
Chapter 5

Lecture 16

Example l(e). We have Xi iid αe~6(x~β)4, with a, b > 0 chosen so that this is a density
and Vtuθ(Xi) = 1. Then

) ( ) ( )
2 = 1 i-l t = l

which is not a one-parameter exponential family. It is called a "curved exponential
family".

Sufficient conditions for the Cramer-Rao and Bhattacharya
inequalities

As usual, we have (5, A, P#), ί £ θ , where θ is an open subset of R 1 . μ is a fixed

measure on 5 and dPe(s) = lg(s)dμ(s).

Condition 1. £(9(5) > 0 and 5 h-> ̂ (s) has, for each 5 G 5, a continuous derivative
Jι->^(s). Let

Condition 2. Given any ί G θ, we may find an ε = ε(0) > 0 such that Eg(mf) < +00,
where

mθ(s) = sup 17^(5)1

- i.e., m^ G H, which implies that I(θ) = Eθ(^)2 < +00.

Condition 3. I(θ) > 0.

12E Exact statement of Cramer-Rao inequality: Under conditions 1-3 above, if Ug

is non-empty, then g is differentiate and
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Proof.

i.

$> = 1 + (ί - (i)

for some 5* between θ and δ. By Condition 2, Ω ^ G V# for |5—θ\ sufficiently
small.

ii.
Ωδft{β) — \ ( i ) , v ( i ) / \ ( i ) / \ n

δ _ θ — rθ

 }{s) = rδJ{s) - fθ \s) -> o

as δ —> ̂  for all s £ S. (From Condition 1, 7^ is continuous.) Also,

and hence EQ^V — 7^ ) 2 —> 0 as 5 -> ^ (by dominated convergence) -
i.e.,

Ω - 1 Vo (1)
7

From this it follows that 7 ^ G Wθ.

iii. Choose t G C/̂ . If we let ( , •) and || | | be the inner product and norm,
respectively, in VQ, then Es(t) = EβζtΩsj) = g(δ) and so

(ί, Ω w - 1) = g(δ) - g(θ) =• (ί - 0(0), Ω w - 1) = g(δ) - g(θ)

(since Ee(Ωs,θ — 1) = 0), whence

From (ii) g(<δ]_fθ>) has a finite limit (t — <?(#),7#) as δ —> θ. Thus g is

differentiate and g'(θ) = (t — g(θ).jί1'), so that \g'lθ)\ < \\t — g(θ)\\ II70 II

-i.e., Var^ί) > [-^-. D

3. To know that ϊcί'oda = 0 = ίcKdu, it suffices to show that (W/?(s) exists and
is continuous for each s and that

{ max \ί"δ{s)\2}dμ(s) <+oo

for some ε = ε(0) > 0.

TVoίe. Under Conditions 1-3, S p a n l l ^ } = wf } C Wθ and 1 J_ 7 ^ in V̂ . (Take
ί = 1; then (1, Ω^̂ ) = 1 and hence

Letting δ -»• 0, we have that ( 1 , 7 ^ ) = 0.)

39



Let A; be a positive integer.

Condition lk. For each fixed s, θ ι-> £g(s) is positive and is A -times continuously

difFerentiable.

Condition 2k- Given any θ e θ , we may find an ε = ε(θ) > 0 such that Eθ(m2

θ) < +00,

where

mθ(s)= sup hί f c )(s)|.

(From the above, we have that 1 J_ 7 ^ for j = 1,.. ., k - i.e., Eθ(j{

θ

3)) = 0.)

Let ΣQ be the covariance matrix of
(k)

ΊΘ

Condition Sk. Σg is positive definite.

HE. If conditions lfe-3fc hold and Ug is non-empty, then g is A -times continuously
differentiable and

Vfuo(t)>bk(θ)VteUg,θeθ,

(
where bk(θ) = /ι'(^)[Σ^ )]"1/ι(^) and h(θ) = : (Of course g® =

^ j { k ) e Wθ and so W(fc)Proof (outline). 1,7^,..., j {

θ

k ) e Wθ and so Wβ

(fc) C ΪVβ and

Lecture 17

i. L'θ, L'g1,... are derivatives of loge£e, but 7 ^ = ί'θ/£β, ηf] = f;/£ f l,... are noί
the same as Lρ, L'θ',

ii. Condition 2 in (12E) can be weakened slightly to:

Condition 2'. Given any θ e θ , we may find an ε — ε(θ) > 0 such that

E
|2

< +OO.

and condition 2fc in (HE) can be weakened to:
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Condition 2'k Given any θ E θ , we may find an ε = ε(θ) > 0 such that

E
|2

< +OO.

iii. Suppose that Ug is non-empty; then (8) implies that the projection of any
t E Ug to W$ is the (fixed) t E Ug Π WQ. Also, ίj!| fc is the projection of any t E Ug

to Wθ

{k) = Span{l,751 },... , 7 ^ } QWΘ- i.e., t*θk is the (affine) "regression" of

e^on^,...^}. Thus

where α i , . . . , α^ are determined as in our discussion of regression, and

h(θ) = Eθ(tlkf - [g(θ)}2 = P ί fc)

dkg\'

)
l ^i\ (y (g

\dθ'"' 'dθk){ θ ' \dθ'"' ' dθk

by the regression formula.

iv.
b1(θ)<b2(θ)<- -<bk{θ)<

(where bλ(θ) is the C-R bound) because w f } C W^+1). If we define
limfe^ooδfcί^), then

b(θ) < Varβ(ί),

the actual lower bound at # for an unbiased estimate of g. We have that

b(θ) — Vare(i) iff t E Span{l, % ,Tg, •••}• This does hold for any g with non-

empty Ug if the subspace spanned by {1,7^ , . . . , 7^ ,...} is We. This sufficient

condition for &* -» 6 and t*θk —> t is plausible since, by the Taylor expansion,

It holds rigorously in the following case:

15. (One-parameter exponential family) Suppose that

£θ(s) = C(s)eΛW+B«>™

where C(s) > 0, T is a fixed statistic and B is a continuous strictly monotone
function on θ C R; then, under Condition (*) below, we have

a. Wθ

(k) = Span{l, T , . . . , Tk} for A; = 1,2,3,....

b. Span{l, Γ, Γ 2, ...} = WΘ (under θ).
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c. Wθ is the space of all Borel functions / of T such that Eθ(f{T))2 < +00.

d. If Ug is non-empty, then bk(θ) -» b(θ) = Varj(ί).

e. t = Eθ(t I T) for all θ e θ and ί e tf9.

f. SUFFICIENCY OF T: Given any AC S,we may find an /ι(T) independent

of θ such that h(T) = PΘ(A\ T) for all θ G θ .

Proof, (f) follows from (e) by defining g(θ) = PΘ{A) and t = IA e Ug and

applying (c).

(e) follows from (c) since projection to We is then the same as taking conditional

expectation.

(d) follows from (a) and (b) and the above notes.

It now remains only to prove (a)-(c). To this end, let ξ = B(δ) — B(θ). Then
ξ is the parameter, and takes values in a neighborhood of 0. We have

dPξ Cj,)e«<»«<™ __ ετ(s)_κ

c f( s) eA(β)+β(β)τ( s)

Suppose that

Condition (*). ξ = B(δ) — B(θ) takes all values in a neighborhood of 0 as δ
varies in a neighborhood of θ.

Under this condition,

KdPo{s)= [dPξ(8) =
Js

[
s

and hence the MGF of T exists for ξ in a neighborhood of 0, and

is the cumulant generating function of T under PQ.

Thus the family of probabilities on S is {Pξ : ξ in a neighborhood of 0}, where
dPξ(s) = eξT^~κ^dP0(s) - i.e., a one-parameter exponential family with ξ as
the "natural" parameter and T(s) as the "natural" statistic. Wθ = Span{Ωί)6> :
δ £ θ } ; the spanning set includes {eξτ^~κ^ : ξ in a neighbourhood of 0}, so
Wo contains the subspace spanned by {eξT : ξ in a neighborhood of 0}. Now

- £ I I g

v-ξ

for some ?;* between η and £. We have, however, that \(η — ξ)T2eίjl'~^τ —>• 0
since the MGFs of T exist around 0. Hence

Teξτ = lim -(eηT - eςτ) G Wθ.
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Similarly, T V Γ , T V T , . . . are in WΘ. Taking ξ = 0, we get {1, T, T 2 , . . . } C Wθ,
so that the subspace spanned by {1, T, T 2 , . . .} is in WQ\ but this subspace is the
subspace of all square-integrable Borel functions of T, so Span{l, T, T 2 , . . .} =
W0 actually, since each Ω ^ is a (square-integrable Borel) function of T. D

Example 2. Here 5 = (XL, . . . ,XN)> N the total number of trials in a Bernoulli
sequence, and ίβ(s) = θτ^s\l — Θ)N^~T^S\ where T, the total number of successes, is

Xι + X2 H h XAΓ. In general, this is a curved exponential family.
In Example 2(a), since N = n (a, constant),

g _ nloge(l-0)+Tloge(0/(l-0))

so that T is sufficient and any function of T is the UMVUE of its expected value.
C = Π f l e β ^ *s *^ e s e t °̂  a ^ e s t i m a t e s of the form f(T). The C-R bound b\ is
attained essentially only for g{θ) = -A'{θ)/B'{θ) = θ, i.e., for g(θ) = α + βθ. The
A:th Bhattacharya bound bk is attained iff ρ(θ) is a polynomial of degree k < n. If
k > n, then bk = bn = b.

Lecture 18

Note. In the context of (15), it is sometimes necessary to look at the distribution of
the (sufficient) statistic T. Suppose that we have found the distribution function of
T for a particular θ - say Fθ\ then Fδ is given by

dFδ(x) =

where x = T(s) (so that the distributions of Γ are a one-parameter exponential family
with statistic the identity). (Please check, by computing, that Ps(T < x) =: F$(x) —

• • • • )

Example 2(a).

Homework 4

1. Ug is non-empty iff g is a polynomial of degree < n (in the case of Example

2(a)).

We does not depend on 0; it is the class of all functions of X, and hence an

estimate is a UMVUE of its expected value iff it is a function of X.

We will show that σ2(θ) has a UMVUE when n > 2. This UMVUE should be a

function of X. £ may be estimated by ^ . How about θ2? Let

_ Jl
10 otherwise;
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then Eθt — θ2. We know that the projection to Wθ, which is Eθ(t | T), will give t for
g(θ) = θ2. (Taking Eθ(t | Γ) is called "Blackwellization".)

Pβ{X\ — 1 = X2, exactly k — 2 successes in subsequent n — 2 trials)

PΘ(T = k)

l-*)»-* © n(n-l) '

which is independent of 0, as expected. Thus

T(T-1)
Ϊ =

n(n — 1) '

which is the UMVUE of 02, and therefore σ2(θ) may be estimated by

X XfnX-l\ _X
n n l n — 1 / n

1 -
nX-ϊ
n- 1

which is a function of X and hence is the UMVUE of σ2(0).

Consider the odds ratio g(θ) = y^. This has no unbiased estimate. Since θ

has MLE X, ί, the MLE for this g, is ^=. Since P ^ X = 1) = θn > 0, we have

Eθ(t) — +oo, so the expectation breaks down. If, however, I(θ) = "θ) is large -
i.e., n is large - then

i = X + - - + X + - ^ = χ + ... + χn + Rn,

where Rn = jzr%. For each θ e (0,1), Rn is very small with large probability, and

Rn 1

in Pfl-probability as n -> oo.

Example 2(b) (Negative binomial sampling). Here

4 = θk(l - θ)N~k = expJA l o g ^ + Jfclog(l - θ) • y\,

where y = iV/Λ, so that

T = y, A = klog(θ/(1-Θ)) and B = k\og(l-Θ),

and hence -A'(θ)/B'(θ) = 1/0. Thus £„(</) = 1/0 and Var<,(y) is the C-R bound,
and the C-R bound is attained only for g(θ) = a + b/θ.
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Now assume k > 3. We know (even for k > 2) that j ^ is an unbiased estimate

of θ. Since j ^ = -j^± is a function of y, it is in fact the UMVUE of θ.

Let σ2(θ) = Vari9(-|^γ). Since t = j^[ is not a polynomial in y - in fact,

t <£ Wθ,k \/k - we have (for g(θ) = θ)

bι(θ) <h{θ) < <bk+1(θ) < σ\θ),

but bk(θ) ->• σ2(^) as fc -+ cχo. We can, however, find a UMVUE for σ2(^) (without
knowing what the bks are).

Suppose that we can find an unbiased estimate u of θ2. Then υ = ί2 — w is an
unbiased estimate of σ2(0) (σ2(^) = Var^(ί) = EΘ(P) - θ2).

Let

t = ί l ifX1 = l = X2

1 0 otherwise.

Then (even at present) Ee(t) = θ2 and hence u — Ee(t \ N) (the Blackwellization of
ί) is the UMVUE of θ2 (when k > 3).

- 2)

( m - l ) ( m - 2 )

- i.e., u = (^lljj^j) is the UMVUE of θ2, so that the UMVUE of σ2(θ) is

( k - l \ 2 (Jfc-l)(fc-2) _ (ife-l)(iV-fc)

Homework 4

2. Does every polynomial in θ have an unbiased estimate? (Yes?) Does ^ have
an unbiased estimate? (No?)

45




