconditional convergence
of the series (7.5). Observe now that

[

where

H(n)= /
Jn

and the final estimate is a consequence of a strong law of Kolmogorov. (In Feller's
rendering [13, p. 239], for example, take his independent summands Xk to have the
same law and bk — \fk\ogk. Of course, the above estimate follows from the more
abstruse law of the iterated logarithm.) It follows that X" has a limit law coinciding
withL(X).

But since ffi^ p(v)dv = f^xμ(dx), it follows from (7.6) that

E Utx'») = exp Γ- Γ ( l -a(tx))μ(dx)- f (1 -a{tx) + iζιtx)μ{dx)] ,
V / [ J\ Jp(n) J
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and this converges to φ(ί) because the series (7.5) converges. •

Two boundary cases, which are not covered by Theorem 7.1, are stated without

proof in the next result. Its proof is similar to that above, but using Corollary 2.3 and

Theorem 3.2 in Pakes [28].

Theorem 7.2. If M is slowly varying at the origin then the series (7.2) converges ab-

solutely almost surely iff EM(\Y\~ι) < <*>. If β = 2 and ζi = 0 then (7.2) converges un-

conditionally almost surely iSi(x) = ^M(y~2)dy/y < oo (x > 0) a n d £ | F 2 | £ ( | 7 | ) < oo.

If either convergence criterion is satisfied then (7.3) holds.

Observe that if M(0+) < oo then p(v) = 0 if v > M(0+) and the series (7.2) has

finitely many non-zero terms, that is, X has a compound Poisson law. In the case

β = 2 note that I is slowly varying. Finally, we mention that representations for the.

embedding process, with its time parameter restricted to [0,1], are obtained by replacing

Y with yi(o,c/] (τ) in the above series, where U has the uniform law on (0,1].

It is clear that the laws of X and X are infdiv since the Levy measure τμ induces

the function p(v/τ). In particular, if// has density m and Y has density / , then X and X

have the Levy density

»W = Γ f(Φ)m(y)dy/y = Γf(ysga(x))m(\x\/y)dy/y. (7.7)
Jo Jo

Thus desired functional forms of n in principle can be tailored from convenient choices

of m and / . For example, it is known that m(x) = Ax~ι~a yields spectrally positive

(respectively, two-sided) stable(α)) laws for any one-sided (respectively, two-sided)

L(Y), provided the convergence criteria are satisfied. The common choice is the point

mass at unity (respectively, P(Y = ±1) = £). If m(x) = Ax~ι~ae~yxl(o,oo) (*) then these

choices for L(Y) give n(x) = m(x) in the first case (t-stable), and n(x) = £JW(|JC|) in the

second case (p-stable). Integration and changing variables yields

M{x)=aχ-χ-aEx+a{Ίx)

where E\+a is an exponential integral.

If/ is the ίA£(0,2) density, then (7.7) has the normal mixture form in Lemma 6.1

after replacing m(x) there with 2xm(x2). To realize the t-stable or symmetric p-stable

laws, it follows from (6.5) that we must have

( \ A ̂  1—ct — 1 — e x ~
v I — Ay y P

X) — ΛΔ X e

Similarly, p-stable laws can be achieved by taking

r/'Λ — y lxlδ~V~γW & m(r) -

Explicit determination of p in any of these cases is problematic.
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8 Final remarks

We have illuminated confused definitions of exponentially truncated stable laws and

elicited some properties of the pruned version. Symmetric pruned stable laws have

been contrasted with normal variance mixtures using a tilted positive stable law or

an inverse Gaussian law. Two characteristics stand out. The first is the absence of

explicit expressions for the densities of the pruned stable or the tilted-stable mixture.

The second is the restricted ranges which are permissable for the exponent values in the

algebraic factors occuring in the tail estimates; (1,3) for (5.2) and (1,2) for (6.14).

Proponents of truncated/pruned stable laws argue their case in terms of the good

fits obtained for selected data sets. It seems to us that a consistent application of this

criterion should cause abandonment of these laws in favour of generalized hyperbolic

laws. The GH family of laws is more useful because

• There are explicit expressions in terms of Bessel functions for their density func-

tions, their Levy densities, and for their moment generating functions for all pa-

rameter values;

• The family includes several commonly used sub-families;

• Members have the financially desirable property of being represented as normal

variance mixtures;

• The family is more flexible for data fitting purposes, particularly by having greater

scope in its tail behaviour.

The last point is nicely illustrated by Hurst and Platen [18] in their examination of

five major world market index series. They fit eight types of symmetric law to these

series, including the stable, Student-/, and the GH family. The Student-/ family is

declared the 'winner' in the sense of achieving a uniformly better fit according to a

likelihood ratio criterion. The GH family fits equally well, but at the expense of an

extra parameter. The Student /-law density function f(x) ~ const.x~λ~d as x —> °°,

where d > 0 is the degrees-of-freedom parameter. In all cases its estimated value d lies

outside the interval (0,2), the permissable range of the stable index α. The estimates

γ of the exponential decay factor for symmetric GH laws all appear to be very close

to zero, though it should be noted that only estimates of 2δγ are actually reported.

However, the fact that γ > 0 implies that —λ should be smaller than d, as indeed it is.

In fact —λ > 0, and it lies outside the interval (0,2) for the Australian index series, but

not for the other series. For all series, the best fitting laws have smaller tails than any

non-normal stable law can attain. One anticipates that fitting a symmetric p-stable law

will show little improvement over the stable, and not so good a fit as the symmetric

GH. It would be worthwhile fitting the p-stable, if only to eliminate it from further

consideration.
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