Chapter 8

Lecture 28

Example 7. X_i are iid uniformly over $(0, \theta)$ for $\theta \in \Theta = (0, \infty)$.

Homework 6

1. Show that

a. With respect to Lebesgue measure on \mathbb{R}^n ,

$$\ell(\theta \mid s_n) = \begin{cases} 1/\theta^n & \text{if } \theta \ge X_i \; \forall i \\ 0 & \text{otherwise} \end{cases}$$

and $\hat{\theta} = \max\{X_1, \dots, X_n\}.$

- b. Condition 2 in the Theorem above is satisfied, and hence $\hat{\theta}_n \xrightarrow{\text{a.s.}} \theta$ for all θ (which we check directly also); but the likelihood function is not continuous, and hence the information function is not defined.
- c. $E_{\theta}(\hat{\theta}_n) = \frac{n}{n+1}\theta$, and $\theta_n^* := \frac{n+1}{n}\hat{\theta}$ is unbiased.
- d. $n(\theta \hat{\theta}_n)$ has the asymptotic distribution with density $\frac{1}{\theta}e^{-\frac{z}{\theta}}$ on $(0, \infty)$, and so $\hat{\theta}_n$ has a non-normal limiting distribution and $\hat{\theta}_n \theta = O(1/n)$.

(In regular cases, $\hat{\theta}$ has a normal limiting distribution and $\hat{\theta}_n - \theta = O(1/\sqrt{n})$.)

Asymptotic distribution of $\hat{\theta}$ (θ real) in regular cases

 $X = \{x\}$ (arbitrary), \mathcal{C} is a σ -field on X, P_{θ} is a probability on \mathcal{C} and $\theta \in \Theta$ for Θ an open interval in \mathbb{R}^1 . $dP_{\theta}(x) = \ell(\theta \mid x)d\nu(x)$, with ν a fixed measure. Let $s_n = (X_1, \ldots, X_n) \in S^{(n)} = X \times \cdots \times X$, $\mathcal{A}^{(n)} = \mathcal{C} \times \cdots \times \mathcal{C}$ and $P_{\theta}^{(n)} = P_{\theta} \times \cdots \times P_{\theta}$ on $\mathcal{A}^{(n)}$. We assume that $\ell(\theta \mid x) > 0$, $L(\theta \mid x) = \log_e \ell(\theta \mid x)$ has at least two continuous derivatives, $E_{\theta}(L'(\theta \mid x)) = 0$ and

$$I_1(\theta) = E_{\theta} \left(L'(\theta \mid x) \right)^2 = -E_{\theta} \left(L''(\theta \mid x) \right) > 0.$$

We have $L(\theta | s_n) = \sum_{i=1}^n L(\theta | X_i)$, $L'(\theta | s_n) = \sum_{i=1}^n L'(\theta | X_i)$ and $L''(\theta | s_n) = \sum_{i=1}^n L''(\theta | X_i)$. For any given θ , we know that a good estimate of θ based on s_n will be approximately $a(\theta) + b(\theta)L'(\theta | s_n)$, and $L'(\theta | s_n) \approx N(0, *)$, so a good estimate of θ based on s_n will be approximately normally distributed when n is large. We have $\frac{L''(\theta | s_n)}{r} \to -I_1(\theta)$. Assume that:

Condition (*). Given any $\theta \in \Theta$, we may find an $\varepsilon = \varepsilon(\theta) > 0$ such that

$$\max_{|\delta-\theta|\leq\varepsilon}|L''(\delta\mid x)|$$

has a finite expectation under P_{θ} .

Assume also that $\hat{\theta}_n$ exists and is consistent. Then

$$0 = L'(\hat{\theta}_n \mid s_n) = L'(\theta \mid s_n) + (\hat{\theta}_n - \theta)L''(\theta_n^* \mid s_n),$$

where θ_n^* is between θ and $\hat{\theta}_n$. Since $\theta_n^* \to \theta$ in P_{θ} , we have

$$\left|\frac{L''(\theta_n^* \mid s_n)}{n} + I_1(\theta)\right| \to 0 \quad \text{in } P_{\theta}.$$
(**)

So

$$\sqrt{n}(\hat{\theta}_n - \theta) = rac{L'(\theta \mid s_n)}{\sqrt{n}} \cdot rac{1}{I_1(\theta) + \xi_n},$$

where $\xi_n \to 0$ in P_{θ} . Since

$$\frac{L'(\theta \mid s_n)}{\sqrt{n}} \to N(0, I_1(\theta)) \quad \text{in distribution under } P_{\theta},$$

we have:

1 (Fisher). $\sqrt{n}(\hat{\theta}_n - \theta) \to N(0, I_1(\theta)).$

Note. This does not assert that $E_{\theta}(\hat{\theta}_n) = \theta + o(1)$ or that $\operatorname{Var}_{\theta}(\hat{\theta}_n) = \frac{1}{nI_1(\theta)} + o(\frac{1}{n})$. Proof of (**). Fix θ . Under (*), we have

$$h(r) := E_{\theta} \Big[\max_{|\delta - \theta| \le r} \big| L''(\delta \mid x) - L''(\theta \mid x) \big| \Big] < +\infty$$

for sufficiently small r > 0. h is continuous in r and decreases to 0 as $r \to 0$.

For any $\eta > 0$, choose r such that $h(r) < \eta$. We have

$$\frac{1}{n}L''(\theta_n^* \mid s_n) = \frac{1}{n}L''(\theta \mid s_n) + \Delta_n,$$

where

$$|\Delta_n| = \frac{1}{n} \Big| \sum_{i=1}^n \left[L''(\theta_n^* \mid X_i) - L''(\theta \mid X_i) \right] \Big| \le \frac{1}{n} \sum_{i=1}^n \left| L''(\theta_n^* \mid X_i) - L''(\theta \mid X_i) \right|.$$

Suppose that $|\hat{\theta}_n - \theta| < r$; then $|\theta_n^* - \theta| < r$ and hence $|\Delta_n| \leq \frac{1}{n} \sum_{i=1}^n M(X_i)$, where $M(X) = \max_{\delta - \theta| \leq r} |L''(\delta \mid X) - L''(\theta \mid X)|$. Since $E[M(X_i)] < \eta$, we have

$$\frac{1}{n}\sum_{i=1}^{n}M(X_{i})\xrightarrow{\text{a.s.}}E_{\theta}[M(X)] < \eta.$$

Since η is arbitrary and $\hat{\theta}_n \to \theta$ in P_{θ} , we have that $|\Delta_n| \to 0$ in P_{θ} .

Note. It was asserted by Fisher (and believed for a long time) that, if $t_n = t_n(s_n)$ is any estimate of θ such that

 \square

 $\sqrt{n}(t_n - \theta) \to N(0, v(\theta))$ in distribution as $n \to \infty$,

then $v(\theta) \geq 1/I_1(\theta)$. This is, however, not quite correct, as shown by the following counterexample (due to J. L. Hodges, 1951): Let X_i be iid $N(\theta, 1)$ and $\Theta = \mathbb{R}^1$. Let $\hat{\theta}_n = \overline{X_n}$. $\sqrt{n}(\hat{\theta}_n - \theta)$ is N(0, 1) and $I_1(\theta) = 1$. Let

$$t_n = \begin{cases} \overline{X_n} & \text{if } |\overline{X_n}| > n^{-1/4} \\ c\overline{X_n} & \text{if } |\overline{X_n}| \le n^{-1/4}; \end{cases}$$

then $\sqrt{n}(t_n - \theta) \rightarrow N(0, v(\theta))$ for all θ , where

$$v(\theta) = \begin{cases} 1 & \text{if } \theta \neq 0 \\ c^2 & \text{if } \theta = 0, \end{cases}$$

and so $v(\theta) \ge 1$ breaks down at $\theta = 0$ (if we choose -1 < c < 1).

Lecture 29

Definition. We say that $\{z_n\}$ is $AN(\mu_n, \sigma_n^2)$ if $P\left(\frac{z_n - \mu_n}{\sigma_n} \leq z\right) \to \Phi(z)$ for all z.

Consider the condition

Condition (***). $\{t_n - \theta\}$ is $AN(0, v(\theta)/n)$ under θ (for each θ).

In Hodges's counterexample in the context of Example 1(a),

$$\sqrt{n}(t_n - \theta) = \varphi(\theta)\sqrt{n}(\overline{X_n} - \theta) + \xi_n(s, \theta),$$

where $\xi_n \to 0$ in P_{θ} -probability and

$$\varphi(\theta) = \begin{cases} 1 & \text{if } \theta \neq 0 \\ c & \text{if } \theta = 0, \end{cases}$$

so that t_n is $AN(\theta, v(\theta)/n)$ for $v(\theta) = \varphi^2(\theta)$. This provides an example of the following theorem:

2 (Le Cam/Bahadur). The set

$$\Big\{\theta: v(\theta) < \frac{1}{I_1(\theta)}\Big\}$$

is always of Lebesgue measure zero for any t_n satisfying (***).

Corollary. If $\{t_n\}$ is regular in the sense that v is continuous in Θ and I_1 is also continuous, then $v(\theta) \ge 1/I_1(\theta)$ for all $\theta \in \Theta$.

Note. This should not be confused with the C-R bound, since (***) does not imply that t_n is unbiased, nor that $v(\theta) \cong n \operatorname{Var}_{\theta}(t_n)$.

In the general case, $(^{***})$ does imply that t_n is asymptotically median unbiased, i.e., that $P_{\theta}(t_n \leq \theta) \rightarrow \frac{1}{2}$ as $n \rightarrow \infty$ for each θ . Suppose this holds uniformly; then also it must be true that $v(\theta) \geq 1/I_1(\theta)$ for all θ . This follows from:

3. If θ is a point in Θ , a > 0 and $\delta_n(a) = \theta + \frac{a}{\sqrt{n}}$, and

$$\lim_{n \to \infty} P_{\delta_n(a)} (t_n > \delta_n(a)) \ge \frac{1}{2},$$

then $v(\theta) \ge 1/I_1(\theta)$ (for the given θ).

Corollary. Suppose that t_n is super-efficient $(v < 1/I_1)$ at a point θ . Then, given any a > 0, we may find $\varepsilon_1 = \varepsilon_1(a) > 0$ and $\varepsilon_2 = \varepsilon_2(a) > 0$ such that

$$P_{\theta + \frac{a}{\sqrt{n}}} \left(t_n > \theta + \frac{a}{\sqrt{n}} \right) < \frac{1}{2} - \varepsilon_1 \quad and \quad P_{\theta - \frac{a}{\sqrt{n}}} \left(t_n < \theta - \frac{a}{\sqrt{n}} \right) < \frac{1}{2} - \varepsilon_2$$

for all sufficiently large n.

Definition. Let F_n be a sequence of distributions on \mathbb{R}^k and F_0 be a given distribution on \mathbb{R}^k . We say that $F_n \xrightarrow{\mathcal{L}} F_0$ iff

$$\int_{\mathbb{R}^k} b(x) dF_n(x) \to \int_{\mathbb{R}^k} b(x) dF_\theta(x)$$

for all bounded continuous functions $b : \mathbb{R}^k \to \mathbb{R}^1$.

4 (Hájek). Let $F_{n,\theta} = \mathcal{L}(\sqrt{n}(\tau_n - \theta))$ and suppose that $F_{n,\theta+\frac{\alpha}{\sqrt{n}}} \xrightarrow{\mathcal{L}} G$ for all $|a| \leq 1$. Then G is the distribution function of X + Y, where X is $N(0, 1/I_1(\theta))$ and X and Y are independent. (This is true for all θ . G can depend on θ .)

Corollary. The variance of G (if it exists) is at least $1/I_1(\theta)$.

Conclusion. At least in the iid case, Fisher's assertion is essentially correct.

Proof of (3) (outline). Choose $\theta \in \Theta$ and a > 0, and let $\delta_n = \theta + \frac{a}{\sqrt{n}}$. For fixed n, consider testing θ against δ_n . $\frac{\ell(\delta_n|s_n)}{\ell(\theta|s_n)}$ is the optimal (LR) test statistic, whose logarithm is

$$L_n(\delta_n) - L(\theta) = \frac{a}{\sqrt{n}}L'(\theta) + \frac{a^2}{2n}L''(\theta_n^*) = \frac{a}{\sqrt{n}}L'(\theta) - \frac{1}{2}a^2I_1(\theta) + \cdots,$$

where the omitted terms are negligible. Let

$$K_n(s_n) = \frac{1}{\sqrt{a^2 I_1(\theta)}} \left(L(\delta_n \mid s_n) - L(\theta \mid s_n) + \frac{1}{2}a^2 I_1(\theta) \right).$$

 K_n is equivalent to the LR statistic and $K_n \xrightarrow{\mathcal{L}} N(0,1)$ under P_{θ} . Consider the distribution of K_n under δ_n ,

$$\begin{split} P_{\delta_n}(K_n < z) &= \int_{K_n < z} dP_{\delta_n}^{(n)} = \int_{K_n(s_n) < z} e^{L(\delta_n | s_n) - L(\theta | s_n)} dP_{\theta}^{(n)}(s_n) \\ &= \int_{K_n(s_n) < z} e^{-\frac{1}{2}a^2 I_1(\theta) + \sqrt{a^2 I_1(\theta)} K_n(s_n)} dP_{\theta}^{(n)}(s_n) = \int_{y < z} e^{-\frac{1}{2}a^2 I_1(\theta) + \sqrt{a^2 I_1(\theta)} y} dF_n(y) \\ &\to \int_{y < z} e^{-\frac{1}{2}a^2 I_1(\theta) + \sqrt{a^2 I_1(\theta)} y} d\Phi(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{1}{2}a^2 I_1(\theta) + \sqrt{a^2 I_1(\theta)} y - \frac{1}{2}y^2} dy \\ &= P\big(N(0, 1) < z - \sqrt{a_2 I_1(\theta)}\big), \end{split}$$

where $F_n(y) = P_{\theta}(K_n < y)$. Note that $F_n(y) \to \Phi(y)$.

Given a sequence $\{t_n\}$ such that $\overline{\lim}_{n\to\infty} P_{\delta_n}(t_n \ge \delta_n) \ge 1/2$, choose $z > \sqrt{a^2 I_1(\theta)}$. Then, by the above result, $P_{\delta_n}(K_n \ge z) < 1/2$ for all sufficiently large n. Regard $\{t_n \ge \delta_n\}$ and $\{K_n \ge z_n\}$ as critical regions for the test; then, by the Neyman-Pearson lemma, we have that, for some subsequence $\{n_k\}$, $P_{\theta}(K_{n_k} > z) \le P_{\theta}(t_{n_k} \ge \delta_{n_k})$ for all sufficiently large k; but

$$P_{\theta}(t_n \ge \delta_n) = P_{\theta}(\sqrt{n}(t_n - \theta) \ge a) \text{ and } P_{\theta}(K_n \ge z) \to 1 - \Phi(z),$$

so

$$z > \sqrt{a^2 I_1(\theta)} \Rightarrow P_{\theta}(K_{n_k} > z) < P_{\theta}(t_{n_k} \ge \theta + a/\sqrt{n_k}).$$

Letting $k \to \infty$, we find that

$$P(N(0,1) \ge z) \le P(N(0,1) \ge a/\sqrt{v(\theta)})$$

and hence $z > a/\sqrt{v(\theta)}$. Since z was arbitrary, we must have $\sqrt{a^2 I_1(\theta)} \ge a/\sqrt{v(\theta)}$ and hence $v(\theta) \ge 1/I_1(\theta)$.

Lecture 30

Proof of (2). Assume only (***), i.e., that $\sqrt{n}(t_n - \theta) \xrightarrow{\mathcal{L}_{\theta}} N(0, v(\theta))$ for $\theta \in \Theta$, and let J be a bounded subinterval of Θ , say (a, b). Let

$$\Psi_n(\theta) = P_{\theta}(t_n > \theta) \text{ and } \varphi_n(\theta) = \left| \Psi_n(\theta) - \frac{1}{2} \right|.$$

Then $0 \leq \varphi_n(\theta) \leq \frac{1}{2}$ and, from (***), $\Psi_n(\theta) \to \frac{1}{2}$ and $\varphi_n(\theta) \to 0$ for each θ . Hence $\theta \mapsto I_J(\theta)\varphi_n(\theta)$, where I_J is an indicator function, is bounded on Θ and tends to 0, so $\int_{\Theta} I_J(\theta)\varphi_n(\theta)d\theta \to 0$, or

$$\int_{\mathbb{R}^1} I_J \left(\delta + \frac{1}{\sqrt{n}} \right) \varphi_n \left(\delta + \frac{1}{\sqrt{n}} \right) d\delta \to 0;$$

but $I_J(\delta + \frac{1}{\sqrt{n}}) \to I_J(\delta)$ except for δ an endpoint of J, so

$$\int_{\mathbb{R}^1} I_J(\delta) \varphi_n\left(\delta + \frac{1}{\sqrt{n}}\right) d\delta \to 0.$$

Noticing that $I_J(\delta)\varphi_n\left(\delta+\frac{1}{\sqrt{n}}\right) \ge 0$, we have $I_J(\delta)\varphi_n\left(\delta+\frac{1}{\sqrt{n}}\right) \to 0$ in Lebesgue measure, so that there is some sequence $\{n_k\}$ such that $I_J(\delta)\varphi_{n_k}\left(\delta+\frac{1}{\sqrt{n_k}}\right) \to 0$ a.e.(Lebesgue); thus $\varphi_{n_k}\left(\delta+\frac{1}{\sqrt{n_k}}\right) \to 0$ a.e.(Lebesgue) on J-i.e., $P_{\theta+\frac{1}{\sqrt{n_k}}}\left(t_{n_k} > \theta+\frac{1}{\sqrt{n_k}}\right) - \frac{1}{2} \to 0$ a.e. on J. Returning to the original sequence, we have that $\overline{\lim_{n\to\infty}} P_{\theta+\frac{1}{\sqrt{n}}}\left(t_n > \theta+\frac{1}{\sqrt{n}}\right) \ge 1/2$ a.e. on J and so, from (3), $v(\theta) \ge 1/I_1(\theta)$ a.e. on J. Since J was any bounded subinterval of Θ , this means that $v(\theta) \ge 1/I_1(\theta)$ a.e. on Θ .

General regular case

For each n, let $(S_n, \mathcal{A}_n, P_{\theta}^{(n)})$ be an experiment with common parameter

$$\theta = (\theta_1, \ldots, \theta_p) \in \Theta,$$

where Θ is open in \mathbb{R}^p , such that S_n consists of points s_n . No relation between n and n+1 is assumed.

In Examples 1–5, we have $S_n = \underbrace{X \times \cdots \times X}_{n \text{ times}}$ and $P_{\theta}^{(n)} = P_{\theta} \times \cdots P_{\theta}$. In Examples

6 and 7, $P_{\theta}^{(n)}$ is the distribution of $s_n = (X_1, \ldots, X_n)$, where the X_i are not iid.

Example 8. For $n = 2, 3, ..., let n_1$ and n_2 be positive integers such that $n = n_1 + n_2$. Let $s_n = (X_1, ..., X_{n_1}; Y_1, ..., Y_{n_2})$, where $X_1, ..., X_{n_1}, Y_1, ..., Y_{n_2}$ are independent, $X_1, ..., X_{n_1}$ are $N(\mu_1, \sigma^2)$ distributed and $Y_1, ..., Y_{n_2}$ are $N(\mu_2, \sigma^2)$ distributed. Here $\theta = (\mu_1, \mu_2, \sigma^2)$ is entirely unknown. This is a three-parameter exponential family, and the complete sufficient statistic is

$$\left(\sum_{i=1}^{n_1} X_i, \sum_{i=1}^{n_2} Y_i, \sum_{i=1}^{n_1} X_i^2 + \sum_{i=1}^{n_2} Y_i^2\right).$$

If $n_1/n_2 \to \rho$ as $n \to \infty$ for some $0 < \rho < \infty$, all regularity conditions to follow are satisfied.

The local asymptotic normality condition

Choose $\theta \in \Theta$ and assume that $dP_{\delta}^{(n)}(s_n) = \Omega_{\delta,\theta}(s_n) dP_{\theta}^{(n)}(s_n)$ holds for all δ in a neighborhood of θ .

Condition LAN (at $\theta \in \Theta$). For each $a \in \mathbb{R}^p$,

$$\log_e \left(\Omega_{\theta + \frac{a}{\sqrt{n}}, \theta}(s_n) \right) = a z'_n(\theta) - \frac{1}{2} a' I_1(\theta) a + \Delta_n(\theta, s_n),$$

where I_1 is a fixed $p \times p$ positive definite matrix, $z_n(\theta) \in \mathbb{R}^p$ and $z_n(\theta) \xrightarrow{\mathcal{L}_{\theta}} N(0, I_1(\theta))$ and $\Delta_n(\theta, s_n) \to 0$ in $P_{\theta}^{(n)}$ -probability.

Note.

- i. If $s_n = (X_1, \ldots, X_n)$, where the X_i s are iid, and I_1 is the information matrix for X_1 , then LAN is satisfied for this I_1 ; but the LAN condition holds in some "irregular" cases also see Example 1(b).
- ii. The right-hand side in LAN with Δ_n omitted is exactly the log-likelihood in the multivariate normal translation-parameter case. See Example 4.
- Let $g: \Theta \to \mathbb{R}^1$ be continuously differentiable and write $h(\theta) = \operatorname{grad} g(\theta)$.
- 2^p (Le Cam). If $t_n = t_n(s_n)$ is an estimate of g such that

$$\sqrt{n}(t_n - g(\theta)) \xrightarrow{\mathcal{L}_{\theta}} N(0, v(\theta)) \ \forall \theta \in \Theta,$$

then $\{\theta : v(\theta) < b_1(\theta)\}$ is of (*p*-dimensional) Lebesgue measure 0 if we let $b_1(\theta) = h(\theta)I_1^{-1}(\theta)h'(\theta)$.

 4^p (Hájek). Suppose that $u_n: S_n \to \Theta$ is s.t.

$$\sqrt{n} \left(u_n - (\theta + a/\sqrt{n}) \right) \xrightarrow{\mathcal{L}_{\theta + a}/\sqrt{n}} u_{\theta}$$

 $(u_{\theta} \text{ independent of } a)$, then u_{θ} may be represented as $v_{\theta} + w_{\theta}$, where v_{θ} and w_{θ} are independent and $v_{\theta} \sim N(0, I_1^{-1}(\theta))$.

Note. No uniformity in a is needed in Hájek's theorem.

From the above we see that, for large n, the $N(0, I_1^{-1}(\theta)/n)$ distribution is nearly the best possible for estimates of θ . n is the "sample size", or cost of observing s_n .

Sufficient conditions for LAN

Suppose that $L(\theta \mid s_n)$ exists for each n, i.e., that $dP_{\theta}^{(n)}(s_n) = e^{L(\theta \mid s_n)} d\nu^{(n)}(s_n)$ for all n, and that, for each n, $L(\cdot \mid s_n)$ has at least two continuous derivatives. We write $\ell = e^L$. Let $L^{(1)}(\theta \mid s_n) = \operatorname{grad} L(\theta \mid s_n)$.

Condition 1. $\frac{1}{\sqrt{n}}L^{(1)}(\theta \mid s_n) \xrightarrow{\mathcal{L}_{\theta}} N(0, I_1(\theta))$ for some positive definite I_1 . Condition 2. $\frac{1}{n}\{L_{ij}(\theta \mid s_n)\} \rightarrow -I_1(\theta)$ in $P_{\theta}^{(n)}$ -probability. Condition 3. With

$$M(\theta, \gamma, s_n) := \frac{1}{n} \max_{\substack{||\delta - \theta|| \le \gamma\\i,j = 1, \dots, p}} \{ |L_{ij}(\delta \mid s_n) - L_{ij}(\theta \mid s_n)| \},$$

 $\lim_{r\downarrow 0} \overline{\lim}_{n\to\infty} P_{\theta}^{(n)} (M(\theta,\gamma,s_n) > \varepsilon) = 0 \text{ for every } \varepsilon > 0.$

Conditions 1–3 imply LAN with $\Delta_n \to 0$, and also the following:

1^{*p*} (Fisher). Under Conditions 1–3, if $\hat{\theta}_n = \hat{\theta}_n(s_n)$, the MLE of θ , exists and is consistent, then

$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{\mathcal{L}_{\theta}} N(0, I_1^{-1}(\theta)) \ \forall \theta \in \Theta.$$

Definition. Let $u_n = u_n(s_n)$ be an estimate of θ . u_n is CONSISTENT if $u_n \xrightarrow{P_{\theta}} \theta$ for all θ , or, equivalently, $(u_n - \theta)(u_n - \theta)' \xrightarrow{P_{\theta}} 0$. u_n is \sqrt{n} -CONSISTENT if $n(u_n - \theta)(u_n - \theta)'$ is bounded in P_{θ} for all θ . (We say that Y_n is BOUNDED in P if, given any $\varepsilon > 0$, we may find k such that $P(|Y_n| > k) \le \varepsilon$ for all n sufficiently large.)

 1^p (continued). If u_n is a \sqrt{n} -consistent estimate of θ and

$$u_n^* = u_n + \left\{ (L_{ij}(\theta \mid s_n))^{-1} L^{(1)}(\theta \mid s_n) \Big|_{\theta = u_n} \right\}$$

and

$$u_n^{**} = u_n + \left\{ I_n(\hat{\theta}_n)^{-1} L^{(1)}(\theta \mid s_n) \Big|_{\theta = u_n} \right\},\$$

then u_n^* and u_n^{**} are both $AN(\theta, I_1^{-1}(\theta)/n)$. Consequently, $t_n^* = g(u_n^*)$ and $t_n^{**} = g(u_n^{**})$ are both $AN(g(\theta), b_1(\theta)/n)$, where $b_1(\theta) = h(\theta)I_1^{-1}(\theta)h'(\theta)$.