Chapter 1

Note on the notation: Throughout, Professor Bahadur used the symbols $\varphi(s)$, $\varphi_{1}(s), \varphi_{2}(s), \ldots$ to denote functions of the sample that are generally of little importance in the discussion of the likelihood. These functions often arise in his derivations without prior definition.

Lecture 1

Review of L^{2} geometry

Let (S, \mathcal{A}, P) be a probability space. We call two functions f_{1} and f_{2} on S equivaLENT if and only if $P\left(f_{1}=f_{2}\right)=1$, and set

$$
V=L^{2}(S, \mathcal{A}, P):=\left\{f: f \text { is measurable and } E\left(f^{2}\right)=\int_{S} f(s)^{2} d P(s)<\infty\right\}
$$

where we have identified equivalent functions. We may abbreviate $L^{2}(S, \mathcal{A}, P)$ to $L^{2}(P)$ or, if the probability space is understood, to just L^{2}. For $f, g \in V$, we define $\|f\|=+\sqrt{E\left(f^{2}\right)}$ and $(f, g)=E(f \cdot g)$, so that $\|f\|^{2}=(f, f)$. Throughout this list f and g denote arbitrary (collections of equivalent) functions in V.

1. V is a real vector space.
2. (\cdot, \cdot) is an inner product on V - i.e., a bilinear, symmetric and positive definite function.
3. Cauchy-Schwarz inequality:

$$
|(f, g)| \leq\|f\| \cdot\|g\|
$$

with equality if and only if f and g are linearly dependent.
Proof. Let x and y be real; then, by expanding $\|\cdot\|$ in terms of (\cdot, \cdot), we find that

$$
0 \leq\|x f+y g\|^{2}=x^{2}\|f\|^{2}+2 x y(f, g)+y^{2}\|g\|^{2},
$$

from which the result follows immediately on letting $x=\|g\|$ and $y=\|f\|$.
4. Triangle inequality:

$$
\|f+g\| \leq\|f\|+\|g\| .
$$

Proof.

$$
\|f+g\|^{2}=\left|\|f\|^{2}+2(f, g)+\|g\|^{2}\right| \leq\|f\|^{2}+2\|f\|\|g\|+\|g\|^{2}
$$

again by expanding $\|\cdot\|$ in terms of (\cdot, \cdot) and using the Cauchy-Schwarz inequality.
5. Parallelogram law:

$$
\|f+g\|^{2}+\|f-g\|^{2}=2\left(\|f\|^{2}+\|g\|^{2}\right) .
$$

Proof. Direct computation, as above.
6. $\|\cdot\|$ is a continuous function on V, and (\cdot, \cdot) is a continuous function on $V \times V$.

Proof. Suppose $f_{n} \xrightarrow{L^{2}} f$; then

$$
\left(\left\|f_{n}\right\| \leq\|f\|+\left\|f_{n}-f\right\| \rightarrow\|f\|\right) \Rightarrow\left(\overline{\lim }\left\|f_{n}\right\| \leq\|f\|\right)
$$

and

$$
\left(\|f\| \leq\left\|f_{n}\right\|+\left\|f_{n}-f\right\|\right) \Rightarrow\left(\underline{\lim }\left\|f_{n}\right\| \geq\|f\|\right) .
$$

From these two statements it follows that $\lim \left\|f_{n}\right\|=\|f\|$.
7. V is a complete metric space under $\|\cdot\|$ - i.e., if $\left\{g_{n}\right\}$ is a sequence in V and $\left\|g_{n}-g_{m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$, then $\exists \gamma \in V$ such that $\left\|g_{n}-\gamma\right\| \rightarrow 0$.

Proof. The proof proceeds in four parts.

1. $\left\{g_{n}\right\}$ is a Cauchy sequence in probability:

$$
P\left(\left|g_{m}-g_{n}\right|>\varepsilon\right)=P\left(\left|g_{m}-g_{n}\right|^{2}>\varepsilon^{2}\right) \leq \frac{1}{\varepsilon^{2}} E\left(\left\|g_{m}-g_{n}\right\|^{2}\right)=\frac{1}{\varepsilon^{2}}\left\|g_{m}-g_{n}\right\|^{2} .
$$

2. Hence there exists a subsequence $\left\{g_{n_{k}}\right\}$ converging a.e. (P) to, say, g.
3. $g \in V$.

Proof.

$$
E\left(|g|^{2}\right)=\int\left(\lim _{k \rightarrow \infty} g_{n_{k}}^{2}\right) d P \leq \underline{\lim } \int g_{n_{k}}^{2} d P
$$

by Fatou's lemma; but $\left\{\int g_{n_{k}}^{2} d P=\left\|g_{n_{k}}\right\|^{2}\right\}$ is a bounded sequence, since $\left\{\left\|g_{n}\right\|\right\}$ is Cauchy.
4. $\left\|g_{n}-g\right\| \rightarrow 0$.

Proof. For any $\varepsilon>0$, choose $k=k(\varepsilon)$ so that $\left\|g_{m}-g_{n}\right\|<\varepsilon$ whenever $m, n \geq k(\varepsilon)$. Then

$$
\begin{aligned}
\int\left|g_{n}-g\right|^{2} d P= & \int\left(\lim _{k \rightarrow \infty}\left|g_{n}-g_{n_{k}}\right|^{2}\right) d P \\
& \stackrel{\text { Fatou }}{\leq} \lim _{k \rightarrow \infty} \int\left|g_{n}-g_{n_{k}}\right|^{2} d P=\lim _{k \rightarrow \infty}\left\|g_{n}-g_{n_{k}}\right\|^{2}<\varepsilon,
\end{aligned}
$$

provided that $n>k(\varepsilon)$.
Let W be a subset of V. If W is closed under addition and scalar multiplication, then it is called a LINEAR MANIFOLD in V. If, furthermore, W is topologically closed, then it is called a subspace of V. Note that a finite-dimensional linear manifold must be topologically closed (hence a subspace).

If C is any collection of vectors in V, then let C_{1} be the collection of all finite linear combinations of vectors in C and C_{2} be the closure of C_{1}. Then C_{2} is the smallest subspace of V containing C, and is called the subspace spanned by $C . C_{1}$ is called the linear manifold spanned by C.

Let W be a fixed subspace of V, and f a fixed vector in V. We say that the vector $g \in W$ is an orthogonal projection of f to W if and only if

$$
\|f-g\|=\inf _{h \in W}\|f-h\| .
$$

8. There exists a unique orthogonal projection g of f to W.

Proof. Let $\ell=\inf _{h \in W}\|f-h\|$, and let $\left\{g_{n}\right\}$ be a sequence in W such that $\left\|f-g_{n}\right\| \rightarrow \ell$; then we have

$$
\left\|\frac{g_{m}-g_{n}}{2}\right\|^{2}+\underbrace{\left\|\frac{g_{m}+g_{n}}{2}-f\right\|^{2}}_{\geq \ell}=\frac{1}{2} \underbrace{\left\|g_{m}-f\right\|^{2}}_{\text {converges to } \ell}+\frac{1}{2} \underbrace{\left\|g_{n}-f\right\|^{2}}_{\text {converges to } \ell},
$$

from which we see that $\left\|g_{m}-g_{n}\right\|^{2} \rightarrow 0$ as $m, n \rightarrow \infty$. Thus $\left\{g_{n}\right\}$ is a Cauchy sequence; but this means that there is some g such that $g_{n} \rightarrow g$. Since W is a subspace of V, it is closed; so, since each $g_{n} \in W$, so too is $g \in W$.

Lecture 2

Definition. For two vectors $f_{1}, f_{2} \in V$, we say that f_{1} is orthogonal to f_{2}, and write $f_{1} \perp f_{2}$, if and only if $\left(f_{1}, f_{2}\right)=0$.

Throughout, we fix a subspace W of V and vectors $f, f_{1}, f_{2} \in V$.
9. Pythagorean theorem (and its converse):

$$
f_{1} \perp f_{2} \Leftrightarrow\left\|f_{1}+f_{2}\right\|^{2}=\left\|f_{1}\right\|^{2}+\left\|f_{2}\right\|^{2} .
$$

10. a. Given the above definition of orthogonality, there are two natural notions of orthogonal projection:
$\left(^{*}\right) \gamma \in W$ is an orthogonal projection of f on W if and only if

$$
\|f-\gamma\|=\inf _{g \in W}\|f-g\| .
$$

${ }^{(* *)} \gamma \in W$ is an orthogonal projection of f on W if and only if

$$
(f-\gamma) \perp g \forall g \in W .
$$

These two definitions are equivalent (i.e., γ satisfies $\left(^{*}\right.$) if and only if it satisfies ($\left.{ }^{* *}\right)$).
b. Exactly one vector $\gamma \in W$ satisfies $\left({ }^{* *}\right)$ - i.e., a solution of the minimisation problem exists and is unique.
c. $\|f\|^{2}=\|\gamma\|^{2}+\|f-\gamma\|^{2}$.

Proof of (10).
a. (\Rightarrow) Choose $h \in W$. For all real $x, \gamma+x h \in W$ also. Therefore, if (*) holds, then (setting $\delta=f-\gamma$)

$$
\begin{aligned}
\left(\|f-(\gamma+x h)\|^{2} \geq\|f-\gamma\|^{2} \Rightarrow\right. & \|\delta\|^{2}-2 x(\delta, h)+x^{2}\|h\|^{2} \geq\|\delta\|^{2} \\
& \left.\Rightarrow x^{2}\|h\|^{2}-2 x(\delta, h) \geq 0\right) \forall x \in \mathbb{R}
\end{aligned}
$$

This is possible only if $(\delta, h)=0$. Thus $\left({ }^{* *}\right)$ holds.
(\Leftarrow) If $\left({ }^{* *}\right)$ holds then we have

$$
\begin{aligned}
\left((f-\gamma) \perp(\gamma-h) \stackrel{(9)}{\Rightarrow}\|f-h\|^{2}=\right. & \|f-\gamma\|^{2}+\|\gamma-h\|^{2} \\
& \left.\Rightarrow\|f-h\|^{2} \geq\|f-\gamma\|^{2}\right) \forall h \in W
\end{aligned}
$$

Thus (*) holds.
b. Suppose that both γ_{1} and γ_{2} are solutions to $\left({ }^{* *}\right)$ in W. Since $\gamma_{1}-\gamma_{2} \in W$, $\left(f-\gamma_{1}\right) \perp\left(\gamma_{1}-\gamma_{2}\right)$ and hence, by (9),

$$
\left\|f-\gamma_{2}\right\|^{2}=\left\|f-\gamma_{1}\right\|^{2}+\left\|\gamma_{1}-\gamma_{2}\right\|^{2} .
$$

By (a), however, γ_{1} and γ_{2} both also satisfy $\left({ }^{*}\right)$, so

$$
\left\|f-\gamma_{1}\right\|^{2}=\min _{g \in W}\|f-g\|^{2}=\left\|f-\gamma_{2}\right\|^{2}
$$

and hence $\left\|\gamma_{1}-\gamma_{2}\right\|^{2}=0 \Rightarrow \gamma_{1}=\gamma_{2}$.
c. Since $\gamma \in W$,

$$
(f-\gamma) \perp \gamma \stackrel{(9)}{\Rightarrow}\|f\|^{2}=\|f-\gamma\|^{2}+\|\gamma\|^{2}
$$

as desired.
Definition. We denote by $\pi_{W} f$ the orthogonal projection of f on W.
Note. $\left\|\pi_{W} f\right\| \leq\|f\|$, with equality iff $\pi_{W} f=f$ - i.e., iff $f \in W$. (For, by 10 (c), $\|f\|^{2}=\left\|\pi_{W} f\right\|^{2}+\left\|f-\pi_{W} f\right\|^{2}$.)
It's easy to see that

$$
W=\left\{f \in V: \pi_{W} f=f\right\}=\left\{\pi_{W} f: f \in V\right\} .
$$

Definition. The orthogonal complement of W in V is defined to be

$$
W^{\perp}:=\{h \in V: h \perp g \forall g \in W\} .
$$

Note that $W^{\perp}=\left\{h \in V: \pi_{W} h=0\right\}$.
11. W^{\perp} is a subspace of V.
12. $\pi_{W}: V \rightarrow V$ is linear, idempotent and self-adjoint.

Proof. We abbreviate π_{W} to π. Let $a_{1}, a_{2} \in \mathbb{R}$ and $f, f_{1}, f_{2} \in V$ be arbitrary. Then we have by (10) that $f_{1}-\pi f_{1}$ and $f_{2}-\pi f_{2}$ are in W^{\perp} and hence by (11) that

$$
\begin{equation*}
\left(a_{1} f_{1}+a_{2} f_{2}\right)-\left(a_{1} \pi f_{1}+a_{2} \pi f_{2}\right)=a_{1}\left(f_{1}-\pi f_{1}\right)+a_{2}\left(f_{2}-\pi f_{2}\right) \in W^{\perp} \tag{*}
\end{equation*}
$$

Since $\pi f_{1}, \pi f_{2} \in W$ and W is a subspace, $a_{1} \pi f_{1}+a_{2} \pi f_{2} \in W$; therefore, by (10) and $\left(^{*}\right)$ above, $\pi\left(a_{1} f_{1}+a_{2} f_{1}\right)=a_{1} \pi f_{1}+a_{2} \pi f_{2}$. Thus π is linear. We also have by (10) that $\pi(\pi f)=\pi f$, since $\pi f \in W$; thus π is idempotent.
Finally, since $\pi f_{1}, \pi f_{2} \in W$, once more by (10) we have that $\left(f_{1}-\pi f_{1}, \pi f_{2}\right)=0$; thus

$$
\begin{aligned}
\left(f_{1}, \pi f_{2}\right)=\left(f_{1}+\left(\pi f_{1}-\pi f_{1}\right), \pi f_{2}\right) & =\left(\left(f_{1}-\pi f_{1}\right)+\pi f_{1}, \pi f_{2}\right) \\
& =\left(f_{1}-\pi f_{1}, \pi f_{2}\right)+\left(\pi f_{1}, \pi f_{2}\right)=\left(\pi f_{1}, \pi f_{2}\right)
\end{aligned}
$$

Similarly, $\left(\pi f_{1}, f_{2}\right)=\left(\pi f_{1}, \pi f_{2}\right)$, so that $\left(f_{1}, \pi f_{2}\right)=\left(\pi f_{1}, f_{2}\right)$. Thus π is selfadjoint.
13. We have from the above description of π_{W} that $W^{\perp}=\left\{f-\pi_{W} f: f \in V\right\}$.
14. (This is a converse to (12).) If $U: V \rightarrow V$ is linear, idempotent and self-adjoint, then U is an orthogonal projection to some subspace (i.e., there is a subspace W^{\prime} of V so that $\left.U=\pi_{W^{\prime}}\right)$.
15. Given an arbitrary $f \in V$, we may write uniquely $f=g+h$, with $g \in W$ and $h \in W^{\perp}$. In fact, $g=\pi_{W} f$ and $h=\pi_{W^{\perp}} f$. From this we conclude that $\pi_{W^{\perp}} \circ \pi_{W} \equiv 0 \equiv \pi_{W} \circ \pi_{W^{\perp}}$ and $\left(W^{\perp}\right)^{\perp}=W$ 。
16. Suppose that W_{1} and W_{2} are two subspaces of V such that $W_{2} \subseteq W_{1}$. Then $\pi_{W_{2}} f=\pi_{W_{2}}\left(\pi_{W_{1}} f\right)$ and $\left\|\pi_{W_{2}} f\right\| \leq\left\|\pi_{W_{1}} f\right\|$, with equality iff $\pi_{W_{1}} f \in W_{2}$.

Lecture 3

Note. The above concepts and statements (regarding projections etc.) are valid in any Hilbert space, but we are particularly interested in the case $V=L^{2}(S, \mathcal{A}, P)$.
Note. If V is a Hilbert space and W is a subspace of V, then W is a Hilbert space when equipped with the same inner product as V.

Homework 1

1. If $V=L^{2}(S, \mathcal{A}, P)$, show that V is finite-dimensional if P is concentrated on a finite number of points in S. You may assume that the one-point sets $\{s\}$ are measurable.
2. Suppose that $S=[0,1], \mathcal{A}$ is the Borel field (on $[0,1]$) and P is the uniform probability measure. Let $V=L^{2}$ and, for I, J fixed disjoint subintervals of S, define

$$
W=W_{I, J}:=\{f \in V: f=0 \text { a.e. on } I \text { and } f \text { is constant a.e. on } J\}
$$

Show that W is a subspace and find W^{\perp}. Also compute $\pi_{W} f$ for $f \in V$ arbitrary.
3. Let $S=\mathbb{R}^{1}, \mathcal{A}=\mathcal{B}^{1}$ and P be arbitrary, and set $V=L^{2}$. Suppose that $s \in V$ is such that $E\left(e^{t s}\right)<\infty$ for all t sufficiently small (i.e., for all t in a neighbourhood of 0). Show that the subspace spanned by $\left\{1, s, s^{2}, \ldots\right\}$ is equal to V. (Hint: Check first that the hypothesis implies that $1, s, s^{2}, \ldots$ are indeed in V. Then check that, if $g \in V$ satisfies $g \perp s^{2}$ for $r=0,1,2, \ldots$, then $g=0$ a.e.(P). This may be done by using the uniqueness of the moment-generating function.)

Definition. Let $S=\{s\}$ and $V=L^{2}(S, \mathcal{A}, P)$. Let (R, \mathcal{C}) be a measurable space, and let $F: S \rightarrow R$ be a measurable function. If we let $Q=P \circ F^{-1}$ (so that $\left.Q(T)=P\left(F^{-1}[T]\right)\right)$, then $F(s)$ is called a STATISTIC with corresponding probability space $(R, \mathcal{C}, Q) . W=L^{2}(R, \mathcal{C}, Q)$ is isomorphic to the subspace $\tilde{W}=L^{2}\left(S, F^{-1}[\mathcal{C}], P\right)$ of V.

Application to prediction

Let $S=\mathbb{R}^{k+1}, \mathcal{A}=\mathcal{B}^{k+1}$ be the Borel field in \mathbb{R}^{k+1}, P be arbitrary and $V=L^{2}$. Let $s=\left(X_{1}, \ldots, X_{k} ; Y\right)$.

A Predictor of Y is a Borel function $G=G(\underline{X})$ of $\underline{X}=\left(X_{1}, \ldots, X_{k}\right)$. We assume that $E\left(Y^{2}\right)<\infty$ and take the MSE of G, i.e., $E\left(|G(\underline{X})-Y|^{2}\right)$, as a criterion. What should we mean by saying that G is the "best" predictor of Y ?
i. No restriction on G : Consider the set W of all measurable $G=G(\underline{X})$ with $E\left(|G|^{2}\right)<\infty . W$ is clearly (isomorphic to) a subspace of V and, for $G \in W$, $E(G-Y)^{2}=\|Y-G\|^{2}$.
Then the best predictor of Y is just the orthogonal projection of Y on W, which is the same as the conditional expectation of Y given $\underline{X}=\left(X_{1}, \ldots, X_{k}\right)$.

Proof (informal). Let $G^{*}(\underline{X})=E(Y \mid \underline{X})$. For an arbitrary $G=G(\underline{X}) \in W$,

$$
\|Y-G\|^{2}=\left\|Y-G^{*}\right\|^{2}+\left\|G-G^{*}\right\|^{2}+2\left(Y-G^{*}, G^{*}-G\right),
$$

but

$$
\begin{aligned}
\left(Y-G^{*}, G^{*}-G\right)= & E\left(\left(Y-G^{*}\right)\left(G^{*}-G\right)\right) \\
& =E\left[E\left(\left(Y-G^{*}\right)\left(G^{*}-G\right) \mid \underline{X}\right)\right] \\
& =E\left[\left(G^{*}-G\right) E\left(Y-G^{*} \mid \underline{X}\right)\right]=0
\end{aligned}
$$

so that $\|Y-G\|^{2}=\left\|Y-G^{*}\right\|^{2}+\left\|G-G^{*}\right\|^{2}$, whence G^{*} must be the unique projection.
ii. G an affine function: We require that G be an affine function of \underline{X} - i.e., that there be constants $a_{0}, a_{1}, \ldots, a_{k}$ such that $G(\underline{X})=G\left(X_{1}, \ldots, X_{k}\right)=$ $a_{0}+\sum_{i=1}^{k} a_{i} X_{i}$ for all \underline{X}. The class of such G is a subspace W^{\prime} of the space W defined in the previous case. The best predictor of Y in this class is the orthogonal projection of Y on W^{\prime}, which is called the LINEAR REGRESSION of Y on $\left(X_{1}, \ldots, X_{k}\right)$.

Lecture 4

We return to predicting Y using an affine function of \underline{X}. We define

$$
W:=\operatorname{Span}\left\{1, X_{1}, \ldots, X_{k}\right\}
$$

and denote by \hat{Y} the orthogonal projection of Y on $W . \hat{Y}$ is characterized by the two facts that
$\left({ }^{*}\right) Y-\hat{Y} \perp 1$, and
$\left.{ }^{* *}\right) Y-\hat{Y} \perp X_{i}^{0}$ for $i=1, \ldots, k$
where $X_{i}^{0}=X_{i}-E X_{i}$. Since $W=\operatorname{Span}\left\{1, X_{1}, \ldots, X_{k}\right\}$, we may suppose that $\hat{Y}=$ $\beta_{0}+\sum_{i=1}^{k} \beta_{i} X_{i}^{0} . \operatorname{From}\left(^{*}\right), \beta_{0}=E Y$; and, from (**), $\Sigma \beta=\mathfrak{c}$ (the 'normal equation'), where $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)^{T}, \mathfrak{c}=\left(c_{1}, \ldots, c_{k}\right)^{T}, \Sigma=\left(\sigma_{i j}\right), c_{i}=E\left(Y^{0} X_{i}^{0}\right)=\operatorname{Cov}\left(X_{i}, Y\right)$, $\sigma_{i j}=E\left(X_{i}^{0} X_{j}^{0}\right)=\operatorname{Cov}\left(X_{i}, X_{j}\right)$ and $Y^{0}=Y-E Y$. We have (by considering the minimization problem) that there exists a solution β to these two equations; and (by uniqueness of the orthogonal projection) that, if β is any such solution, then $\hat{Y}=\beta_{0}+\sum_{i=1}^{k} \beta_{i} X_{i}^{0} . \Sigma$ is positive semi-definite and symmetric.

Homework 1

4. Show that Σ is nonsingular iff, whenever $P\left(a_{1} X_{1}^{0}+\cdots+a_{k} X_{k}^{0}=0\right)=1, a_{1}=$ $\cdots=a_{k}=0$; and that this is true iff, whenever $P\left(b_{0}+b_{1} X_{1}+\cdots+b_{k} X_{k}=0\right)=1$, $b_{0}=b_{1}=\cdots=b_{k}=0$.

Let us assume that Σ is nonsingular; then $\beta=\Sigma^{-1} \mathfrak{c}$ and $\hat{Y}=E Y+\sum_{i=1}^{k} \beta_{i} X_{i}^{0}$. Note.
i. \hat{Y} is called the Linear Regression of Y on $\left(X_{1}, \ldots, X_{k}\right)$, or the affine regression or the linear regression of Y on $\left(1, X_{1}, \ldots, X_{k}\right)$.
ii. $\hat{Y}^{0}=\sum_{i=1}^{k} \beta_{i} X_{i}^{0}$ is the projection of Y^{0} on $\operatorname{Span}\left\{X_{1}^{0}, \ldots, X_{k}^{0}\right\}$. Thus

$$
\operatorname{Var} Y=\left\|Y^{0}\right\|^{2}=\left\|Y^{0}-\hat{Y}^{0}\right\|^{2}+\left\|\hat{Y}^{0}\right\|^{2}=\operatorname{Var}(Y-\hat{Y})+\operatorname{Var} \hat{Y}
$$

or, more suggestively, $\operatorname{Var}($ predictand $)=\operatorname{Var}($ residual $)+\operatorname{Var}($ regression $)$.
A related problem concerns

$$
R:=\sup _{a_{1}, \ldots, a_{k}} \operatorname{Corr}\left(Y, a_{1} X_{1}+\cdots+a_{k} X_{k}\right)=?
$$

We have that

$$
\begin{aligned}
\operatorname{Corr}\left(Y, \sum a_{i} X_{i}\right)=\operatorname{Corr}\left(Y^{0}, \sum a_{i} X_{i}^{0}\right) & =\frac{1}{\left\|Y^{0}\right\|\|L\|} \operatorname{Cov}\left(Y^{0}, L\right) \\
& =\frac{1}{\left\|Y^{0}\right\|\|L\|}\left(Y^{0}, L\right)=\frac{1}{\left\|Y^{0}\right\|}\left(Y^{0}, \frac{L}{\|L\|}\right)
\end{aligned}
$$

where $L=\sum a_{i} X_{i}^{0}$. Since $Y^{0}=\left(Y^{0}-\hat{Y}^{0}\right)+\hat{Y}^{0}$,

$$
\left(Y^{0}, \frac{L}{\|L\|}\right)=\left(\hat{Y}^{0}, \frac{L}{\|L\|}\right) \leq\left\|\hat{Y}^{0}\right\|
$$

with equality iff $\frac{L}{\|L\|}=d \hat{Y}^{0}$ for some $d>0$ (we have used the Cauchy-Schwarz inequality). In particular, $c\left(\beta_{1}, \ldots, \beta_{k}\right)$ (with c a positive constant) are the maximizing
choices of $\left(a_{1}, \ldots, a_{k}\right)$. Plugging in any one of these maximizing choices gives us that $R=\frac{\left\|\hat{Y}^{0}\right\|}{\left\|Y^{0}\right\|}$ and hence that $R^{2}=\frac{\operatorname{Var} \hat{Y}}{\operatorname{Var} Y}$, from which we conclude that

$$
\left(1-R^{2}\right) \operatorname{Var} Y=\operatorname{Var}(Y-\hat{Y})
$$

From the above discussion we see that Hilbert spaces are related to regression, and hence to statistics.
Note. Suppose that $k=1$, and that we have data

Serial \#	
1	$\left(x_{1}, y_{1}\right)$
2	$\left(x_{2}, y_{2}\right)$
\vdots	\vdots
n	$\left(x_{n}, y_{n}\right)$.

We may then let S be the set consisting of the points $\left(1 ; x_{1}, y_{1}\right), \ldots,\left(n ; x_{n}, y_{n}\right)$, to each of which we assign probability $1 / n$. If we define $X\left(i, x_{i}, y_{i}\right)=x_{i}$ and $Y\left(i, x_{i}, y_{i}\right)=y_{i}$ for $i=1,2, \ldots, n$, then $E X=\bar{x}$ and $E Y=\bar{y} . \hat{Y}$ is the affine regression of y on x and R is the correlation between x and y, which is

$$
\frac{1}{S_{x} S_{y}}\left[\left(\sum x_{i} y_{i}\right)-n \bar{x} \bar{y}\right] .
$$

This extends also to the case $k>1$.

Lecture 5

Classical estimation problem for inference

In the following, S is a sample space, with sample point $s ; \mathcal{A}$ is a σ-field on S; and \mathcal{P} is a set of probability measures P on \mathcal{A}, indexed by a set $\Theta=\{\theta\}$. We call Θ the parameter space. (The distinction between probability and statistics is that, in probability, Θ has only one element, whereas, in statistics, Θ is richer.)

Suppose we are given a function $g: \Theta \rightarrow \Theta$ and a sample point $s \in S$. We are interested in estimating the actual value of g using s, and describing its quality.
Example 1. Estimate $g(\theta)$ from iid $X_{i}=\theta+e_{i}$, where the e_{i} are iid with distribution symmetric around 0 . We let $S=\left\{X_{1}, \ldots, X_{n}\right\}$ and $\Theta=(-\infty, \infty)$, and define g by $g(\theta)=\theta$ for all $\theta \in \Theta$. We might have:
a. $X_{i} \mathrm{~s}$ iid $N(\theta, 1)$.
b. X_{i} s iid double exponential with density $\frac{1}{2} e^{-|x-\theta|}$ (for $-\infty<x<\infty$), with respect to Lebesgue measure.
c. X_{i} s iid Cauchy, with density $\frac{1}{\pi\left(1+(x-\theta)^{2}\right)}$.

Possible estimates are $t_{1}(s)=\bar{X}, t_{2}(s)=\operatorname{median}\left\{X_{1}, \ldots, X_{n}\right\}$ and

$$
t_{3}(s)=10 \% \text { of the trimmed mean in }\left\{X_{1}, \ldots, X_{n}\right\} ;
$$

there are many others.
In the general case, $\left(S, \mathcal{A}, P_{\theta}\right), \theta \in \Theta$, an estimate (of $g(\theta)$) is a measurable function t on S such that

$$
E_{\theta}\left(t^{2}\right)=\int_{S} t(s)^{2} d P_{\theta}(s)<\infty \forall \theta \in \Theta .
$$

What is a "good" estimate?
Suppose that the loss involved in estimating $g(\theta)$ to be t when it is actually g is $L(t, g)$. (Some important choices of loss functions are $L(t, g)=|t-g|$ - the absolute error - and $L(t, g)=|t-g|^{2}$ - the square error.) Then the Expected loss for a particular estimate t (and $\theta \in \Theta$) is

$$
R_{t}(\theta)=E_{\theta}(L(t(s), g(\theta)))
$$

R_{t} is called the RISk function for t. For t to be a "good" estimate, we want R_{t} "small".

We consider now a heuristic for the square error function:

Assume that $L \geq 0$ and that, for each $g, L(g, g)=0$ and $L(\cdot, g)$ is a smooth function of t. Then

$$
L(t, g)=0+\left.(t-g) \frac{\partial}{\partial t} L(t, g)\right|_{g}+\frac{1}{2} a(g)(t-g)^{2}+\cdots=\frac{1}{2} a(g)(t-g)^{2}+\cdots
$$

where $a(g) \geq 0$. Let us assume that in fact $a(g)>0$; then we define

$$
R_{t}(\theta):=\frac{1}{2} a(g) E_{\theta}(t(s)-g(\theta))^{2},
$$

so that R_{t} is locally proportional to $E_{\theta}(t-g)^{2}$, the MSE in t at θ.
Assume henceforth that $R_{t}(\theta)=E_{\theta}(t-g)^{2}$ and denote by $b_{t}(\theta)=E_{\theta}(t)-g(\theta)$ the 'bias' of t at θ.

1. $R_{t}(\theta)=\operatorname{Var}_{\theta}(t)+\left[b_{t}(\theta)\right]^{2}$.

Note. It is possible to regard $P_{\theta}(|t(s)-g(\theta)|>\varepsilon)$ (for $\varepsilon>0$ small) - i.e., the distribution of t - as a criterion for how "good" the estimate t is. Now, for $Z \geq 0$, $E Z=\int_{0}^{\infty} P(Z \geq z) d z$; hence

$$
R_{t}(\theta)=\int_{0}^{\infty} P_{\theta}(|t(s)-g(\theta)|>\sqrt{z}) d z .
$$

There are several approaches to making R_{t} small. Three of them are:
Admissibility: The estimate t is inadmissible if there is some estimate t^{\prime} such that $R_{t^{\prime}}(\theta) \leq R_{t}(\theta)$ for all $\theta \in \Theta$, and the inequality is strict for at least one θ. t_{0} is admissible if it is not inadmissible. (This may be called the "sure-thing principle".) Minimaxity: The estimate t_{0} is minimax if

$$
\sup _{\theta \in \Theta} R_{t_{0}}(\theta) \leq \sup _{\theta \in \Theta} R_{t}(\theta)
$$

for all estimates t.
Bayes estimation: Let λ be a probability on Θ and let $\bar{R}_{t}=\int_{\Theta} R_{t}(\theta) d \lambda$ be the average risk with respect to λ. The estimate t^{*} is then Bayes (with respect to λ) if $\bar{R}_{t^{*}}=\inf _{t} \bar{R}_{t}$.
2. If t^{*} has constant risk, i.e., $R_{t^{*}}(\theta)=c$ for all $\theta \in \Theta$, and t^{*} is Bayes with respect to some probability λ on Θ, then t^{*} is minimax.

Proof. Let t be arbitrary; then

$$
c=\sup _{\theta} R_{t^{*}}(\theta)=\bar{R}_{t^{*}} \leq \bar{R}_{t} \leq \sup _{\theta} R_{t}(\theta) .
$$

3. If t^{*} is the essentially unique Bayes estimate with respect to a probability λ on Θ, then t^{*} is admissible.

Proof. Suppose that t is such that $R_{t}(\theta) \leq R_{t^{*}}(\theta)$ for all $\theta \in \Theta$; then $\bar{R}_{t} \leq \bar{R}_{t^{*}}$. Hence, by the definition of essential uniqueness,

$$
P_{\theta}\left(t^{*}=t\right)=1 \forall \theta \in \Theta ;
$$

it follows that $R_{t^{*}}(\theta)=R_{t}(\theta)$ for all $\theta \in \Theta$.
Another approach to making R_{t} small is:
Unbiasedness: We require all estimates t to be unbiased - i.e., $E_{\theta}(t)=g(\theta) \Leftrightarrow$ $b_{t}(\theta)=0$ for all $\theta \in \Theta$.

Several questions arise:
i. Are there any unbiased estimates at all?
ii. If so, which t, if any, has minimum variance at a given θ ? (We call such a t a LOCALLY MINIMUM-VARIANCE UNBIASED ESTIMATE.)
iii. If there is a locally minimum variance unbiased estimate, is it independent of θ ? (If so, then it is the uniformly minimum-variance unbiased estimate. If this estimate exists, what is it?)

There are two approaches: (I) general; and (II) sufficiency (i.e., via complete sufficient statistics).

