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Abstract

In the context of obtaining optimal estimating functions for interest-
ing parameters in the presence of nuisance parameters in parametric
models, a method of elimination of nuisance parameters is proposed
in this paper. The proposed method is direct and does not impose
any 'factorization' conditions on the likelihood. In this direction, a se-
quence of lower bounds for the variance-covariance matrix of estimating
functions is derived. A recipe which gives a transparent approach for
obtaining optimal estimating functions is suggested. It is shown that
minimum variance unbiased estimators could be obtained using the
recipe.
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1 Introduction
In the theory of estimating functions applied to parametric models involving
nuisance parameters, the 'elimination' of nuisance parameters to obtain opti-
mal estimating functions (EF) for interesting parameters is a very important
task. In a pioneering work, Godambe (1976) suggested a method of elim-
inating nuisance parameters by multiplying and adding suitable functions
to the score function and formally established the optimality of conditional
score function. Lloyd (1987) and Bhapkar and Srinivasan (1993) claimed
the optimality of marginal score function. However, that there are errors
in the results of Lloyd (1987) and Bhapkar and Srinivasan (1993) has been
pointed out by Bhapkar (1995, 1997) who imposed some more conditions
and established the optimality of marginal score function. The conditional
and marginal factorization properties were used by the above authors in the
elimination of nuisance parameters. Heyde (1997) proposed a method of
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obtaining optimal EF by eliminating nuisance parameters from a suitably
chosen function that possesses the 'likelihood score property'. Heyde gives
the optimal EF of 'first order theory' but not of the higher orders. The
present work is an attempt in this direction.

In this paper, a straight forward recursive method of elimination of nui-
sance parameters without going into the factorization aspects of the likeli-
hood is proposed. In this direction, a theorem which gives a sequence of
lower bounds for the variance-covariance matrix of the EFs is established in
Section 2. This is achieved by considering higher order derivatives with re-
spect to the nuisance parameters drawing inspiration from Godambe (1984).
Consequently, a recipe which gives a systematic approach for possible elim-
ination of nuisance parameters leading to optimal EF is suggested. Section
3 presents several examples to illustrate the recipe. In Section 4, as another
outcome of the main result of Section 2, a sequence of lower bounds for the
variance - covariance matrix of unbiased estimators of the interesting param-
eters is given. This sequence is different from the sequence of Bhattacharya
bounds both in context and in content. Further, it is shown that minimum
variance bound unbiased estimators of the interesting parameters could be
obtained by the suggested recipe.

2 The Main Result and the Recipe

Let X be a random vector with sample space X and probability density
function p(x; ω) with respect to some σ-finite measure μ on (X, B(X)). The
family of densities is indexed by ω = {θ,φ) E Ω with θ G Ωi C SRr, φ E
Ω2 C 3?m, Ω = Ωi x Ω2. The interesting parameter is θ and the nuisance
parameter is φ and estimation of θ in the presence of φ is considered.

We assume the usual regularity conditions on the density function 'p' and
the EFs g = (gu .. .,gr)': X x Ωx -» W (refer Godambe (1976, 1984), Bhap-
kar (1995, 1997)). Let Dg = ((E(dgi/dθj))). Let the class of EFs satisfying
the regularity conditions be denoted as Go let Mg(ω) = D~ιE{g.g')(D'g)~ι,
the variance-covariance matrix of standardized EFs.

In the sequel, the following notations are used:

le = (dlog p/dθu...,dlogp/dθry (2.1)

In = E(lθ l'θ) (2.2)
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/&> = /i2, I$? = hi, J& = hi- Let

, fc = 1 , 2 , . . .

Since / ^ are positive definite we have Bk+i > Bk. Also,

(2.6)

E[L (*)
•0

'j = BΓ1 V k. (2.7)

Theorem 2.1: For every 3 € C/o, M5 > 5fc, k = 1,2,..., with equality if

and only if g = </*)* = >1(0,0) L ^ where A(θ, φ) is a non-singluar matrix

and the functions Lg ' are defined recursively in (2.4) and (2.5).

Proof: For g e Go, we observe that E[glφ

k)>) = 0, E[gLf]'} = -Dg\/k.
Now, considering the n.n.d. matrix

E
r(*)

9 =,' —
-Dg E(g.g')

(2.8)

and applying matrix theory arguments, we get

Rank - Rank
0

E{g.g')

Also, Bk

ι — M~ι > 0 by the non-negative definiteness of the full matrix in
(2.8). This gives Mg > Bk. Further, B~ι - M~ι = 0 if and only if the rank
of the matrix in (2.8) is r.

Now, if g = A(θ,φ) ' for some non-singular matrix A(θ,φ), then
clearly the matrix in (2.8) has rank r so that Mg = B^. Conversely, if
Mg = Bk i.e. the rank of the matrix in (2.8) is r, then as B^1, Dg and
E(g.g') are all non-singular, it is necessary that for some non-singular matrix
A(θ, φ), g = A(θ, φ) - Lf\ Hence the theorem.

Remark 1: If for some k > 1, Bk is attained by the EF A(θ,φ)Lf) for

a suitable choice of A(θ,φ) (i.e. A(θ,φ)Ly is free of φ), then we have

/Jί;+1) = 0 which gives L^+l) = L{

θ

k) and Bk+λ = Bk. Similarly, V s > k + 1,

/W = 0, L{

θ

s) = Lf] and Bs = Bk.
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In view of this, we now propose the following.

Definition 2.1: If there exists a g* G Go such that Mg* attains a lower bound
Bk for some A;, then g* is said to be minimum variance bound estimating
function (MVBEF).

Based on the theorem established and the above remark, we suggest the
following recipe for eliminating nuisance parameters and obtaining MVBEF:

"Starting with the score function /#, consider recursively the functions

L θ = IQ — I ^ I ^ l φ ' i LQ = L Q — l[2 I22 lφ a n d s 0 f o r t h . I f t h e n u i s a n c e
parameters are essentially eliminated or appear as a multiplicative factor of
an EF in some recursion, stop the process as the EF thus obtained is optimal
and further recursions would result in the same EF".

Remark 2: The first order bound in the sequence of bounds derived above
namely Bι = (In — Iul^hi)"1 was derived as the lower bound by Chan-
drasekar and Kale (1984) who gave a different line of proof. In a latest book,
Heyde (1997) has proposed a 'first order' theory for obtaining optimal EF.
He suggests the possibility for higher order theory but does not give any
explicit method for the same. The recipe suggested above gives a formal
and transparent method to proceed to second and higher order theories and
carries out Heyde's suggestion. However, the forms of the optimal EFs ob-
tained in Theorem 2.1 do not follow as a consequence of the technique of
Heyde (1997).

3 Applications

In this section, a number of examples are discussed to illustrate the recipe
suggested in the previous section. Throughout this section, we reserve the
symbol θ for the interesting (real or vector) parameter.

Example 3.1: Let x = (xi,...,xn) and y = (j/i,. ,J/n) be independent
where X{ are i.i.d. with density φexp(-φx), x > 0 and yι are i.i.d. with
density φθ~ιexp(-φθ~λy), y > 0, 0, </> > 0 . Here,

is the MVBEF attaining the bound B\.

Example 3.2: Let z\,..., zn be i.i.d. with z% = (x ,̂ yu > ? VH) where X{ are
i.i.d. exponential with mean φ and for each fixed j — 1,..., r, y^ are i.i.d.

n

exponential with mean φθj. Denote x = Σ x^ yj = Y%=i yji, j = 1,..., r.
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Here, φL™ = (rf,... ,g*r) is MVBEF, with g* = | - ^ ^ Σ |

Remark 3: Examples 3.1 and 3.2 have been discussed respectively by Lloyd
(1987) and Bhapkar and Srinivasan (1993) in the context of marginal fac-
torization of the likelihood. These authors claimed that a marginal score
function is the optimal EF. However, from the above discussion, we find
that the optimal EFs obtained above do not coincide with the EFs claimed
by these authors as optimal. In Example 3.1, we have Mg{\)+ — 2θ2/n
whereas for the EF of Lloyd (1987) namely g0 = n/θ - 2n/(θ +

we have Mgo = 2(n + I)θ2/n2 > M (i)*. This shows that Lloyd's claim that

go is optimal EF is incorrect. The errors in Lloyd (1987) and Bhapkar and

Srinivasan (1993) has been pointed out also by Bhapkar (1995, 1997) who

has found the correct optimal EF for the model in Example 3.1 but not for

Example 3.2. In contrast, the recipe of Section 2 and the explicit form L,θ '

for the optimal EF have enabled us to achieve this for Example 3.2 as well

in an elegant manner.

Example 3.3: Let x\, yi,.. ., xn, yn be independent normal with E(xi) = 0,

E(yi) =θ + φi, V{xi) = V(yi) = 1. Here, L^ = Σ {x{ - θ) is the MVBEF.
i l

Example 3.4: Let a i, j/i,... .Xn^Vn be independent normal with E(x{) =

θ + φu E{yi) = φi, V{xi) = V{yi) = 1. Here, the MVBEF is L^ =

n(x - y - θ)/2.

Remark 4: Examples 3.3 and 3.4 were discussed by Godambe (1976) in the
context of nuisance parameter elimination when conditional factorization
property for the likelihood holds good. He has shown that the same EFs
are optimal. In the above discussion, we have demonstrated the straight
forward applicability of our recipe without investigating the factorization
aspects which is required in Godambe's approach.

Example 3.5: Let x = (xi,... ,xn) and y = (yi,... ,ym) be independent

where xι are i.i.d. Poisson (0</>), yj are i.i.d. Poisson (</>), θ,φ > 0. Here,

4 υ = mn(x - θy)/(θ(nθ + m)) is the MVBEF.

This example with m — n — \ has been discussed by Reid (1995) in

illustrating the roles of conditioning in inference in the presence of nuisance

parameters, wherein the estimation is based on conditioning upon a statistic

called a 'cut' (Barndorίf-Nielsen 1978) and involves a suitable reparametriza-

tion. In contrast, our approach is straight forward and does not require

reparametrization.

Example 3.6: Consider the linear model of a randomized block design

Vij = μ + U + bj + eij, i — 1,..., fc, j = 1,..., r where e^ are i.i.d. iV(0, σ2),
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Σt{ = Σbj = 0. Suppose estimation of the effect of the first t reatment 't'λ

alone is of interest. T h a t is θ = t\, φ = ( μ , ΐ i , . . . ,ίjfe_i,&i, 5 & r - i 2 )

Here, (σ2(k - l)/(kr))L{^ = ylm - y.. - h is MVBEF, where ylm =

Example 3.7: Consider a 2 x 2 contingency table ((n^)), i, j = 1,2, follow-
ing a multinomial distribution with fixed sample size n = ΣΣn^ and with
probabilities ((TΓJJ)), i,j — 1,2, ΣΣπ^ = 1. Let θ = πn be the parameter
of interest with φ = (πi2,π2i). Here Lβ ' = {n\\ — nθ)/(θ(l — θ)) is the
MVBEF.

This example was discussed by Bhapkar (1989) in investigating condi-
tioning and loss of information in the presence of nuisance parameters.

Example 3.8: Let {X(t),t > 0} and {Y(t),t > 0} be two independent
Poisson processes with parameters (θ + φ) and φ respectively, 0, φ > 0.
Suppose data on the states of {X(t)} at times <i,... , ί m , say, x(t\),... ,x(tm)
and data on the states of {Y(t)} at times si,.. ., sn, say, y(sι),..., y{sn) are
available. The likelihood is Cexp{-(0 + φ)tm - φsn) (θ + φ)*^)<p*8») and

^ φ) = snx(tm) - tmy(sn) - θsntm is the MVBEF.

Remark 5: In all the above Examples 3.1 to 3.8 the optimal EFs attain the
bound B\. The following are illustrations for EFs that attain the bound JE?2.

Example 3.9: Let x\,..., xn be i.i.d. normal with mean vector (φι,..., φr)
f

and variance-covariance matrix Σ = Diag [σ\,..., a*]. Let θ — (σ\,..., σ%)
be the parameter of interest. Denote X{ = {x{\,..., Xir)1, i = 1,..., n. Here
LQ ' is not an EF for θ. So we try the next function given by our recipe,

( 1
1

2 ^

- l t i s f o u n d t h a t

- 1 1 ,

Φ) =

n

2_

— j

) '
as

V ( :

the

2̂ n-lV

| 4 ' Ί4) We
MVBEF attaining

L e t ^ = ώ . Σ K - %)2 Choosing
Z— 1

get 5( 2)* = A(θ, φ) 4 2 ) = (Sf - σf,...
the bound B2.

This MVBEF was shown as optimal EF not attaining the bound j?i by
Chandrasekar and Kale (1984) and in their framework served as an example
of an optimal EF which is not MVBEF. From our discussion above, it is
found that g^* is MVBEF attaining, however, the higher bound B2

Example 3.10: Let xi, yi,..., xn, yn, be independent normal with E(xι) =

E(yi) = φi, i = 1,..., n and Vfa) = V(yi) =θ Vi = 1,..., n. Here, L^ is
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not an E F for 0 and so we proceed to the second recursion to get

(2) n 1 A Q
θ 9Λ ~*~ AΛ2 ^ Λ X * ~" y*) a s MVBEF attaining the bound B2.

2 = 1

The above example has been discussed by Godambe (1976) in the con-
text of conditional factorization wherein he contrasts the consistency of the
solution of the above optimum estimating equation with the inconsistency
of the usual maximum likelihood estimate discussed by Neyman and Scott
(1948). Again, investigation into factorization aspects is not required in our
approach.

Example 3.11: Let #1, yi,..., xni yn be independent normal with E(xi) =

0, E{yi) = φ, V(xi) = V{yι) = 0, φ e 5R, 0 > 0. Here, LJ 1 } is not an EF.

So, we proceed to the second recursion to get Lg ' = —^[nθ2 4- (2n — 1)0 —
n(sl + sl + x2)] a s the MVBEF attaining bound B2. Here, si = ^(xi - x)2

and 5̂  = ^Σ(yj — y)2. The solution of the equation LQ = 0 is a consistent

estimate namely

Λ [(2n - I ) 2 + 4n 2 [s2

x + ^ + x 2 ) ] V 2 - (2n -
^ ^

4 Minimum Variance Unbiased Estimators

The main result of Section 2 leads us to minimum variance bounds for
unbiased estimators of the interesting parameters. Prom Theorem 2.1, it
is immediately evident that, for unbiased estimators T = (Ti,. . . ,T r )

; of

Var - Coυ{T) > Bk, fc = 1,2,...

where Bk's are given in (2.6). This is verified by considering EFs of the form
T-0.

If any of the L^ 's defined recursively in (2.4) and (2.5) is such that

A{θ,φ)L{

θ

k) is of the form T* - θ for a suitable choice of A(θ,φ), then T*
is minimum variance unbiased estimator (MVUE) of θ. Thus, the recipe of
Section 2 could possibly be of help in finding T*. The following examples
illuminate this point.

Example 4.1: Consider the model in Example 3.3. Here LQ ' /n — x — θ so
that x is MVUE of θ attaining bound B\.

Example 4.2: Consider the model in Example 3.4. Here 2L,Θ '/n = x — y — θ
so that x — y is MVUE of θ attaining bound B\.
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Example 4.3: Consider the linear model in Example 3.6. Here,

(σ2(fc - l)/kr)L^ = ylm - y.. - tλ so that ylm - ymm is MVUE of tλ.

Example 4.4: Consider Example 3.7. Hear, 0(1 - θ)Ly /n = n\\jn - θ so
that nn/n is MVUE of θ.

Example 4.5: Consider Example 3.8. Here, ((0 + φ)sntm)~1Lg = 0 gives
[SnX(tm) - tmy(Sn)]/(Sntm) as MVUE of θ.

Example 4.6: Consider Example 3.9. Here, (S?,... ,Sj?) is MVUE of
(σ\,..., σ2) attaining bound i?2

Example 4.7: Consider the Neyman-Scott model in Example 3.10. Here
2θ2L%)/n = Σ{xi - yi)2/(2n) - θ so that Σ{Xi - y;)2/(2n) is MVUE of θ
attaining bound B<ι.

It is noted that the MVBEF need not produce MVUE when it cannot
be reduced to the form T* — θ. This is evident in Examples 3.1, 3.2, 3.5 and
3.11. This fact is also reported by Thavaneswaran and Abraham (1988) who
considered EFs for non-linear time-series models.
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