Chapter 8

Lecture 28

Example 7. X_{i} are iid uniformly over $(0, \theta)$ for $\theta \in \Theta=(0, \infty)$.

Homework 6

1. Show that
a. With respect to Lebesgue measure on \mathbb{R}^{n},

$$
\ell\left(\theta \mid s_{n}\right)= \begin{cases}1 / \theta^{n} & \text { if } \theta \geq X_{i} \forall i \\ 0 & \text { otherwise }\end{cases}
$$

and $\hat{\theta}=\max \left\{X_{1}, \ldots, X_{n}\right\}$.
b. Condition 2 in the Theorem above is satisfied, and hence $\hat{\theta}_{n} \xrightarrow{\text { a.s. }} \theta$ for all θ (which we check directly also); but the likelihood function is not continuous, and hence the information function is not defined.
c. $E_{\theta}\left(\hat{\theta}_{n}\right)=\frac{n}{n+1} \theta$, and $\theta_{n}^{*}:=\frac{n+1}{n} \hat{\theta}$ is unbiased.
d. $n\left(\theta-\hat{\theta}_{n}\right)$ has the asymptotic distribution with density $\frac{1}{\theta} e^{-\frac{z}{\theta}}$ on $(0, \infty)$, and so $\hat{\theta}_{n}$ has a non-normal limiting distribution and $\hat{\theta}_{n}-\theta=O(1 / n)$.
(In regular cases, $\hat{\theta}$ has a normal limiting distribution and $\hat{\theta}_{n}-\theta=O(1 / \sqrt{n})$.)

Asymptotic distribution of $\hat{\theta}$ (θ real) in regular cases

$X=\{x\}$ (arbitrary), \mathcal{C} is a σ-field on X, P_{θ} is a probability on \mathcal{C} and $\theta \in \Theta$ for Θ an open interval in $\mathbb{R}^{1} . d P_{\theta}(x)=\ell(\theta \mid x) d \nu(x)$, with ν a fixed measure. Let $s_{n}=\left(X_{1}, \ldots, X_{n}\right) \in S^{(n)}=X \times \cdots \times X, \mathcal{A}^{(n)}=\mathcal{C} \times \cdots \times \mathcal{C}$ and $P_{\theta}^{(n)}=P_{\theta} \times \cdots \times P_{\theta}$ on $\mathcal{A}^{(n)}$. We assume that $\ell(\theta \mid x)>0, L(\theta \mid x)=\log _{e} \ell(\theta \mid x)$ has at least two continuous derivatives, $E_{\theta}\left(L^{\prime}(\theta \mid x)\right)=0$ and

$$
I_{1}(\theta)=E_{\theta}\left(L^{\prime}(\theta \mid x)\right)^{2}=-E_{\theta}\left(L^{\prime \prime}(\theta \mid x)\right)>0 .
$$

We have $L\left(\theta \mid s_{n}\right)=\sum_{i=1}^{n} L\left(\theta \mid X_{i}\right), L^{\prime}\left(\theta \mid s_{n}\right)=\sum_{i=1}^{n} L^{\prime}\left(\theta \mid X_{i}\right)$ and $L^{\prime \prime}\left(\theta \mid s_{n}\right)=$ $\sum_{i=1}^{n} L^{\prime \prime}\left(\theta \mid X_{i}\right)$. For any given θ, we know that a good estimate of θ based on s_{n} will be approximately $a(\theta)+b(\theta) L^{\prime}\left(\theta \mid s_{n}\right)$, and $L^{\prime}\left(\theta \mid s_{n}\right) \approx N(0, *)$, so a good estimate of θ based on s_{n} will be approximately normally distributed when n is large. We have $\frac{L^{\prime \prime}\left(\theta \mid s_{n}\right)}{n} \rightarrow-I_{1}(\theta)$. Assume that:
Condition (*). Given any $\theta \in \Theta$, we may find an $\varepsilon=\varepsilon(\theta)>0$ such that

$$
\max _{|\delta-\theta| \leq \varepsilon}\left|L^{\prime \prime}(\delta \mid x)\right|
$$

has a finite expectation under P_{θ}.
Assume also that $\hat{\theta}_{n}$ exists and is consistent. Then

$$
0=L^{\prime}\left(\hat{\theta}_{n} \mid s_{n}\right)=L^{\prime}\left(\theta \mid s_{n}\right)+\left(\hat{\theta}_{n}-\theta\right) L^{\prime \prime}\left(\theta_{n}^{*} \mid s_{n}\right)
$$

where θ_{n}^{*} is between θ and $\hat{\theta}_{n}$. Since $\theta_{n}^{*} \rightarrow \theta$ in P_{θ}, we have

$$
\begin{equation*}
\left|\frac{L^{\prime \prime}\left(\theta_{n}^{*} \mid s_{n}\right)}{n}+I_{1}(\theta)\right| \rightarrow 0 \quad \text { in } P_{\theta} . \tag{**}
\end{equation*}
$$

So

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)=\frac{L^{\prime}\left(\theta \mid s_{n}\right)}{\sqrt{n}} \cdot \frac{1}{I_{1}(\theta)+\xi_{n}},
$$

where $\xi_{n} \rightarrow 0$ in P_{θ}. Since

$$
\frac{L^{\prime}\left(\theta \mid s_{n}\right)}{\sqrt{n}} \rightarrow N\left(0, I_{1}(\theta)\right) \quad \text { in distribution under } P_{\theta}
$$

we have:
1 (Fisher). $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \rightarrow N\left(0, I_{1}(\theta)\right)$.
Note. This does not assert that $E_{\theta}\left(\hat{\theta}_{n}\right)=\theta+o(1)$ or that $\operatorname{Var}_{\theta}\left(\hat{\theta}_{n}\right)=\frac{1}{n I_{1}(\theta)}+o\left(\frac{1}{n}\right)$.
Proof of $\left({ }^{* *}\right)$. Fix θ. Under $\left({ }^{*}\right)$, we have

$$
h(r):=E_{\theta}\left[\max _{|\delta-\theta| \leq r}\left|L^{\prime \prime}(\delta \mid x)-L^{\prime \prime}(\theta \mid x)\right|\right]<+\infty
$$

for sufficiently small $r>0$. h is continuous in r and decreases to 0 as $r \rightarrow 0$.
For any $\eta>0$, choose r such that $h(r)<\eta$. We have

$$
\frac{1}{n} L^{\prime \prime}\left(\theta_{n}^{*} \mid s_{n}\right)=\frac{1}{n} L^{\prime \prime}\left(\theta \mid s_{n}\right)+\Delta_{n}
$$

where

$$
\left|\Delta_{n}\right|=\frac{1}{n}\left|\sum_{i=1}^{n}\left[L^{\prime \prime}\left(\theta_{n}^{*} \mid X_{i}\right)-L^{\prime \prime}\left(\theta \mid X_{i}\right)\right]\right| \leq \frac{1}{n} \sum_{i=1}^{n}\left|L^{\prime \prime}\left(\theta_{n}^{*} \mid X_{i}\right)-L^{\prime \prime}\left(\theta \mid X_{i}\right)\right|
$$

Suppose that $\left|\hat{\theta}_{n}-\theta\right|<r$; then $\left|\theta_{n}^{*}-\theta\right|<r$ and hence $\left|\Delta_{n}\right| \leq \frac{1}{n} \sum_{i=1}^{n} M\left(X_{i}\right)$, where $M(X)=\max _{\delta-\theta \mid \leq r}\left|L^{\prime \prime}(\delta \mid X)-L^{\prime \prime}(\theta \mid X)\right|$.

Since $E\left[M\left(\overline{X_{i}}\right)\right]<\eta$, we have

$$
\frac{1}{n} \sum_{i=1}^{n} M\left(X_{i}\right) \xrightarrow{\text { a.s. }} E_{\theta}[M(X)]<\eta .
$$

Since η is arbitrary and $\hat{\theta}_{n} \rightarrow \theta$ in P_{θ}, we have that $\left|\Delta_{n}\right| \rightarrow 0$ in P_{θ}.
Note. It was asserted by Fisher (and believed for a long time) that, if $t_{n}=t_{n}\left(s_{n}\right)$ is any estimate of θ such that

$$
\sqrt{n}\left(t_{n}-\theta\right) \rightarrow N(0, v(\theta)) \quad \text { in distribution as } n \rightarrow \infty,
$$

then $v(\theta) \geq 1 / I_{1}(\theta)$. This is, however, not quite correct, as shown by the following counterexample (due to J. L. Hodges, 1951): Let X_{i} be iid $N(\theta, 1)$ and $\Theta=\mathbb{R}^{1}$. Let $\hat{\theta}_{n}=\overline{X_{n}} \cdot \sqrt{n}\left(\hat{\theta}_{n}-\theta\right)$ is $N(0,1)$ and $I_{1}(\theta)=1$. Let

$$
t_{n}= \begin{cases}\overline{X_{n}} & \text { if }\left|\overline{X_{n}}\right|>n^{-1 / 4} \\ c \overline{X_{n}} & \text { if }\left|\overline{X_{n}}\right| \leq n^{-1 / 4} ;\end{cases}
$$

then $\sqrt{n}\left(t_{n}-\theta\right) \rightarrow N(0, v(\theta))$ for all θ, where

$$
v(\theta)= \begin{cases}1 & \text { if } \theta \neq 0 \\ c^{2} & \text { if } \theta=0\end{cases}
$$

and so $v(\theta) \geq 1$ breaks down at $\theta=0$ (if we choose $-1<c<1$).

Lecture 29

Definition. We say that $\left\{z_{n}\right\}$ is $A N\left(\mu_{n}, \sigma_{n}^{2}\right)$ if

$$
P\left(\frac{z_{n}-\mu_{n}}{\sigma_{n}} \leq z\right) \rightarrow \Phi(z) \quad \text { for all } z .
$$

Consider the condition
Condition (${ }^{* * *)}$. $\left\{t_{n}-\theta\right\}$ is $A N(0, v(\theta) / n)$ under θ (for each θ).
In Hodges's counterexample in the context of Example 1(a),

$$
\sqrt{n}\left(t_{n}-\theta\right)=\varphi(\theta) \sqrt{n}\left(\overline{X_{n}}-\theta\right)+\xi_{n}(s, \theta)
$$

where $\xi_{n} \rightarrow 0$ in P_{θ}-probability and

$$
\varphi(\theta)= \begin{cases}1 & \text { if } \theta \neq 0 \\ c & \text { if } \theta=0\end{cases}
$$

so that t_{n} is $A N(\theta, v(\theta) / n)$ for $v(\theta)=\varphi^{2}(\theta)$. This provides an example of the following theorem:

2 (Le Cam/Bahadur). The set

$$
\left\{\theta: v(\theta)<\frac{1}{I_{1}(\theta)}\right\}
$$

is always of Lebesgue measure zero for any t_{n} satisfying (***).
Corollary. If $\left\{t_{n}\right\}$ is regular in the sense that v is continuous in Θ and I_{1} is also continuous, then $v(\theta) \geq 1 / I_{1}(\theta)$ for all $\theta \in \Theta$.

Note. This should not be confused with the C-R bound, since (${ }^{* * *}$) does not imply that t_{n} is unbiased, nor that $v(\theta) \cong n \operatorname{Var}_{\theta}\left(t_{n}\right)$.

In the general case, $\left({ }^{* * *}\right)$ does imply that t_{n} is asymptotically median unbiased, i.e., that $P_{\theta}\left(t_{n} \leq \theta\right) \rightarrow \frac{1}{2}$ as $n \rightarrow \infty$ for each θ. Suppose this holds uniformly; then also it must be true that $v(\theta) \geq 1 / I_{1}(\theta)$ for all θ. This follows from:
3. If θ is a point in $\Theta, a>0$ and $\delta_{n}(a)=\theta+\frac{a}{\sqrt{n}}$, and

$$
\varlimsup_{n \rightarrow \infty} P_{\delta_{n}(a)}\left(t_{n}>\delta_{n}(a)\right) \geq \frac{1}{2},
$$

then $v(\theta) \geq 1 / I_{1}(\theta)$ (for the given θ).
Corollary. Suppose that t_{n} is super-efficient $\left(v<1 / I_{1}\right)$ at a point θ. Then, given any $a>0$, we may find $\varepsilon_{1}=\varepsilon_{1}(a)>0$ and $\varepsilon_{2}=\varepsilon_{2}(a)>0$ such that

$$
P_{\theta+\frac{a}{\sqrt{n}}}\left(t_{n}>\theta+\frac{a}{\sqrt{n}}\right)<\frac{1}{2}-\varepsilon_{1} \quad \text { and } \quad P_{\theta-\frac{a}{\sqrt{n}}}\left(t_{n}<\theta-\frac{a}{\sqrt{n}}\right)<\frac{1}{2}-\varepsilon_{2}
$$

for all sufficiently large n.
Definition. Let F_{n} be a sequence of distributions on \mathbb{R}^{k} and F_{0} be a given distribution on \mathbb{R}^{k}. We say that $F_{n} \xrightarrow{\mathcal{L}} F_{0}$ iff

$$
\int_{\mathbb{R}^{k}} b(x) d F_{n}(x) \rightarrow \int_{\mathbb{R}^{k}} b(x) d F_{\theta}(x)
$$

for all bounded continuous functions $b: \mathbb{R}^{k} \rightarrow \mathbb{R}^{1}$.
4 (Hájek). Let $F_{n, \theta}=\mathcal{L}\left(\sqrt{n}\left(\tau_{n}-\theta\right)\right)$ and suppose that $F_{n, \theta+\frac{a}{\sqrt{n}}} \xrightarrow{\mathcal{L}} G$ for all $|a| \leq 1$. Then G is the distribution function of $X+Y$, where X is $N\left(0,1 / I_{1}(\theta)\right)$ and X and Y are independent. (This is true for all $\theta . G$ can depend on θ.)
Corollary. The variance of G (if it exists) is at least $1 / I_{1}(\theta)$.
Conclusion. At least in the iid case, Fisher's assertion is essentially correct.

Proof of (3) (outline). Choose $\theta \in \Theta$ and $a>0$, and let $\delta_{n}=\theta+\frac{a}{\sqrt{n}}$. For fixed n, consider testing θ against δ_{n}. $\frac{\ell\left(\delta_{n} \mid s_{n}\right)}{\ell\left(\theta \mid s_{n}\right)}$ is the optimal (LR) test statistic, whose logarithm is

$$
L_{n}\left(\delta_{n}\right)-L(\theta)=\frac{a}{\sqrt{n}} L^{\prime}(\theta)+\frac{a^{2}}{2 n} L^{\prime \prime}\left(\theta_{n}^{*}\right)=\frac{a}{\sqrt{n}} L^{\prime}(\theta)-\frac{1}{2} a^{2} I_{1}(\theta)+\cdots,
$$

where the omitted terms are negligible. Let

$$
K_{n}\left(s_{n}\right)=\frac{1}{\sqrt{a^{2} I_{1}(\theta)}}\left(L\left(\delta_{n} \mid s_{n}\right)-L\left(\theta \mid s_{n}\right)+\frac{1}{2} a^{2} I_{1}(\theta)\right) .
$$

K_{n} is equivalent to the LR statistic and $K_{n} \xrightarrow{\mathcal{L}} N(0,1)$ under P_{θ}. Consider the distribution of K_{n} under δ_{n},

$$
\begin{aligned}
& P_{\delta_{n}}\left(K_{n}<z\right)=\int_{K_{n}<z} d P_{\delta_{n}}^{(n)}=\int_{K_{n}\left(s_{n}\right)<z} e^{L\left(\delta_{n} \mid s_{n}\right)-L\left(\theta \mid s_{n}\right)} d P_{\theta}^{(n)}\left(s_{n}\right) \\
& =\int_{K_{n}\left(s_{n}\right)<z} e^{-\frac{1}{2} a^{2} I_{1}(\theta)+\sqrt{a^{2} I_{1}(\theta)} K_{n}\left(s_{n}\right)} d P_{\theta}^{(n)}\left(s_{n}\right)=\int_{y<z} e^{-\frac{1}{2} a^{2} I_{1}(\theta)+\sqrt{a^{2} I_{1}(\theta)} y} d F_{n}(y) \\
& \rightarrow \int_{y<z} e^{-\frac{1}{2} a^{2} I_{1}(\theta)+\sqrt{a^{2} I_{1}(\theta)}} d \Phi(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{1}{2} a^{2} I_{1}(\theta)+\sqrt{a^{2} I_{1}(\theta)} y-\frac{1}{2} y^{2}} d y \\
& =P\left(N(0,1)<z-\sqrt{a_{2} I_{1}(\theta)}\right),
\end{aligned}
$$

where $F_{n}(y)=P_{\theta}\left(K_{n}<y\right)$. Note that $F_{n}(y) \rightarrow \Phi(y)$.
Given a sequence $\left\{t_{n}\right\}$ such that $\overline{\lim }_{n \rightarrow \infty} P_{\delta_{n}}\left(t_{n} \geq \delta_{n}\right) \geq 1 / 2$, choose $z>\sqrt{a^{2} I_{1}(\theta)}$. Then, by the above result, $P_{\delta_{n}}\left(K_{n} \geq z\right)<1 / 2$ for all sufficiently large n. Regard $\left\{t_{n} \geq \delta_{n}\right\}$ and $\left\{K_{n} \geq z_{n}\right\}$ as critical regions for the test; then, by the Neyman-Pearson lemma, we have that, for some subsequence $\left\{n_{k}\right\}, P_{\theta}\left(K_{n_{k}}>z\right) \leq P_{\theta}\left(t_{n_{k}} \geq \delta_{n_{k}}\right)$ for all sufficiently large k; but

$$
P_{\theta}\left(t_{n} \geq \delta_{n}\right)=P_{\theta}\left(\sqrt{n}\left(t_{n}-\theta\right) \geq a\right) \quad \text { and } \quad P_{\theta}\left(K_{n} \geq z\right) \rightarrow 1-\Phi(z)
$$

so

$$
z>\sqrt{a^{2} I_{1}(\theta)} \Rightarrow P_{\theta}\left(K_{n_{k}}>z\right)<P_{\theta}\left(t_{n_{k}} \geq \theta+a / \sqrt{n_{k}}\right) .
$$

Letting $k \rightarrow \infty$, we find that

$$
P(N(0,1) \geq z) \leq P(N(0,1) \geq a / \sqrt{v(\theta)})
$$

and hence $z>a / \sqrt{v(\theta)}$. Since z was arbitrary, we must have $\sqrt{a^{2} I_{1}(\theta)} \geq a / \sqrt{v(\theta)}$ and hence $v(\theta) \geq 1 / I_{1}(\theta)$.

Lecture 30

Proof of (2). Assume only (${ }^{* * *}$), i.e., that $\sqrt{n}\left(t_{n}-\theta\right) \xrightarrow{\mathcal{L}_{\theta}} N(0, v(\theta))$ for $\theta \in \Theta$, and let J be a bounded subinterval of Θ, say (a, b). Let

$$
\Psi_{n}(\theta)=P_{\theta}\left(t_{n}>\theta\right) \quad \text { and } \quad \varphi_{n}(\theta)=\left|\Psi_{n}(\theta)-\frac{1}{2}\right| .
$$

Then $0 \leq \varphi_{n}(\theta) \leq \frac{1}{2}$ and, from $\left({ }^{* * *}\right), \Psi_{n}(\theta) \rightarrow \frac{1}{2}$ and $\varphi_{n}(\theta) \rightarrow 0$ for each θ. Hence $\theta \mapsto I_{J}(\theta) \varphi_{n}(\theta)$, where I_{J} is an indicator function, is bounded on Θ and tends to 0 , so $\int_{\Theta} I_{J}(\theta) \varphi_{n}(\theta) d \theta \rightarrow 0$, or

$$
\int_{\mathbb{R}^{1}} I_{J}\left(\delta+\frac{1}{\sqrt{n}}\right) \varphi_{n}\left(\delta+\frac{1}{\sqrt{n}}\right) d \delta \rightarrow 0 ;
$$

but $I_{J}\left(\delta+\frac{1}{\sqrt{n}}\right) \rightarrow I_{J}(\delta)$ except for δ an endpoint of J, so

$$
\int_{\mathbb{R}^{1}} I_{J}(\delta) \varphi_{n}\left(\delta+\frac{1}{\sqrt{n}}\right) d \delta \rightarrow 0
$$

Noticing that $I_{J}(\delta) \varphi_{n}\left(\delta+\frac{1}{\sqrt{n}}\right) \geq 0$, we have $I_{J}(\delta) \varphi_{n}\left(\delta+\frac{1}{\sqrt{n}}\right) \rightarrow 0$ in Lebesgue measure, so that there is some sequence $\left\{n_{k}\right\}$ such that $I_{J}(\delta) \varphi_{n_{k}}\left(\delta+\frac{1}{\sqrt{n_{k}}}\right) \rightarrow 0$ a.e.(Lebesgue); thus $\varphi_{n_{k}}\left(\delta+\frac{1}{\sqrt{n_{k}}}\right) \rightarrow 0$ a.e. (Lebesgue) on J-i.e., $P_{\theta+\frac{1}{\sqrt{n_{k}}}}\left(t_{n_{k}}>\theta+\frac{1}{\sqrt{n_{k}}}\right)-\frac{1}{2} \rightarrow 0$ a.e. on J. Returning to the original sequence, we have that $\overline{\lim }_{n \rightarrow \infty} P_{\theta+\frac{1}{\sqrt{n}}}\left(t_{n}>\theta+\frac{1}{\sqrt{n}}\right) \geq 1 / 2$ a.e. on J and so, from (3), $v(\theta) \geq 1 / I_{1}(\theta)$ a.e. on J. Since J was any bounded subinterval of Θ, this means that $v(\theta) \geq 1 / I_{1}(\theta)$ a.e. on Θ.

General regular case

For each n, let $\left(S_{n}, \mathcal{A}_{n}, P_{\theta}^{(n)}\right)$ be an experiment with common parameter

$$
\theta=\left(\theta_{1}, \ldots, \theta_{p}\right) \in \Theta
$$

where Θ is open in \mathbb{R}^{p}, such that S_{n} consists of points s_{n}. No relation between n and $n+1$ is assumed.

In Examples 1-5, we have $S_{n}=\underbrace{X \times \cdots \times X}_{n \text { times }}$ and $P_{\theta}^{(n)}=P_{\theta} \times \cdots P_{\theta}$. In Examples 6 and $7, P_{\theta}^{(n)}$ is the distribution of $s_{n}=\left(X_{1}, \ldots, X_{n}\right)$, where the X_{i} are not iid.
Example 8. For $n=2,3, \ldots$, let n_{1} and n_{2} be positive integers such that $n=n_{1}+n_{2}$. Let $s_{n}=\left(X_{1}, \ldots, X_{n_{1}} ; Y_{1}, \ldots, Y_{n_{2}}\right)$, where $X_{1}, \ldots, X_{n_{1}}, Y_{1}, \ldots, Y_{n_{2}}$ are independent, $X_{1}, \ldots, X_{n_{1}}$ are $N\left(\mu_{1}, \sigma^{2}\right)$ distributed and $Y_{1}, \ldots, Y_{n_{2}}$ are $N\left(\mu_{2}, \sigma^{2}\right)$ distributed. Here $\theta=\left(\mu_{1}, \mu_{2}, \sigma^{2}\right)$ is entirely unknown. This is a three-parameter exponential family, and the complete sufficient statistic is

$$
\left(\sum_{i=1}^{n_{1}} X_{i}, \sum_{i=1}^{n_{2}} Y_{i}, \sum_{i=1}^{n_{1}} X_{i}^{2}+\sum_{i=1}^{n_{2}} Y_{i}^{2}\right)
$$

If $n_{1} / n_{2} \rightarrow \rho$ as $n \rightarrow \infty$ for some $0<\rho<\infty$, all regularity conditions to follow are satisfied.

The local asymptotic normality condition

Choose $\theta \in \Theta$ and assume that $d P_{\delta}^{(n)}\left(s_{n}\right)=\Omega_{\delta, \theta}\left(s_{n}\right) d P_{\theta}^{(n)}\left(s_{n}\right)$ holds for all δ in a neighborhood of θ.
Condition LAN (at $\theta \in \Theta)$. For each $a \in \mathbb{R}^{p}$,

$$
\log _{e}\left(\Omega_{\theta+\frac{a}{\sqrt{n}}, \theta}\left(s_{n}\right)\right)=a z_{n}^{\prime}(\theta)-\frac{1}{2} a^{\prime} I_{1}(\theta) a+\Delta_{n}\left(\theta, s_{n}\right)
$$

where I_{1} is a fixed $p \times p$ positive definite matrix, $z_{n}(\theta) \in \mathbb{R}^{p}$ and $z_{n}(\theta) \xrightarrow{\mathcal{L}_{\theta}} N\left(0, I_{1}(\theta)\right)$ and $\Delta_{n}\left(\theta, s_{n}\right) \rightarrow 0$ in $P_{\theta}^{(n)}$-probability.
Note.
i. If $s_{n}=\left(X_{1}, \ldots, X_{n}\right)$, where the X_{i} s are iid, and I_{1} is the information matrix for X_{1}, then LAN is satisfied for this I_{1}; but the LAN condition holds in some "irregular" cases also - see Example 1(b).
ii. The right-hand side in LAN with Δ_{n} omitted is exactly the log-likelihood in the multivariate normal translation-parameter case. See Example 4.

Let $g: \Theta \rightarrow \mathbb{R}^{1}$ be continuously differentiable and write $h(\theta)=\operatorname{grad} g(\theta)$.
2^{p} (Le Cam). If $t_{n}=t_{n}\left(s_{n}\right)$ is an estimate of g such that

$$
\sqrt{n}\left(t_{n}-g(\theta)\right) \xrightarrow{\mathcal{L}_{\theta}} N(0, v(\theta)) \forall \theta \in \Theta,
$$

then $\left\{\theta: v(\theta)<b_{1}(\theta)\right\}$ is of (p-dimensional) Lebesgue measure 0 if we let $b_{1}(\theta)=h(\theta) I_{1}^{-1}(\theta) h^{\prime}(\theta)$.
4^{p} (Hájek). Suppose that $u_{n}: S_{n} \rightarrow \Theta$ is s.t.

$$
\sqrt{n}\left(u_{n}-(\theta+a / \sqrt{n})\right) \xrightarrow{\mathcal{C}_{\theta+a / \sqrt{n}}} u_{\theta}
$$

(u_{θ} independent of a), then u_{θ} may be represented as $v_{\theta}+w_{\theta}$, where v_{θ} and w_{θ} are independent and $v_{\theta} \sim N\left(0, I_{1}^{-1}(\theta)\right)$.
Note. No uniformity in a is needed in Hájek's theorem.
From the above we see that, for large n, the $N\left(0, I_{1}^{-1}(\theta) / n\right)$ distribution is nearly the best possible for estimates of $\theta . n$ is the "sample size", or cost of observing s_{n}.

Sufficient conditions for LAN

Suppose that $L\left(\theta \mid s_{n}\right)$ exists for each n, i.e., that $d P_{\theta}^{(n)}\left(s_{n}\right)=e^{L\left(\theta \mid s_{n}\right)} d \nu^{(n)}\left(s_{n}\right)$ for all n, and that, for each $n, L\left(\cdot \mid s_{n}\right)$ has at least two continuous derivatives. We write $\ell=e^{L}$. Let $L^{(1)}\left(\theta \mid s_{n}\right)=\operatorname{grad} L\left(\theta \mid s_{n}\right)$.
Condition 1. $\frac{1}{\sqrt{n}} L^{(1)}\left(\theta \mid s_{n}\right) \xrightarrow{\mathcal{L}_{\theta}} N\left(0, I_{1}(\theta)\right)$ for some positive definite I_{1}.
Condition 2. $\frac{1}{n}\left\{L_{i j}\left(\theta \mid s_{n}\right)\right\} \rightarrow-I_{1}(\theta)$ in $P_{\theta}^{(n)}$-probability.
Condition 3. With

$$
M\left(\theta, \gamma, s_{n}\right):=\frac{1}{n} \max _{\substack{| ||=\theta \theta| \leq \gamma \\ i, j=1, \ldots, p}}\left\{L_{i j}\left(\delta \mid s_{n}\right)-L_{i j}\left(\theta \mid s_{n}\right) \mid\right\}
$$

$\lim _{r \downarrow 0} \overline{\lim }_{n \rightarrow \infty} P_{\theta}^{(n)}\left(M\left(\theta, \gamma, s_{n}\right)>\varepsilon\right)=0$ for every $\varepsilon>0$.
Conditions 1-3 imply LAN with $\Delta_{n} \rightarrow 0$, and also the following:
1^{p} (Fisher). Under Conditions $1-3$, if $\hat{\theta}_{n}=\hat{\theta}_{n}\left(s_{n}\right)$, the MLE of θ, exists and is consistent, then

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{\mathcal{L}_{\theta}} N\left(0, I_{1}^{-1}(\theta)\right) \forall \theta \in \Theta .
$$

Definition. Let $u_{n}=u_{n}\left(s_{n}\right)$ be an estimate of $\theta . u_{n}$ is CONSISTENT if $u_{n} \xrightarrow{P_{\theta}} \theta$ for all θ, or, equivalently, $\left(u_{n}-\theta\right)\left(u_{n}-\theta\right)^{\prime} \xrightarrow{P_{\theta}} 0$. u_{n} is \sqrt{n}-CONSISTENT if $n\left(u_{n}-\theta\right)\left(u_{n}-\theta\right)^{\prime}$ is bounded in P_{θ} for all θ. (We say that Y_{n} is Bounded in P if, given any $\varepsilon>0$, we may find k such that $P\left(\left|Y_{n}\right|>k\right) \leq \varepsilon$ for all n sufficiently large.)
1^{p} (continued). If u_{n} is a \sqrt{n}-consistent estimate of θ and

$$
u_{n}^{*}=u_{n}+\left\{\left.\left(L_{i j}\left(\theta \mid s_{n}\right)\right)^{-1} L^{(1)}\left(\theta \mid s_{n}\right)\right|_{\theta=u_{n}}\right\}
$$

and

$$
u_{n}^{* *}=u_{n}+\left\{\left.I_{n}\left(\hat{\theta}_{n}\right)^{-1} L^{(1)}\left(\theta \mid s_{n}\right)\right|_{\theta=u_{n}}\right\},
$$

then u_{n}^{*} and $u_{n}^{* *}$ are both $A N\left(\theta, I_{1}^{-1}(\theta) / n\right)$. Consequently, $t_{n}^{*}=g\left(u_{n}^{*}\right)$ and $t_{n}^{* *}=g\left(u_{n}^{* *}\right)$ are both $A N\left(g(\theta), b_{1}(\theta) / n\right)$, where $b_{1}(\theta)=h(\theta) I_{1}^{-1}(\theta) h^{\prime}(\theta)$.

