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Random additive functions defined on intervals provide a general framework for varied ap-
plications including (dependent) array sums, and level-exceedance measures for stochastic
sequences and processes. Central limit theory is developed in Leadbetter and Rootzen
(1993) for families {ζτ(I) : T > 0} of such functions under (array forms of) standard
strong mixing conditions. One objective of the present paper is to introduce a potentially
much weaker and more readily verifiable form of strong mixing under which the limiting
distributional results are shown to apply. These lead to characterization of possible limits
for such ζτ(I) as those for independent array sums, i.e. the classical infinitely divisible
types. The conditions and results obtained for one interval are then extended to apply to
joint distributions of {ζτ{Ij) '• 1 < j ' < p} of (disjoint) intervals A, J2, Ip, asymptotic
independence of the components being shown under the extended conditions. Similar re-
sults are shown under even slightly weaker conditions for positive, additive families. Under
countable additivity this leads in particular to distributional convergence of random mea-
sures under these mixing conditions, to infinitely divisible random measure limits having
independent increments.
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1 Introduction

By a random additive function (r.a.f.) we mean a random function ζ(I)
defined for subintervals I = (α, b] of the unit interval and additive in the
sense that ζ(α,6] + ζ{b,c] = ζ{α,c] when 0<α<ί><c<l. To our knowledge,
such a framework was first used in proving a central limit theorem in the
early (and pioneering) paper Volkonski and Rozanov (1959).

As described in Leadbetter and Rootzen (1993) and (1997), r.a.f. families
{ζτ(I)} ( o r {(n(I)}) provide a simple unifying framework for (array) cen-
tral limit problems for both discrete and continuous parameter processes.
This includes the general limiting distributional properties of array sums
and exceedance measures, which are useful in a variety of areas such as en-
vironmental regulation and structural reliability (cf. Leadbetter and Huang
(1996)). For example with obvious notation, for / = (α, 6] C (0,1], ζn(I) =
Σϊ/nG/^,1 gives general array sums, ζn(I) = Σi/nei !(& > un) and ζτ(I) =
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fτi^(ζt > uτ)dt determine respectively the exceedance point process and
the exceedance random measure of a level un (uτ) (cf. Leadbetter and
Hsing (1990), Leadbetter et al (1983), Rootzen et al (1998)).

Dependent central limit theory was actively developed further in the
1960's and 1970's with the appearance of books (cf. Billingsley (1968),
Ibragimov and Linnik (1971)) and numbers of papers. In particular, Philipp
(1969) obtains the same results for the central limit problem for sums of ran-
dom variables having bounded variances and satisfying a variety of mixing
conditions, as apply to iid arrays (cf. Loeve (1977)). Studies such as Philipp
(1969) typically consider precise conditions under which a dependent array
sum has the same (infinitely divisible) distribution as does an independent
array sum with the same marginals. The conditions for such results can be
very restrictive, involving both long and short term dependence behavior.

In Leadbetter and Rootzen (1993) the problem is considered in two parts:
(a) the characterization of possible limits as the classical infinitely divisible
laws and (b) domain of attraction criteria. It is there shown that the main
condition required for the characterization (a) is just (an array form of)
strong mixing (at the weak end of the spectrum of such dependence restric-
tions, in spite of its name). For (b) it is shown that the distributions of sums
of relatively small groups of consecutive terms may be used in the classical
domain of attraction criteria to determine which limit applies. This latter
result is not as detailed as the use of marginal distributions in studies such
as Philipp (1969), but requires much less by way of assumptions.

In this paper we improve the results of Leadbetter and Rootzen (1993)
and extend them in detail to obtain multivariate limits under an at least
formally much weaker type of strong mixing, through characteristic func-
tions. As will be seen in the next section, for univariate limits this simply
approximates S{^{h) jtζτ{h)} b y εjtζτ{h)εjtζτ{i2) for t h e r a f ζτ a n d

appropriate disjoint intervals Ii, I2. A number of authors (e.g. Bulinskii and
Zhurbenko (1976), Withers (1981)) have used related characteristic function
conditions in obtaining Central Limit Theorems. Here we employ versions
designed to be as efficient as possible for the more general discussion of lim-
its (normal, Compound Poisson etc.) of r.a.f. arrays. The results apply
to r.a.f.'s which are finitely but not necessarily countably additive. In the
positive case it is natural to further consider countable additivity, extending
the domain of definition from intervals to Borel sets and thus also obtaining
limit theorems for random measures.

Basic framework and dependence assumptions are discussed in Section
2. In Section 3 the basic factorization lemma for the characteristic functions
within that framework is obtained under a specific negligibility condition,
and it is shown that this latter condition may be omitted if ζr is positive-
valued and stationary. Section 4 provides central limit results and contains
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comments on the applications of classical domain of attraction criteria. Fi-

nally Section 5 extends the conditions and theory in obtaining multivariate

results, i.e. limiting joint distributions of an r.a.f. evaluated for two or more

intervals.

2 Framework

For an r.a.f. based on a stochastic sequence {£/} or process {ξt} it is of

course natural to consider the "observation period" (1,2,... ,n) or (0,T] as

the basic space. However the simple normalization by n or T allows use of

the fixed space (0,1] which we employ here, defining r.a.f.'s for (semiclosed)

subintervals of this space. For brevity by an interval we shall throughout

mean specifically a semiclosed subinterval (α, b] of the unit interval (0,1]. Let

{ζx : T > 0} be a family of r.a.f.'s, defined on such intervals and additive in

the above sense, i.e. satisfying

ζτ(I U J) = ζτ(I) + ζτ(J) for each Γ > 0,

whenever J, J are disjoint intervals, whose union / U J is an interval (i.e. I
and J abut). The domain of definition of r.a.f.'s may of course be extended
by linearity to include finite unions of intervals, and the notation usage will
reflect this where convenient.

This family of r.a.f.'s {ζr : T > 0} is assumed to satisfy a mixing condi-
tion Δ, which will be defined as follows: Write for 0 < r,Z < 1,

Δ(r,Z) =sup|£exp{it(Cτ(/i) + Cτ(/2))} - εexp{itζτ(h)} εexp{itζτ(h)}\,

where the supremum is taken over pairs of disjoint intervals / I = ( O L , 6 I ] , 4 =

(α2,b?\ satisfying 0 < a\ < b\ < a2 < b2 < 1, a2 — b\ > I and 62 — ̂ 2 < T.

Then {ζx} is said to be A-mixing if for each real t, A(rτJτ) —> 0 for
some TT = o(l) and lτ = o{rτ), as T -> 00. Note that Δ(rr, lτ) depends on
T and also on t.

This mixing condition has the same type of array form under which ba-
sic limiting theory for random additive functions is developed in Leadbetter
and Rootzen (1993). However, it substantially weakens that in Leadbetter
and Rootzen (1993) by considering only very special types of random vari-
ables, exp{itζτ(I)} for intervals /, instead of all random variables which are
measurable with respect to the σ-field Bj = σ{ζτ{u,υ) : u, v G /}, or
some substantial subclass thereof. The condition Δ allows consideration of
the limiting distribution of ζτ(I) for a single interval /. It will be extended
in Section 5 to conditions Δ p (Δi = Δ) used in determining limiting joint
distributions of ζτ(h), - - -, ζτ{IP) for p (disjoint) intervals Iu I2,..., Ip.

The following negligibility condition will be further assumed as needed,
(using m for Lebesgue measure):

sup{P{|ζΓ(/)| > e} : m{I) < lτ} -> 0 as T -> 00, for each e > 0,
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which is readily shown to be equivalent to the condition

(1) 7 Γ = sup{l - f exp(-|ζΓ(I)|) : m(I) < lτ} -> 0, as T -> 0.

3 Asymptotic independence

In this section it will be shown under A-mixing that if an interval / is
written as the union of appropriate disjoint abutting subintervals ij, the
characteristic function of ζτ(I) is approximated by the product of those for
the subintervals Ij. This substantially generalizes Lemma 2.1 in Leadbetter
and Rootzen (1993). A simplified version of this lemma will also be shown
for the positive and stationary case (e.g. where ζr is a random measure).
These are key basic results leading to a classical central limit problem for
ζτ(I) for any fixed interval in (0,1]. Extended conditions and results for
joint distributions of ζτ{I) for more than one interval /, are considered in
Section 5.

For integers A T—»ooasT-»oo,a /^-partition of the interval I will mean
a partition of/ into fcx disjoint subintervals Ij (= ITJ) and (for convenience)

m(Ij) < r τ , j = l,...,fc τ.

Lemma 3.1 Let {ζτ> T > 0} be α A-mixing family of r.a.f's for some
constants {ΓT}, {IT} and let an interval I = (α, b] (which may depend on
T), have a kx-partition {Ij} where

(2) kτ{A(rτ, lτ) + 7τ) -• 0, as T -> oo.

Then, uniformly in \t\ < M, given M < oo,

kτ

(3) εexp{itζτ(I)} - Y[£exp{itζτ(Ij)} -> 0, as T -> oo.
j=i

Proof Take Ij = (α^-i, aj], 1 < j < k:τ for a — αo < a\ < . .. < akτ = b,

without loss of generality. Write Ij=(aj-ι+lτ, αj] and JjWj-Zj, j= l,...,fcτ?

and for simplicity suppress the subscript T in lτ, kτ-> Γr
Now, clearly since ζτ{I) = ζτ{^ZΪIj) + Cτ(4) + Cr(JΪ),

- exp{itζτ(I*k)}\,

and it follows from Δ(r,/) applied to the two intervals U^Jlj, Jjt that

ztCτ(UJtί/i)} f exp{itCτ(/fc)}|

< Δ(r, 0-
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Since \ε exp{itζτ{h)} - S exp{itζτ{ΐk)}\ < S\l - exp{iίCr(^)}|, we obtain
from this and above inequalities that

k fe-i

εexp{itζτ(Ik)}\

< A(r,l) + 2ε\l-exp{itζτ(Γk)}\.

Applying this repeatedly gives
k k

3=1 3=1

Now the first term on the right tends to zero by (2) and since |(1 — eιθ)/(l —
e~~'β')| < K for some K > 0 and all real 0, the second term does not ex-
ceed 2KJ2*j=i £|l-exp{-|tCτ(ίj)|} | This is clearly dominated by K\t\kTΊτ
(with appropriately changed K) which tends to zero so that (3) follows. •

It will be further seen that more definitive results are obtainable under
simple conditions if an r.a.f. QT is assumed to be both positive and stationary,
in the sense that ζτ{I + h) = Cτ(^)5 for each h and interval / with J, I + h C
(0,l]

Note that for positive variables it is convenient to work with Laplace
instead of Fourier transforms and hence it is natural to define a Δ-mixing
coefficient with Laplace transforms. Specifically the same definition is used
but εe~tζτW replaces Seitζτ^ for an interval /.

It is then possible to obtain the similar result to Lemma 3.1 without
assuming the negligibility condition (1), using a fc^-partition which consists
of intervals of presumably different lengths. However, it is more desirable to
consider a "uniform " partition if the stationarity of an r.a.f. (T is assumed.
This yields a simple proof and it is sufficient to evaluate only one Laplace
transform εe~tζτ^rτ^ when approximating £e~ t C τ( J).

Lemma 3.2 Let the positive and stationary r.a.f. family {ζr} be A-mixing
(defined with Laplace transforms) for some constants {/T}? {rτ} where
r^λA(rτJτ) —• 0, as T ->• oo. Let I be a subinterυal of (0,1], which may
depend on T, but with kr = [m(I)/rτ] —> oo. Then without assuming the
negligibility condition (1), as T —> oo, for any ί > 0,

(4) εexp{-tζτ(I)} - (εexp{-tζτ((0,rτ))})kτ-*0.

Hence also

(5) ε exp{-tζτ(I)} - (£exp{-ίCr((0,
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Proof Again for simplicity we suppress the subscript T in Iψ, kr, TT and
take I = (0, α] without loss of generality, since ζψ is stationary. Write Ij
for the interval ((j - l)r, jr], j = 1,2,.... First of all it is shown that (4)
holds for the interval I = (0, o] with kr = α. It is sufficient to show (4) as
T -> oo through any sequence such that (£exp{—tζτ(I*)})k converges to
some p, 0 < p < 1. Consider separately the following two possibilities:

(i) p = 1. Following the same steps as in Lemma 3.1, we obtain

k

- ]Jεexp{-ίCr(/j)}|

3=1

l) + 2k(l-εexp{-tζτ(I*ι)}),

since the Ij all have the same length / and ζr is stationary.

Since p = 1, it follows that fclog£exp{—tζτ(I*)} -ϊ 0, so that

εexp{—tζτ{I*)}) -> 0. Thus the right hand side of the above inequality

tends to 0 as T —> oo and hence (4) holds.

(ii) p < 1. It is possible to choose θ = θψ -» oo such that kθA(r,l) -> 0

and θl = o(r) since fcΔ(r,/) —>• 0 and Z = o(r). Hence for sufficiently large

T, θ + 1 intervals Ji, J2, . . . , J0+1 congruent to 7* may be chosen in 7 ,̂ all

mutually separated by at least /. Let J ^ be the interval separating J m and

J m + i , 1 <m<θ.

Since Cτ(/i) > Σm=i{Cτ(Jm) + C τ ( ^ ) } + Cτ(Λ+i) and CT is positive,

< εexp{-tζτ(l[)}
θ-l

< εexp{-t[Σ(ζτ(Jm) + ζτ(Jn)) + ζτ(Jθ) +
m=l

) +Cτ(Jθ)]} εexp{-tζτ(Jθ+ι)}+Δ

m=l

by the mixing condition. This latter expression is equal to

θ-i

εexp{-t[Σ (Cτ(Jm) + CrGE,)) + Cτ(Jθ)}} £exp{-tCτ(/i*)} +

by the assumed stationarity. Applying this repeatedly gives

(6) εexp{-tζτ(h)} < Θ
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so that

(7) (£exp{-ίCr(/i)»fe < (ε exp{-tζτ(IΪ)})kθ + kθA
θ+ o(l)-X),

since p < 1. Hence the second term in the difference in (4) tends to zero. It

may be similarly shown that

εexp{-tζτ(I)} < (£exp{-ίCτ(^)}) fc+fcΔ

which tends to zero since (6) and hence (7) hold with jj in place of Ij. Hence

both terms of (4) tend to zero if p < 1, and (4) again holds for the case

I = (0, α] satisfying kr = α.

Note that this result implies that (£exp{—tζτ{h)})k > δ for some δ > 0

and hence that 8 exp{-tζτ(h)}) -> 1, i.e. ζτ(h) A 0.

Now to prove (4) for the interval / = (0, α] with kr ψ α it is sufficient to

show that εexp{-tζτ{(O,kr])} - S exp{-£ζτC0} -> 0. But this difference

does not exceed 1 — £exp{—tζτ{(kr, α])} which tends to zero since as noted

ζτ{h) -^ 0 and hence ζτ{{kr,ά\) A 0. (ra((fcr, α]) < m(I\) = r and ζy is

positive and stationary.) Hence (4) holds.

Since k ~ m(I)/r, it is readily seen that

(£exp{-ίCr(/i)})fc - (εexp{-tζτ(h)}Γ^Γ -> 0.

Hence it follows from this and (4) that

(8) (£exp{-ίCτ(J)}) - (5exp{-tCr(/i)}) m ( / ) / r ^0.

Then (5) is readily obtained by applying (8) to the unit interval (0,1] and
/. .

4 Limiting distributions

The results of Section 3 show (partial) asymptotic independence of ζτ{Ij)
for a kτ-pαrtition of an interval 7. These will now be used to show that
classical central limit theory is obtained under A-mixing by considering an
independent array with the same marginal distributions as ζτ(Ij).

As for independent r.v.'s, the array {ζτ(Ij)} corresponding to a kτ~

pαrtition U ^ / j = / of an interval /, will be termed uniformly asymptotically

negligible (uan) if ζτ(Ij) A 0 uniformly in j , i.e. for every e > 0

/j)| > e}} -> 0 as T -> oo.
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For each T let {(TJ : 1 < j < kr} be independent random variables with

Cτ,j = ζτ{Ij), 1 < j ' < &τ Such a family will be called an independent array
(of size kr) associated with ζτ(I)

Note that such a partition and independent array of course are not
unique. However, as can be seen, the following result is independent of
the choice of array and immediately obtained from Lemma 3.1.

Theorem 4.1 Let {ζr} be A-mixing with kτ{Δ(rτJτ) + 7τ) —> 0 and let
{CTJ} an independent array for {ζτ{I)} based on a kτ-partition {Ij} of an
interval I. Then ζτ{I) has the same limiting distribution (if any) as Σζτ,j-
In particular if the array {ζτ(Ij)} is uan, any limit is infinitely divisible.

Proof Since ζτ{I) = ΣjUi Cτ(Ij) and by Lemma 3.1, for each t, as Γ —> oo,

k k

εexp{itζτ(I)} =

Thus ζτ(I) -> V f°r some r.v. η if and only if ^ ζrj —> η> •

General features of classical central limit theory apply under Δ-mixing to
important cases such as normal and Compound Poisson convergence as fol-
lows. In these, FTJ will denote the distribution function of the contribution
ζτ(Ij) of the interval Ij in a fc^-partition of / and

ί xdPrj
J\x\<τ

x2dFTj-a^j{r)
x\<τ

(1) Normal convergence. The general criterion (adapted from the
form given by Loeve (1977), Section 23 under independence) may be stated:

Let ζx be as in Theorem 4.1, and I a given interval. Then ζτ{I) —> Ή f°Γ

a normal r.v. η = N(a,σ2), and {ζτ{Ij)} is uan if and only if

(i) Σ i p{\(τ(Ij)\ > e} -> 0 as Γ -> 0, each e > 0,

(ii) £V ατ,j(τ) -> α, ^ crτj(τ) -^ σ2 as T -»• oo, some r > 0.
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It is interesting and potentially useful in applications to note that if it is
known that ζτ{I) converges in distribution to some r.v. η (not assumed nor-
mal) then normality of η actually follows from (i) alone and (ii) is automat-
ically satisfied. This may be seen from the discussion of normal convergence
in Loeve (1977), Section 23.5 and the "Central Convergence Criterion" of
Section 23.4 of that reference.

(2) Compound Poisson convergence. Let X = CP(\,F) denote
a Compound Poisson random variable X i.e. X = Σ Γ ^ ' where X{ are
independent with a distribution function F and N is Poisson with mean λ.

Then with the above notation, ζτ(I) —> CP(\, F) if the following conditions
hold:

Σ j ( l - Fτ,j(x)) -* λ(l - F(z)), x > 0, at continuity points x of F

(Ji) Σ j ατ,j(τ) -> λ /( | x | < τ ) x dF(x) for some fixed r > 0

(iii) l i m s u p ^ ^ Σ j <4,j(r) -» 0 as e -» 0.

Suppose now that {CT} is a family of positive and stationary random
additive functions. Lemma 3.2 gives the following more definitive result
(without negligibility conditions).

Theorem 4.2 Let the positive and stationary r.a.f. family {ζr} be A-mixing

(defined with Laplace transforms). If ζτ(I) -> Ήv & random variable for

some (nondegenerate) interval I, then such convergence occurs for all in-

tervals I and ηi is infinitely divisible with Laplace transform 8 exp(—tητ) =

φ(t)m^ where φ is the Laplace transform of η(0 ιy

5 Multivariate limits

It follows simply from the above results that if J i ,/2,. . . ,/ p are disjoint
abutting intervals, then

under Δ-mixing and negligibility assumptions. Hence if ζτ{Ij) -> Ήj. a r.v.

for each j then

Σ ^ i X . asT->oo,
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and the {ηL} may be taken to be independent. However convergence of
this sum does not necessarily imply joint convergence in distribution of the
components (ζτ(h), , ζτ{IP)) to (η^,..., rj7 ), which requires the more
general relation

(9)

This latter convergence requires a more detailed version of the Δ-mixing
condition, which may be tailored to the number of intervals Ij involved.
Specifically, for each p > 1, {ζr} is said to be Ap-mixing if there exist some
constants TT = o(l) and fr = o(rτ) for each real £i,. . . , tp, such that

Δp(rr,/r) =

p

- εexp{Y^itjζτ(Ij)} εexp{itpζτ(Ip+ι)}\ -> 0 as T ->oo,
i=i

where the supremum is taken over any (p+1) disjoint intervals Ij = (αj, 6j],
j = 1,..., (p + 1) with 0 < αi < 6i < α2 < ... < 1 αp+ι — bp > I and

Remark 5.1 Note that Δi is the previous Δ»condition and putting selected
tj = 0 shows that Δp-mixing implies Δm-mixing for 1 < m < p.

The following result is then readily shown along now familiar lines.

Theorem 5.1 Let the r.α.f. family {ζr} satisfy the condition Δ p for some
{rτ}i 0 τ } Then (9) holds for given disjoint intervals Ji, I2,. . . , I p and any
tj which are uniformly bounded in j and T, if the interval Ij has a kτ,j-
partition j = 1, ...,p such that ]Cj=i ^τ,j = &τ and

(10) fcr(Δp(rr, h) + 7τ) -> 0 as T -> 00.

Moreover, if ζτ(Ij) ->*?/. α r-^ / 0 Γ e α c Λ ^ ί Λ e n (Cτ(Λ), ,ζτ{IP)) ->
(ηΓ , . . . ,77, ) wΛere η. are independent.

Proof It will be convenient to write a partition of Ij as Ϊ7j?i, Uj^ , ϋj,^-
and define U^m and C/Jjm for j = 1,..., p and m = 1,..., kj as ϊj and Ij were
defined in Lemma 3.1,' where ^ = 1 kj = kτ. Again for simplicity suppress
the subscript T in fcr^τ,^r
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We readily obtain from Lemma 3.1 and Remark 5.1 that for j = 1,... ,p

ε exp{itjζτ(UJ9m)}\

< kjΔp(r,l) + 2

Hence, using the inequality
n n n

1 1 1

it follows that

p p kj

j=l j=l m=l

(11) <

Again, the same reasoning as in the proof of Lemma 3.1 and the definition
of Δp(r, /) yields

j=l j = l m=l

It follows from this and (11) that

3=1 j=l

< 2 ̂  ^ Δp(r, /) + 4 J2 Σ
j = l ,7=1 m=l

= 2kAp(r,l) +4j2Σ,ε\l
3=1 m=\

Note that the second term on the right does not exceed

jz=l m = l
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for some constants K, K' and the first term tends to zero by (10). Thus (9)
holds.

The conclusion regarding joint convergence of (ζτ(h), , ζτ(Ip)) follows
immediately from (9). •

This result thus shows the independence of the distributional limits of
ζτ(h), >,ζτ(IP) for disjoint Ij under Δp-mixing and negligibility assump-
tions. Further the component limits will be infinitely divisible under uan
assumptions for arrays corresponding to fcχ-partitions for each term (Theo-
rem 4.1).

Finally we note that again corresponding results hold in the positive case
without negligibility assumptions. These lead in particular to "full" conver-
gence theorems for Δ-mixing random measures {ζr} to random measures
with independent increments.
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