Chapter 3

Lecture 11

Unbiasedness has an appealing property, which we discuss here: Choose any estimate t(s). Imagining for the moment that s is unknown but θ is provided, what is the best predictor for t?

Let λ be the prior; this determines M, as above. Regard t and g as elements of $L^2(M)$.

7. (t is an unbiased estimate of g) \Leftrightarrow (for any choice of a probability λ on θ , g is the best (in MSE) predictor for t).

Proof. If t is an unbiased estimate of g, then, for any λ , $E(t \mid \theta) = g$ – i.e., g is the projection of t to the subspace of functions in $L^2(M)$ which depend only on θ ; or, equivalently, g is the best predictor of t in the sense of $||\cdot||_M$. Conversely, assume that each one-point set in Θ is measurable and take λ to be degenerate at a point θ . The assumption that g is the best predictor of t tells us that $g(\theta) = E(t \mid \theta)$ or, equivalently, that t is an unbiased estimate of g. \Box

Unbiased estimation; likelihood ratio

Choose and fix a $\theta \in \Theta$ and let $\delta \in \Theta$. Assume that P_{δ} is absolutely continuous with respect to P_{θ} on \mathcal{A} ; then, by the Radon-Nikodym theorem, there exists an \mathcal{A} -measurable function $\Omega_{\delta,\theta}$ satisfying $0 \leq \Omega_{\delta,\theta} \leq +\infty$ and $dP_{\delta} = \Omega_{\delta,\theta}dP_{\theta}$ (i.e., $P_{\delta}(A) = \int_{\mathcal{A}} \Omega_{\delta,\theta}(s) dP_{\theta}(s)$ for all $A \in \mathcal{A}$).

Note. Suppose that we begin with $dP_{\delta}(\theta) = \ell_{\delta}(s)d\mu(s)$ on S, where μ is given, and that we know that $P_{\theta}(A) = 0 \Rightarrow P_{\delta}(A) = 0$ (i.e., that P_{δ} is absolutely continuous with respect to P_{θ}). Then

$$\Omega_{\delta,\theta}(s) = \begin{cases} \ell_{\delta}(s)/\ell_{\theta}(s) & \text{if } 0 < \ell_{\theta}(s) < \infty \\ 1 & \text{if } \ell_{\theta}(s) = 0 \end{cases}$$

is an explicit formula for the likelihood ratio. In fact $\Omega_{\delta,\theta}$ can be defined arbitrarily on the set $\{s : \ell_{\theta}(s) = 0\}$.

In estimating g on the basis of s, let U_g be the class of all unbiased estimates of g. For an estimate $t \in U_g$, the risk function is given by $R_t(\theta) = E_{\theta}(t-g)^2 = \operatorname{Var}_{\theta}(t)$. Two questions arise immediately: What is the infimum (over U_g) of the variances at a given θ of the various estimates to g? Is it attained?

Remember that we fixed a $\theta \in \Theta$ above. Let $V_{\theta} = L^2(S, \mathcal{A}, P_{\theta})$; then we assume throughout that

$$\{\Omega_{\delta,\theta}:\delta\in\Theta\}\subseteq V_{\theta},$$

i.e., that $E_{\theta}(\Omega^2_{\delta,\theta}) < +\infty$. Let W_{θ} be the subspace of V_{θ} spanned by $\{\Omega_{\delta,\theta} : \delta \in \Theta\}$.

8. a. U_g is non-empty iff $U_g \cap W_\theta$ is non-empty.

We assume henceforth that U_q is non-empty. Then:

- b. $U_q \cap W_\theta$ contains (essentially) only one estimate \tilde{t} .
- c. \tilde{t} is the orthogonal projection on W_{θ} of every $t \in U_q$.
- d. $\operatorname{Var}_{\theta}(t) \geq \operatorname{Var}_{\theta}(\tilde{t})$ for all $t \in U_q$.

Note. The above means that $\tilde{t} \in U_g \cap W_\theta$ is the LMVUE of g at θ . \tilde{t} often depends on θ , and this is the problem in practice.

Proof of (8). Note first that

- 1. $1 \in W_{\theta}$ (since $\Omega_{\theta,\theta} \equiv 1$).
- 2. For any t, $E_{\delta}(t) = \int_{S} t(s) dP_{\delta}(s) = \int_{S} t(s) \Omega_{\delta,\theta}(s) dP_{\theta}(s)$, so that $E_{\delta}(t) = (t, \Omega_{\delta,\theta})_{\theta}$, where $(\cdot, \cdot)_{\theta}$ is the inner product in $L^{2}(S, \mathcal{B}, P_{\theta})$.

To prove (a), suppose that U_g is non-empty. Let $t \in U_g$ and define $\tilde{t} = \pi t$, where $\pi = \pi_{W_{\theta}}$ is the orthogonal projection on W_{θ} . Then, for any $\delta \in \Theta$,

$$E_{\delta}(\tilde{t}) = (\tilde{t}, \Omega_{\delta,\theta})_{\theta} = (\pi t, \Omega_{\delta,\theta})_{\theta} = (t, \pi \Omega_{\delta,\theta})_{\theta} = (t, \Omega_{\delta,\theta})_{\theta} = E_{\delta}(t) = g(\delta).$$

To prove (b), suppose $t_1, t_2 \in U_g \cap W_\theta$; then

$$(t_1 - t_2, \Omega_{\delta,\theta})_{\theta} = E_{\delta}(t_1 - t_2) = g(\delta) - g(\delta) = 0 \ \forall \delta \in \Theta.$$

Hence $(t_1 - t_2) \perp \Omega_{\delta,\theta}$ for all $\delta \in \Theta$, and so $(t_1 - t_2) \perp W_{\theta}$; but $t_1 - t_2 \in W_{\theta}$, so

$$(t_1 - t_2) \perp (t_1 - t_2) \Rightarrow t_1 - t_2 = 0 \Rightarrow P_{\theta}(t_1 = t_2) = 1.$$

It follows by absolute continuity that $P_{\delta}(t_1 = t_2) = 1$ for all $\delta \in \Theta$.

(c) follows from (b) and the above construction.

(d) follows from (c) since t is unbiased for g.

Note. In verifying (8), please remember that, if $E_{\delta}(t) = g(\delta) = E_{\delta}(\tilde{t})$ for all $\delta \in \Theta$, then $\operatorname{Var}_{\theta}(t) = E_{\theta}(t^2) - g(\theta)^2$ and $\operatorname{Var}_{\theta}(\tilde{t}^2) = E_{\theta}(\tilde{t}^2) - g(\theta)^2$, so that $\operatorname{Var}_{\theta}(\tilde{t}) \leq \operatorname{Var}_{\theta}(t)$, with equality iff $t = \tilde{t}$.

Lecture 12

We may restate (8) as follows:

- 8'. a. For some $\tilde{t} \in W_{\theta}$, $E_{\delta}(\tilde{t}) = E_{\delta}(t)$ for all $\delta \in \Theta$ and $t \in U_{q}$.
 - b. $\pi_{W_{\theta}}t$ is such a \tilde{t} , and is the (essentially) unique such.
 - c. We have that

$$R_{\tilde{t}}(\theta) = E_{\theta} (\tilde{t} - g(\theta))^{2} = \operatorname{Var}_{\theta}(\tilde{t}) + [b_{t}(\theta)]^{2} \leq \operatorname{Var}_{\theta}(t) + [b_{t}(\theta)]^{2} = R_{t}(\theta)$$

with equality iff $t = \tilde{t}$.

- d. \tilde{t} is (essentially) the only unbiased estimate of g which belongs to W_{θ} .
- 9. a. An estimate t is the locally MVUE of $g(\delta) := E_{\delta}(t)$ at θ iff t has finite variance at each δ and $t \in W_{\theta}$.
 - b. An estimate t is the UMVUE of $g(\theta) := E_{\theta}(t)$ iff $t \in \bigcap_{\theta \in \Theta} W_{\theta}$ (we assume that $\Omega_{\delta,\theta} \in L^2(P_{\theta})$ for all $\theta, \delta \in \Theta$).

9(b) above raises the question: Can we describe $C := \bigcap_{\theta \in \Theta} W_{\theta}$? We know it contains the constant functions; does it contain any others?

10 (Lehman-Scheffé). Write

$$\tilde{V} = \bigcap_{\theta \in \Theta} V_{\theta} \cap \{ v : E_{\delta}(v) = 0 \ \forall \delta \in \Theta \}.$$

If t has finite variance for each δ (i.e., $t \in \bigcap_{\theta \in \Theta} V_{\theta}$), then $t \in C$ iff, for each $\delta \in \Theta$, we have

$$E_{\delta}(tu) = 0 \ \forall u \in V.$$

Proof. Suppose that $t \in C$. Then $t \perp_{\delta} W_{\delta}^{\perp}$ for all $\delta \in \Theta$. Now, for all $u \in \tilde{V}$, u is an unbiased estimate of 0; from (8), we know that 0 is the projection of u to any W_{δ} . Since u = 0 + u, we must therefore have $u \in W_{\delta}^{\perp}$, so that $t \perp_{\delta} u$ for each δ – i.e., $E_{\delta}(tu) = 0$ for all δ .

Conversely, fix a $\theta \in \Theta$ and write $t = \pi t + u$, where $u = t - \pi t$ and $\pi = \pi_{W_{\theta}}$. Then $E_{\delta}(u) = 0$ for all δ and hence, by hypothesis, we have that

$$E_{\theta}(u^2) + E_{\theta}(u \cdot \pi t) = E_{\theta}((\pi t + u)u) = E_{\theta}(tu) = 0$$

$$\Rightarrow E_{\theta}(u^2) = -E_{\theta}(u \cdot \pi t) = -(\pi t, u) = 0$$

- i.e., u = 0 a.e. (P_{θ}) and hence, by absolute continuity of each P_{δ} , u = 0 a.e. (P_{δ}) also for every $\delta \in \Theta$. This means that $t = \pi t = \pi_{W_{\theta}} t \Rightarrow t \in W_{\theta}$; since $\theta \in \Theta$ was arbitrary, this means that $t \in \bigcap_{\theta \in \Theta} W_{\theta} = C$ as desired. \Box

Example 1(d). We have $s = (X_1, \ldots, X_n)$, with the X_i iid as $N(\theta, 1)$, and $\Theta = \{1, 2\}$. We have explicitly that

$$\ell_{\theta}(s) \propto e^{-\frac{n}{2}(\overline{X}-\theta)^2}$$

and

$$\Omega_{\delta,\theta}(s) = e^{n(\delta-\theta)\overline{X} - \frac{n}{2}(\delta^2 - \theta^2)}.$$

Choose $\theta = 1$; then

$$W_{\theta} = \operatorname{Span}\{\Omega_{11}, \Omega_{21}\} = \operatorname{Span}\{1, e^{n\overline{X}}\} = \{a + be^{n\overline{X}} : a, b \in \mathbb{R}\}.$$

Let $g(\delta) = \delta$. Since \overline{X} is an unbiased estimate of g, we have a unique unbiased estimate of g in W_{θ} . Hence we want

$$E_1(a + be^{nX}) = 1$$

$$E_2(a + be^{n\overline{X}}) = 2$$
(*)

Since $\sqrt{n}(\overline{X} - \delta) \sim N(0, 1)$ for $\delta \in \Theta$, under δ , using the MGF of N(0, 1), we have

$$E_{\delta}(e^{n\overline{X}}) = e^{n\delta}E_{\delta}(e^{\sqrt{n}\cdot\sqrt{n}(\overline{X}-\delta)}) = e^{n\delta+\frac{1}{2}n}$$

for any $\delta \in \Theta$. Solving (*), we find a and b (b > 0). Thus $a + be^{n\overline{X}}$ is LMVU for $E_{\theta}(X_1)$ at $\theta = 1$. This is not, however, a reasonable estimate. We already know that $\Theta = \{1, 2\}$, but this estimate takes values in $(-\infty, \infty)$. (Since Θ is not connected, we don't have Taylor's theorem here. Also, the LMVUE at $\theta = 2$ is a very different function of \overline{X} .) This is absurd. MSE is not suitable because g takes on only two values.

We try changing our parameter space to $\Theta = (\ell, u)$. Now

$$W_{\theta} = \operatorname{Span}\{\Omega_{\delta,\theta} : \ell < \delta < u\} = \operatorname{Span}\{e^{t\overline{X}} : t \text{ is sufficiently small}\}\$$

(in the last set, 't is sufficiently small' means 'for t in a fixed neighbourhood of 0'). It can be shown that

$$W_{\theta} = \{f(\overline{X}) : f \text{ is a Borel function and } E_{\theta}f^2 < +\infty\}.$$

Proof (outline). Since $\frac{e^{t_1\overline{X}}-e^{t_2\overline{X}}}{t_1-t_2} \in W_{\theta}$, we have that $\frac{d}{dt}e^{t\overline{X}} \in W_{\theta}$. Hence $\overline{X}e^{t\overline{X}} \in W_{\theta}$ for |t| sufficiently small. Iterating this reasoning gives us that $\overline{X}^2 e^{t\overline{X}}, \ldots, \overline{X}^i e^{t\overline{X}}, \ldots \in W_{\theta}$ for |t| sufficiently small (what "sufficiently small" means depends on i). Thus $1, \overline{X}, \overline{X}^2, \ldots \in W_{\theta}$ and hence W_{θ} is as desired.

Since \overline{X} is an unbiased estimate of $E_{\delta}(X_1)$ which belongs to W_{θ} , \overline{X} is LMVU at θ , and hence \overline{X} is the UMVUE; since $\overline{X}^2 - \frac{1}{n}$ is an unbiased estimate of $[E_{\delta}(X_1)]^2$, $\overline{X}^2 - \frac{1}{n}$ is the UMVUE for $[E_{\delta}(X_1)]^2$. (Here W_{θ} essentially does not depend on θ , and

$$C = \{f(\overline{X}) : f \text{ is Borel and } E_{\theta}f^2 < +\infty \ \forall \theta \in \Theta\}$$

by our above computation.)

Let $A \subseteq S$ be such that $P_1(A) \neq P_2(A)$ (for example, $A = \{s : X_1(s) > 3/2\}$). Then $a + bI_A$ is an unbiased estimate of θ if a and b are chosen properly. Indeed, there are many unbiased estimates. To find the "best", we try to minimize variances, noting that

$$W_1 = \operatorname{Span}\{\Omega_{11}, \Omega_{21}\} = \{a + be^{n\overline{X}} : a, b \in \mathbb{R}\}$$

is the class of all estimates which are unbiased for their own expected values and have minimum variance when $\theta = 1$ and hence that there is a $t_1 \in W_1$ such that $E_{\delta}(t_1) = \delta$ for $\delta = 1, 2$. (*Exercise*: What is t_1 ?).

Similarly, $W_2 = \{a + be^{-n\overline{X}} : a, b \in \mathbb{R}\}$ and there is a $t_2 \in W_2$ such that $E_{\delta}(t_2) = \delta$ for $\delta = 1, 2$. (*Exercise*: What is t_2 ?) $t_1 \neq t_2$, however; in fact, C is the set of all UMVUEs, which is just the set of constant functions.

As noted, the Neyman-Pearson theory implies that we should use $a + bI_A$ with $A = \{s : \overline{X} > c\}$ and b > 0. We should also restrict the estimation theory to a continuum of values (i.e., should have only connected Θ).