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The paper presents a genuinely asymptotic version of the Cramer-Rao bound, replacing the
assumption of unbiasedness by locally uniform asymptotic unbiasedness, and the bound
for the variance by a bound for the asymptotic variance. Bounds of this type are useful to
obtain asymptotic results for estimator sequences which do not necessarily converge to a
limit distribution. Under a condition slightly stronger than LAN, the minimal asymptotic
variance obtained from the Convolution Theorem for regular estimator sequences turns
out to be also a bound for the asymptotic variance of estimator sequences which are
asymptotically unbiased, uniformly on shrinking ^-neighbourhoods. For nonparametric
models with a convergence rate slower than n1^2, the asymptotic variance of such estimator
sequences is necessarily infinite.
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1 Introduction

The Cramer-Rao bound is one of the standard topics in textbooks on math-
ematical statistics, ranging from elementary to advanced. In view of its
limited applicability this is hard to explain. The question whether a given
unbiased estimator has minimal variance can be answered by the Cramer-
Rao bound only in one particular case: If the family is exponential, say
p(x,ΐ?) = c(ΰ)exp[ΰT(x)], and if the functional to be estimated is i? -*
fT(x)P#(dx) (see Mϋller-Funk et al. (1989) for minimal regularity condi-
tions). In all other cases the Cramer-Rao bound is not attainable, hence not
a suitable standard for judging the optimality of an unbiased estimator.

Some authors make a point of the fact that the Cramer-Rao bound can
be attained asymptotically. However, conditions under which the Cramer-
Rao bound is a bound for the asymptotic variance are of a totally different
nature, and so are the proofs.

There is no straight way from the Cramer-Rao bound to a bound for the
asymptotic variance. This can be seen from examples showing the following
properties, (i) For every sample size there exists an unbiased estimator with
minimal convex risk, (ii) the sequence of these estimators is asymptotically
normal with a variance larger than the Cramer-Rao bound, (iii) there exists
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an asymptotically normal estimator sequence with variance equal to the
Cramer-Rao bound. Since the estimators specified under (i) are unique a.e.,
this shows the existence of models where the Cramer-Rao bound cannot
be attained even asymptotically by sequences of unbiased estimators. For
a natural example of this kind, based on a curved exponential family, see
Pfanzagl (1994, p. 96, Example 2.7.3).

The purpose of the present paper is to establish a bound of Cramer-
Rao or Chapman-Robbins type which is genuinely asymptotic. It presents a
bound for the asymptotic variance of estimator sequences which are asymp-
totically unbiased, uniformly on shrinking sequences of neighbourhoods of a
given Po, or asymptotically unbiased along certain sequences converging to
Po.

For LAN-sequences this turns out to be the usual bound obtained from
the Convolution Theorem for regular estimator sequences. Hence we obtain a
slightly weaker assertion (a bound for the asymptotic variance instead of the
Convolution Theorem) from a slightly weaker assumption (locally uniform
asymptotic unbiasedness instead of locally uniform convergence to a limit
distribution).

The main application is, however, to nonparametric models with an
optimal convergence rate slower than n1/2. In many such cases, it can be
shown that locally uniform convergence to a limit distribution is impossible
(see Pfanzagl, 2000). The results of the present paper are used to establish
a variant of this result: If an estimator sequence has, at the optimal rate, a
finite asymptotic variance at Po (but not necessarily a limit distribution!),
then it cannot be asymptotically unbiased, locally uniformly on a shrinking
sequence of neighbourhoods of Po. This improves a result of Liu and Brown
(1993).

The basic theorem will be presented in Section 2. Section 3 contains the
application to LAN-families, Section 4 contains some nonparametric exam-
ples. Auxiliary results are collected in Section 5.

2 The general result

Let φ be a family of mutually absolutely continuous probability measures P
on some measurable space (X, A). The problem is to estimate a functional
ft : φ —>• R, based on a sample of size n. The estimator ft^ is a measurable
map from Xn to R. The deviation of the estimate κ(n)(£i,... ,# n) from
ft(P) will be standardized by cn > 0.

In the following X(Po; P) denotes the χ2-distance of P from Po, defined
by
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Furthermore, H(P0,P) is the Hellinger metric defined by

Ί 1/2

H(P0,P) = 1 -

Let

(2.1) 7ΓO := lim liminf P o

n{c n |κ( n) - κ(P0) | < u}.
u—ϊoo n—ϊoo

We remark that πo is the same for every rate sequence equivalent to Cn,
n G N, i.e. if c™, n G N, is replaced by a sequence dn, n G N, fulfilling

0 < liminf c^/cn < lim sup c'/c™ < oo,
ra->co

then

lim liminf P^{c' \nw - K(PQ)\ < u\ = π 0.

The estimator sequence κίn\ n G N, attains at Po the rate c n, n G N, iff

πo = 1. Observe that πo = 1 follows from lim sup Cn J \κ^ —κ(Po)\dPQ < oo.

For applications in Section 4 a weaker condition suffices, namely πo > 0.

For y G R and u > 0 let

(2.2) Lu(y) := yl[_u,tί](3/)

Definition 2.1 The estimator sequence «W, n G N, is asymptotically
unbiased with rate Cn, n G N, along the sequence Pn, n G N, if

(2.3) limsuplimsupl ί Lu[cn(^n>} - κ(Pn))]dP£| = 0.
n—> oo n—κx> 7

/f P n = Po for n G N we speak of "asymptotic unbiasedness at Po".

Theorem 2.2 Let P n G ̂ 3, n G N, be a sequence such that

(2.4) 0 < r := liminf cJ/c(Pn) - «(Po)| < HmsupCnl/cίPn) - «(Po)| < oo.
71->OO

Let «(n), n G N, be an estimator sequence which is asymptotically un-

biased at Po and along Pn, n G N, and fulfills πo > 0. Then, if α :=

oo,
7l-»OO
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Furthermore, ifb:= limsup2iϊ(P ($
ι,P£) < oo, then

n—KX5

lim liminf f Lu[cn{κM - κ(P0))]2dPg

(2.5") + lim limsup f Lu[cn(^n) - κ{Pn))fdP^ > ^ £ - [ 1 J .
u->oo ^-^oo j oz y τroy

The assertions remain true if liminf is replaced by limsup in (2.4) and (2.5).

To obtain a bound which is as sharp as possible, one has to choose the
sequence P n , n G N, such that X(PQ P^) is small, and Cn\κ{Pn) — «(Po)|
large. This is the way how the theorem can be applied to particular prob-
lems. Moreover, a version with sequences is necessary for the application to
diίferentiable paths. Prom the aesthetic point of view, the following version
based on sequences of neighbourhoods may be more satisfying.

Corollary 2.3 Let tyn C φ, n G N, be a nonincreasing sequence of sets

containing PQ. Assume that the estimator sequence κίn\ n G N, is with rate

Cn, n G N, asymptotically unbiased, uniformly on φn, n G N, i.e.

lim lim sup sup (κW - κ(P))]dPn

f := liminf sup Cn\κ(P) - κ(P0)\ > 0.

(2.6)

Let

(2.7)

Then, ifά := limsup sup X(P$,Pn) < oo,
n—> oo P £ φ n

(2.8') lim liminf f Lu[cn(κ^ - n(Po))]2dP£ > ^

Furthermore, if 6 := limsup sup 2H(P$,Pn) < oo, then

= 0.

(2.8") lim liminf / Lu[cn(^n) - «(P0)]2dP0

n

+ lim limsup sup / Lu[cn(κ^ - κ{P))fdPn >
u~*°° 71—>>OO P^OJr, J

Proof Apply Theorem 2.2 for a sequence Pn G φ n , n G N, such that

liminf cn\(Pn) — K(PQ)\ = liminf sup Cn\κ(P) — K(PQ)|.
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This concludes the proof. •

Proof of Theorem 2.2 (i). To simplify our notations, let

(2-9') Kn := c ( κ W - κ(Po))

(2-9") Kn ~ Cn(κV> - κ{Pn))

(2-10') Gn,u := 1 1 Lu[Kn]dPS\

(2-10") Gn,u:=\jLu[Kn]dPZ\

and

We have
r = liminf |r n I.

Let

σ2 := lim liminf / Lu[Kn?dP^

Since assertion (2.5') is trivial for σ2 = oo and for α2 > πo, we assume
σ2 < oo and α2 < πo in the following.

(ii). For every ε > 0 there exists uε > 0 and nε G N such that the
following relations hold true for u > uε

(2.11') l imsupG^ < ε
n—> o o

(2.11") limsupGn,ω < ε
n—>cx5

(2.12) Poi\Kn\ < u] > (1 - ε)π0, for n > nε.

Relations (2.11) follow from unbiasedness as defined in (2.3). Relation (2.12)
follows from (2.1) and πo > 0. For reasons which will become clear later on,
we assume that ε G (0,3/4).

(iii). The following relation for an arbitrary probability measure Q | B
will be used repeatedly

()
for 0 <y < z andα G [0,2].

(iv). Let now ε > 0, v > supn€N \rn\ and u > max{uε^v} be fixed. If
σ2 < oo, there exists an infinite subset No C N (depending on w, v, and ε)
such that

(2.14) ILu+v[Kn]
2dP£ < (1 + ε)σ2, for n G N o .
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\l[-u,u)(Kn) - l[-U9U](Kn)\ < l[u_ΌtU+υ](\Kn\), for n e N,

we obtain

(2 15) \^nl[-u,u](Kn) - knl[-u,u)(Kn)\ < \kn\l[u_ViU+υ](\Kn\)

<(\Kn\ + v)l[u_υ,u+υ](\Kn\).

From (2.13), applied with Q = Pft o Kn, z = u + v, y = u - υ and α = 0,
and α = 1, we obtain (use (2.14)) for n € N o

(2.16) |y(jί

Moreover,

(2.17)

with

Since Kn- R

(2.18) r

:nl[^u](K)-knlWu9u]{Kn))d^ <U(U

J(Lu[Kn}-Lu[kn})dP£ <Gn,w + Gn,w +

f f
' J u n n J u n

r

n — r n , we have

n\-uΛKn) = {Kn ~ ΛΓn)![_„,„](Kn)

Prom (2.18), (2.16) and (2.17) we obtain for n G N o , n>nε

(2.19) | r n |P 0 -{ |K n | <u}< u(u - v ) " 2 ( l + ε)σ2 + Gn,u + Gn,u + Bn,u.

(v). By Lemma 5.3, applied with PQ and P% in place of P$ and P,

respectively, and with / = Lu[kn] we obtain

L^ίΛΓJ^Po711 X(Po

n; i ^ )

/

and

/ Γ * o Γ - - x 1 / 2

(2.20") Bn,u < 2 ί / Lw[Xn]2dP^ + y Lw[iίn

Prom
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we obtain

(2.21) j Lu[kn}
2dP%

< J(Kn-rn)
2lh(u+υ)tU+v](Kn)dPZ

= ILu+υ[Kn}
2dP£ - 2rn J Lu+v[Kn]dP£ + r2

nPϋ{\Kn\ <u + v}

< jLu+υ[KnfdPZ + 2v\ I Lu+υ[Kn]dPS\

l <u}+ v2P£{u < \Kn\ <u + v}.

Prom (2.13), applied with Q — PQ O Jfn, z = u + υ, y — u and a = 0 we
obtain (use (2.14))

PQ{U < \Kn\ < u + v} < u~2(l + ε)σ 2.

Together with (2.20') and (2.21) this implies for n E N Q , n > nε (recall
α :=l imsupX(P 0 - ;P-))

n-»oo

(2.22) Bn>u < α((l + υ 2 « " 2 ) ( l + ε)σ2 + 2vGn,u+v + r 2 P 0 "{ |X n | < u})1'2.

Together with (2.19) this implies

\rn\Pi{\Kn\ <u}< u{u - υ)-2{\ + ε)σ2 + Gn,u + Gn,u

(2.23) + o((l + v2u-2)(l + ε)σ 2 + 2vGn,u+v + r2

nP£{\Kn\ < u}

Since t \-+ rnt — α(A + r^t)1^2 is increasing on (α2/4, oo) if A > 0, relation

(2.23) remains valid if we replace Poι{|jFίn| < u} by (1 — ε)πo (Recall that

(1 —ε)πo > πo/4 > α2/4). Taking now the limit over a subsequence N i C No

for which r := lim \rn\ exists, we obtain (hint: use (2.11))
neN

( 2 * 2 4 ) + α((l + t A " 2 ) ( l + ε)σ2 + 2^ε + f 2 ( l - ε)^)1'2.

This inequality does not depend on No any more. Since it holds for all
u > max{uε,v} and all ε G (0,3/4) we obtain

ΓTΓo ^ &\<J + Γ 7ΐ"o) ,

or

(2.25) σ

2>πf-Jl-α-).
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Since r > liminf \rn\ =: r, relation (2.5') follows.
n—>oo

(vi). The proof of (2.5") is the same, using instead of the bound (2.22)
for i?n ? w, resulting from (2.207), the following bound resulting from (2.20")

ε) lim limsup [ Lu[Kn]
2dP^

u-»oo n-^oo J

+ (1 + v2u-2)(l + ε)σ2 + 2vGn,u+v + r2

nP^{\Kn\ < u})1'2.

This concludes the proof. •

3 Applications t o LAN-families

Assume that for PQ e φ there is a linear space To of functions g : X -> R
such that / gdPo = 0 and / g2dPo < oo, and an element K* G TO such that
the following holds true.

For every g e TQ there exists a path Pn^g G $, n G N, such that

dPn

(3.1) ^ ° l o ^ i V

with

σ 2

and

(g):=Jg(χ)2Po(dχ)

(3.2) Jim^n^CAcίPnj,) - κ(P0)) = J gκ*dP0.

Condition (3.1) is, in particular, fulfilled if there exists a density of the

type

(3.3) ^ / /

with rn fulfilling the conditions

(3.4') fb{|rn | > εn 1 / 2 } = o{τΓι), for ε > 0,

(3-4") I rnl{\rn\<nU2}dPo = o{pΓχl2),

(3.4"')

Observe that (3.3) implies / rndPo — 0.
As pointed out by LeCam (see Pfanzagl, 1985, p. 25-27), condition (3.4)

is equivalent to Hellinger differentiability of the path Pn^g with derivative g/2.



Cramer-Rao Bound 507

In most examples, the path Pn^g, n G N, can be chosen such that the
sequence r n , n G N, of remainder terms fulfills a condition slightly stronger
than (3.4), namely

(3.5)

Theorem 3.1 Let K ' " ' , n ε N , be an estimator sequence such that

(3.6) lim limsupPo

n{cn |κ( r ι) - κ{P0)\ < « } = ! .
U—>OO

Assume, moreover, that κSn\ n G N, is asymptotically unbiased with the
rate n 1 / 2 , uniformly on all paths fulfilling conditions (3.2) and (3.3) with rn,
n G N, fulfilling (3.5). Then

(3.7) lim liminf / Lu[n^2(n^ - κ(P 0))] 2dP 0

n > σ2(κ*).

In this theorem, the uniformity along paths refers to asymptotic unbi-
asedness only. If the uniformity along paths holds for convergence to a limit
distribution ("regular estimator sequences") and if this limit distribution
has expectation zero, then this implies asymptotic unbiasedness and (3.6),
hence also (3.7). This is, however, of no interest, since for regular estimator
sequences the Convolution Theorem yields a much stronger assertion. The
attractive feature of Theorem 3.1 lies in the fact that it requires asymptotic
unbiasedness only (without reference to any limit distribution). Actually,
the asymptotic unbiasedness along the paths Pn,α**? ^ G N with α > 0 is
all we need in the proof of Theorem 3.1. Though this condition is weaker,
it is not more plausible than asymptotic unbiasedness along all paths P n ? p ,
n G N, with g G To. For readers who find it difficult to understand the
meaning of "uniformity along paths" — as is the case with the author —
we add the remark that this condition may, of course, be replaced by the
stronger condition of "uniformity on {P G φ : X(PQ^PΛ) < α} for some
α > 0 " .

Remark 3.1 Now we specialize Theorem 3.1 to the case of a 1-parametric
family {P# : ΰ G Θ}, Θ C R such that (see relation (3.3))

with rn fulfilling relation (3.5). In this case,
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Let ΰ(n\ n G N, be an estimator sequence which is asymptotically unbiased

on the paths J \ + τ ι - i / 2 t , n G N. Since y2 > Lu(y)2 we obtain from (3.7)

(3.8) limsupn /(0<n> - ^fdP^ > 1/ [ έf(x,ΰ0)
2dP#0.

This is the classical version of the Cramer-Rao bound, established here under
a condition weaker than "unbiasedness for every n £ N " .

Condition (3.5), required in Theorem 3.1, is slightly stronger than needed
for LAN. Therefore, we supply another Theorem (with a slightly more com-
plex result).

Theorem 3.2 Let κ^n\ n E N, be an estimator sequence fulGUing (3.6).
Assume, moreover, that κ^n\ n G N, is asymptotically unbiased with the
rate n 1 / 2 , uniformly on all paths fulfilling conditions (3.1) and (3.2). Then

Jkn^liminf (Lu[nιl2(κ^ - κ(P0)

implies for t sufficiently small

Since

lim liminf / L u [ n 1 / 2 ( / ί { n ) - κ(PQ))]2dP2 > σ2(κ*)
I—KX) 71—> OO J

under the conditions of Theorem 3.1, the use of Theorem 3.2 is, roughly
speaking, restricted to the case that there exists a path from direction tn*
fulfilling the conditions (3.4), but not the stronger condition (3.5).

Remark 3.2 Comparable bounds exist for the concentration of estimator
sequences which are asymptotically median unbiased, uniformly on paths
fulfilling (3.1) and (3.2). This is proved in Pfanzagl (1994, p. 271, Corollary
8.2.5) for parametric families, but the proof extends immediately to the more
general case of a family with paths fulfilling (3.1) and (3.2).

Proof of Theorem 3.1 For paths Pn,9 fulfilling (3.3) and (3.5) we obtain

from Lemma 5.2 that

^^PZ P^) = exp[σ2(5)] - 1.

Moreover, from (3.2),

lir^n^iKiP^g) - κ(Po)) = Jg(x)κ*(x)P0(dx) .
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Applied with g = tn* we obtain from (2.5')

with

$(z) = z(2-exip[z})/(exp[z}-l).

Since Φ attains its maximal value 1 for z -> 0, the assertion follows. •

Proof of Theorem 3.2 For paths Pn,g fulfilling (3.1) we obtain from

Lemma 5.1, applied with M = N^σ2(gy2, α^g)), that

^ J = 1 ~ exP[-σ2(5)/8].

Moreover, from (3.2)

Ym^n^^P^) - κ(P0)) = J g(x)κ*(x)P0{dx).

Applied with g = ί«* we obtain from relation (2.5")

Jir^liminf ί Lu[nιl2{κ^ - κ{Pΰ))fdP^

+ lim limsup f Lu[n1'2(iςW - κ{PnM*))]2dP

with

Since Φ attains its maximal value 1 for z -> 0, the assertion follows.

4 Applications to nonparametric problems

In most nonparametric problems the optimal convergence rate is slower than

n 1 / 2 . Usually it is of the type nαL(n) with α G (0,1/2) and L a slowly vary-

ing function, such as (logn)α. In these cases, estimator sequences converging

locally uniformly to a limit distribution usually do not exist. (See Pfanzagl,

2000, for details.)

In the present paper we shall apply Theorem 3.1 to show that estimator

sequences which have at PQ a finite asymptotic variance with this rate cannot

be asymptotically unbiased.



510

Theorem 4.1

(4.1)

and

(4.2)

Assume that

(4.3)

J. Pfanzagl

Let

$γ> — Γp p ςr> . χ(pn. p) <

V ι/7 1 "~~ Ql lTΛ J f* \ tC ( 'Pi ίC I ~Pr\ 1 1

I τι\V") — ® ^ r \ ^ n I V / \ 0 / 1

l imsupα" 1 liminf rn(α)

n-1'2

:Pe

= 00.
α->Ό

Let κ ( n \ n E N, be an estimator sequence with the following properties.

(4.4) lim liminf PQ{CΠ\K^ - K(PO)\ <U\ >0

U—> OO 71—> CX)

and

i ί ( \ 9

(4.5) σg := lim liminf / Lu[cn(κ,{ } — κ(Po))\ dP* < oo.
u—>oo n—>oo yThen the estimator sequence κ^n\ n G N , cannot he asymptotically unbiased

with the rate cn, n E N , uniformly on [P G φ : X(Po n ;^ n ) < α} ^ some
α > 0.

Observe that conditions (4.4) and (4.5) refer to the performance of the

estimator sequence at Po only.

If condition (4.4) is fulfilled for some sequence c n, n E N, it is also

fulfilled for every sequence c^, n E N, such that limsupτ ι_ )>ooί4/c r ι < oo. It

is condition (4.3) which guarantees that the sequence cn, n E N, increases

quickly enough.

Proof If κ(n\ n E N, is asymptotically unbiased, uniformly on {P E φ :

X ( P o

n ; P n ) < α}, relation (2.8;) implies that

/ α 2\V 2

(4.6) σo > TΓO I 1 1 α ι liminf r n (α),
\ TΓO / n^°°

with

(4.7) rn(α) :=

Since
X2(P0";P") = (1 + X2(P0;P))n - 1,

o P) < n- 1 / 2 α/2 implies

X2(P0

n; P n ) < (1 + n - V / 4 ) n - 1 < α2, for α e (0,1).
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Therefore,

rn(α/2) <rn(α), for α G (0,1).

Hence (4.6) implies

/ 2\ ιl2

σo > πo [ 1 I α~ι liminf r n(α/2).

Since this relation holds for every α G (0,1), relation (4.3) is in contradiction
to the assumption that σo < oo. •

The impossibility result expressed in Theorem 4.1 is in close relationship
to another impossibility result, Theorem 4.1 in Pfanzagl (2000), which reads
as follows: Under condition (4.3), there exists no estimator sequence such
that Pnocn(/ί(7 1) — «(P)), n G N, converges to a fixed limit distribution, uni-
formly on ?βn,α, n ε N, for some α > 0. This does not exclude the possibility
that PQ O cn(κ,(nϊ — κ(Po)), n G N, converges to some limit distribution, say
Qo If Qo has expectation 0, then κίn\ n G N, is asymptotically unbiased
at Po If the convergence to Qo is uniform on φn,α, n G N, say, then the
asymptotic unbiasedness, too, is uniform on φn,α5 n G N. The impossibil-
ity of uniform convergence to a limit distribution on φn j α? ^ G N, does,
however, not exclude the existence of estimator sequences which are asymp-
totically unbiased, uniformly on φn,α5 n G N. According to Theorem 4.1
this is impossible if the variance of Qo is finite. PQ O Cn(κ^ — κ(Po)) => Qo
with JuQQ(du) = 0 and /u2QQ(du) < oo excludes asymptotic unbiasedness
uniformly on {P G φ : X{PQ\Pn) < α} for some α > 0, hence also uniform
convergence to Qo As far as uniform convergence to a limit distribution
is concerned, the result in Pfanzagl (2000, Theorem 4.1) is stronger in that
it excludes uniform convergence to any limit distribution (and not only to
limit distributions Qo fulfilling / uQo(du) = 0 and /w2Qo(dw) < oo).

The impossibility assertion of Theorem 4.1 is based upon condition (4.3).
To grasp the meaning of this condition, consider a situation in which for some
sequence ί̂ , n G N, the limit of r n (α), n E N , exists in (0, oo) for every α > 0.
Then, according to Theorem 3.1 in Pfanzagl (2000), no estimator sequence
for K can converge, uniformly on φn,α? at a rate better than Cn, n G N.
Because of the special structure of φ n ? α (as defined in (4.1)), the existence
of lim rn(α) for α > 0 implies that cn — nαL(n) and lim rn(α) = α2α for

n—> o o ^ > ^ n—too

some α > 0, with L slowly varying as n tends to infinity. (Hint: apply the

results of section 6 in Pfanzagl (2000) to rn(α) = sn(l)~ιsn(α).) This is the

situation we met with in various non- and semiparametric models. More

specifically, we have in these models cn = nα and

(4.8) inf α~2α liminf r n (α) > 0 .
V ' α>0 rι->oc
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If α G [0,1/2), this implies (4.3) and excludes, therefore, the existence
of estimator sequences which are with the (optimal) rate nα asymptotically
unbiased and have, at PQ5 & finite truncated asymptotic variance (in the
sense of (4.5)).

This will be illustrated by some examples taken from Pfanzagl (2000).

Example 4.1 Let φ be the family of all Lebesgue densities, admitting k

derivatives, k > 0, which fulfill a Lipschitz condition of order 1 with a

given Lipschitz constant. The functional to be estimated is p(xo)5 with XQ

fixed. According to relation (7.8) in Pfanzagl (2000) relation (4.8) holds

For k = 0, the rate bound is n 1 / 3 . The same rate bound holds for a

smaller family, namely the family of all probability measures with monotone

densities with p'(xo) < 0. According to Prakasa Rao (1969, p. 35, Theorem

6.3) the sequence of maximum likelihood estimators p^n\ n G N, attains this

rate for every PQ with pr

o{xo) < 0. More precisely,

converges to a limit distribution, independent of Po> which is symmetric

about 0 and has finite moments of all orders (see Groeneboom, 1989, Corol-

lary 3.4, p. 94 for properties of this limit distribution). According to Theorem

4.1, this estimator sequence cannot be asymptotically unbiased, uniformly

on {P e φ : X{Po, Pn) < α} for some α > 0.

Example 4.2 Let <p be the family of all Lebesgue densities which have a

continuous 2 n d derivative and a unique mode. The functional to be estimated

is the mode.

According to relation (7.12) in Pfanzagl (2000) relation (4.8) holds with

α = 1/5.

Example 4.3 Let φ be the family of all distributions Pβ,τ over (0,1) with

a Lebesgue density of the following type

K{β,r)xβ-\l + r(x)), with β E (0,oo).

In this representation, r is a continuous function fulfilling

sup \r(x)\x~~ρP < oo,

where ρ £ (0, oo) is known. The functional to be estimated is κ(Pβ,Γ) — β,
the extreme value index.

Let Po be a probability measure with density βχP~ι. According to
relation (7.39) in Pfanzagl (2000) relation (4.8) holds with α = ρ/{2ρ + 1).
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All the examples mentioned above make use of the χ2-distance. Recall
that this has a definite advantage. The requirement of uniformity on {P G
φ : X(P o

n ,P n ) < α} for some α > 0 is weaker than the corresponding
condition based on H. Moreover, assertions like (2.5') and (2.8'), based on
the χ2-distance, refer to the asymptotic variance at Po Using the Hellinger
metric, the lower bounds given in (2.5") and (2.8") refer to

(4.9") Jim^ limsup sup / Lu[cn(^n) - κ(P))fdPn,

rather than

(4.9') lim liminf [Lu[cn(κ^ - κ(P0))]2dP?.
u-ϊoo n->oo J

A lower bound for (4.9") is not only weaker in the mathematical sense. It
also refers to a quantity which is not so easy to interpret as (4.9').

Since in nonparametric models there is much freedom in the choice of
the sequence P n , n G N, underlying relations (2.57) and (2.5"), it seems
questionable whether there are models where the version with H is appli-
cable, and the version with X is not. It is, therefore, just for the reason of
completeness that we add the following theorem.

Theorem 4.2 Let

(4.10) Qn ? α := {P EVβ: H(P0, P) < n~1/2α}

and

(4.11) 8n(α) := sup{cn|«(P) - «(P0)| : P G Πn,α}.

Assume that

(4.12) limsupα"1 liminf sn(α) = oo.
α->Ό π-Kx>

Let κ(n\ n G N, be an estimator sequence fulfilling (4.4) and, for some α > 0,

(4.13) σ2 := lim limsup sup / Lu[cn{ι^n) - n(P))]2dPn < oo.
U-+OO n _ ^ o o peQnα J

Then the estimator sequence κ ( n ) , n E N , cannot be asymptotically unbiased

with the rate cn, n G N, uniformly on {P G φ : H{P$,Pn) < α] for some

α > 0.

Proof If κ^n\ n G N, is asymptotically unbiased, uniformly on {P G φ :

H(P£,Pn) < α}, relation (2.8") implies that

(4.14)
/ α2\V2

σ* > 8" 1 / 2 π 0 1 - 4 — α ι liminf 5n(α),
- y π oy n~KX)
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with

sn(α) = S U P K I K W - κ{P)\ : H(P£,Pn) < α}.

Since H2(P£,Pn) < nι/2H2(PQ,P), we have Sn(α) > * n (α). Hence (4.14)
holds with sn(α) replaced by sn(α). Since this relationship holds for every
α > 0, relation (4.12) is in contradiction to (4.13). •

Theorem 4.2 is closely related to Theorem 2 in Liu and Brown (1993,

p. 4). In the expressive terminology of these authors their result reads as

follows: At a singular point of irregular infinitesimality an estimator sequence

cannot be both locally asymptotically unbiased and locally asymptotically

informative. Theorem 4.2 differs from this result of Liu and Brown only in

two aspects of minor importance, namely the use of Lu instead of ίu[y] =

Lu[y] + u{l(u,oo)(y) — l{-oot-u)(y))i a n d the use of condition (4.12) in place of

"irregular infinitesimality" (see Definition 2.6, p. 4, in the paper by Liu and

Brown). We remark that Theorem 4.2 is stronger than the corresponding

theorem with ίu in place of Lu (in relation (4.13) and in the definition of

asymptotic unbiasedness). (4.13) with ίu in place of Lu is stronger, since

Lu[y]2 < L[y]2 Moreover,

(4.15) uP{cn\nW - κ{P)\ > u} < u~ι j tu[cn{^ - κ{P))]2dPn.

Hence the definitions of asymptotic unbiasedness, uniformly on £}njQ? based
on Lu or ίu, are equivalent if (4.13) holds with ίu in place of Lu.

5 Auxiliary results

L e m m a 5.1 Let Pn,Qn be sequences of probability measures on (X,A)
with qn G dQn/dPn. If

(5.1) Pn

with M |B a probability measure fulfilling J exp[υ]M(dv) — I, then

(5.2) J irr^H(P n ,Q n ) 2 = 1 - ίexp[v/2}M(dv).

Proof If q £ dQ/dP, we have

(5.3) H (P, Q)2

 :=
1-J(^q-l)2dP = -J(^q- 1) dP

With

(5.4) IIn:
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relations (5.3) may be rewritten as

(5.5) H(Pn,Qn)
2 = \jy2Hn{dy) = - JyUn(dy).

Since y/ΰ — 1 = exp U logu\ — 1, we have

Π n = (P n o log qn) o(v^ exp[ϋ/2] - 1).

Since v H^ exp[v/2] — 1 is continuous, relation (5.1) implies

(5.6) Π n ^ Π 0 : = M o ( ^ exp[v/2] - 1).

We have

lhninf yVπ^dy) >

and, since y > —1,

liminf fyUn(dy) > I yU0(dy).
n—>oo J J

This implies

limsup#(Pn,Qn)2 < - fyUo{dy).
n—ϊoo J

= -JyU0(dy) = 1 - J exp[v/2]M(dv),

and

Since

the assertion follows. •

Lemma 5.2 Let Po,Pn, n E N, be probability measures with μ-densities

po and pn, respectively. Assume there exists a function g G £2(^0) with

f g(x)Po(dx) = 0 such that

(5.7) ^ = i + n - V 2 5 + n - i / 2 Γ r ι

Po

with

(5.8) J r2

n(x)P0(dx) -> 0.

Then

(5.9) Km X 2 (P 0

n ;P n

n ) = exp[ίg2dP0] - 1 .
77>—rOO ^
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Proof Since

X2(P0; Pn) = J (— - l) dPθ = ί̂ "1 y (» + rn)2rfPθ,

we have

Po;Pn)= 9χdP0.
ft—r<-*j

Since

(5.100 \JfdP-JfdP0\ < (J

and

(5.10") \jfdP-j fdPQ\ < 2(J f2dP + I f2dP0)
1/2H{P0, P).

the assertion follows. •

The following relations are used implicitly by various authors.

Lemma 5.3 For every function f : X -» R which is integrable with respect
to P and Po,

Proof Let p and po be densities with respect to some dominating measure

μ. By Schwarz's inequality

(5.11) 11 f(p - po)dμ\2 < I fhdμ J ^ψ^dμ

for any measurable function h : X -> (0, oc). Relation (5.10') follows by

application of (5.11) with h = po Relation (5.10/;) follows by application

with h = p + po, since (p - Po)2/{p + po) < 2(y/P ~ y/Po)2 •

6 Acknowledgement

The author wishes to thank L. Mattner and the referees for suggestions

leading to an improvement of the presentation.



Cramer-Rao Bound 517

REFERENCES

Chapman, D.G. and Robbins, H. (1951). Minimum variance estimation
without regularity assumptions. Ann. Math. Statist. 22, 581-586.

Groeneboom, P. (1989). Brownian motion with a parabolic drift and Airy
functions. Prob. Th. Rel. Fields 81, 79-109.

Liu, R.C. and Brown, L.D. (1993). Nonexistence of informative unbiased
estimators in singular problems. Ann. Statist. 21, 1-13.

Mϋller-Funk, U., Pukelsheim, F. and Witting, H. (1989). On the attainment
of the Cramer-Rao bound in LΓ-differentiable families of distribu-
tions. Ann. Statist. 17, 1742-1748.

Pfanzagl, J. (1985) (with the assistance of W. Wefelmeyer). Asymptotic
expansions for general statistical models. Lecture Notes in Statistics
31, Springer-Verlag, Berlin.

Pfanzagl, J. (1994) (with the assistance of R. Hambόker). Parametric Sta-
tistical Theory. Textbook, de Gruyter, Berlin.

Pfanzagl, J. (2000). On local uniformity for estimators and confidence limits.
J. Statist. Plann. Inf. 84, 27-53.

Prakasa Rao, B.L.S. (1969). Estimation of a unimodal density. Sankhya A
31, 23-36.

J. PFANZAGL

MATHEMATISCHES INSTITUT

DER UNIVERSITAT ZU KOLN

WEYERTAL 86-90
D - 50931 KOLN

GERMANY

lorenz@mi. uni-koeln. de




