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We study the problem of estimating an unknown solution of the Cauchy problem for the
Laplace equation, with 1,2-norm loss, when the initial conditions are observed in a white
Gaussian noise with a small spectral density. It is shown in particular that asymptotically
minimax estimators are as a rule nonlinear.
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1 Introduction

Hadamard (1912) proposed the famous example of the ill-posed boundary
value problem

(1) £ £)
He noticed that sup x |<^n(x)| —> 0, as n —> oo for φn(x) = n " 1 sin(2πnx)
whereas sup-noτm of the solution un{x,y) = smh.(2πny) sin(2πnx) / (2πn2)
tends to infinity for any y > 0. So the problem is called ill-posed in the
Hadamard sense. Nevertheless this problem is the important geophysical
problem of interpreting the gravitational or magnetic anomalies (see Lavren-
tiev (1967) and Tarchanov (1995)).

The usual approach to ill-posed problems deals with the recovery of a
solution based on a "noisy" data. In order to guarantee consistent recover-
ing some additional information about the function φ(x) is required. It is
assumed as a rule that φ belongs to a compact set /C in a suitable space. The
performance of the optimal solution depends on K and on the definition of
the noisy data. Usually (see Tichonov &; Arsenin (1977), Engl &, Groetsch
(1987)) it is assumed that the observed data are

ψε{x) =φ(x)+nε{x),
lrΓhe research was supported by NSF grant DMS-9600245 and DMS-9971608.
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where nε(x) is an unknown function from a Hubert space with the norm

\\nε\\ < ε.
On the other hand there exists another approach to ill-posed problems,

which is based on the assumption that nε(x) is a random process (see Su-
dakov & Khalfin (1964), Mair & Ruimgaart (1996), Sullivan (1996)). In the
present paper we assume that nε(x) is a white Gaussian noise with spectral
density ε2. Of course, nε(x) does not belong to a Hubert space and usu-
ally solutions of ill-posed problems obtained by deterministic and stochastic
approaches are different. To illustrate, consider a simple ill-posed problem.
Suppose we need to estimate the first derivative of a function /(#), x E [0,1]
based on the noisy data

zε(t) = f(x)+nε(x).

Assume also that / belongs to the Sobolev ball

Wj(P) = {/ : jf1 f{u) du + j\ί{β\u) fdu <

where f^\u) denotes the derivative of the order β > 1. It is not very
difficult to show that as ε —> 0 the minimax rates of convergence are given
by

inf sup sup
/' feWξ(P) \\nε\\<ε

and

inf sup
/' fewξ(P)

for the deterministic and stochastic approaches respectively.
Let us now return to the Cauchy problem (1), where as we will see later

the minimax rates of convergence are the same for the deterministic and
statistical approaches. Let φ{x) be a periodic function with unit period.
Assume that it admits an analytic continuation into a strip of length L > y
of the complex plane. Then one can easily check that

/r»\ t \ V^ Sinh(2πfcy) 2πikx f1 , \ 2πikx i

(2) u(x,y)= V v y > f c e 2 , Ψk = φ{x)<Γ2ηvιkx dx
fc^oo Z7ΓK JO

is a solution of (1). The problem is to recover a solution of (1) in the
stochastic setting. We have at our disposal only the noisy data

(3) dzε{x) = φ(x)dx + εdw(x), x G [0,1],
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where w(x) is the standard Wiener process. Our goal is to estimate the
function u(x, y) based on these data. For a given y the risk of the estimator
u(x, y) is measured in the L2-norm, so

Rφ(u, u) =Eφ [u(x, y) - u{x, y)}2 dx.
Jo

Notice that the data zε(x) admit an equivalent representation in terms of
their Fourier coefficients (cf. (3)), given by

W zk — Ψk + εξk,

where z\, are the Fourier coefficients of the data zε(x)

Γ1

zε

k= e2πikxdzε(x),
Jo

and ξk are iid ^(0,1). Thus (2) determines a one-to-one correspondence
between the estimator u{x) based on zε(t), t E [0,1] and the estimator ψ^
based on the data from (4). By the Parseval formula we can rewrite the risk
Rφ{u,u) in the following equivalent, but more convenient form

(5) Rφ(u,u) = Eφ

k=—oo

where bk(y) = sinh(2πA;y)/(2πA;).

In order to get nontrivial results we suppose that ψ(x) admits an analytic

continuation into a strip of length L of the complex plane. More precisely,

we assume that φ e Φ, where

(6) Φ = \φ(x): \φ(x + iL)\2dx= ^ \ψk\2cosh(4πkL) < D\.

It is easy to see from (2) that if φ G Φ, a solution of the problem (1) exists

provided that L > y.

In order to find the rate of convergence of the risk to 0 we begin with

the projection estimators (cf. (2))

uN(x,y,zε)=
|fc|<ΛΓ

The main problem related to this estimator is how to choose N = N(ε)

to minimize its risk. In view of (5)-(6), one easily computes the risk of
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UN(X,y, zε) for y > 0 as ε —> 0

(7) supRψ{uN,u) = sup
Φ Φ

<-L)iV) + 2ε2]Γδ2(y)
fc=O

(4πiV)2 L ^ v v y y ; ' I>(exp(4πy) -

Minimizing the right-hand side in the above equation with respect to N we
get the optimal bandwidth

. ( ! / - L)k)

where the minimum is taken over all integers. It follows from the above
formula that

1 D(L-y)(ψ«y)-Ά +

4πL ε2y

where \c\ < 0.5. Substituting N(ε) in (7) one arrives at the following formula
for the risk of the projection estimator as ε -> 0:

χ , o g _ 2

We prefer to write D/ε2 because it is dimensionless expression, and it is
easy to see that the above equation is uniform in D such that D/ε2 -> oo.
It is not difficult also to show that the above rate of convergence cannot be
improved in the class of all estimators. But the goal of the present paper is
more delicate. We try to find the asymptotic minimax risk up to a constant.
We will see that in the general case the asymptotically minimax estimator is
nonlinear and only in some special cases one can use a linear or a projection
estimators to achieve the optimal constant.

2 Main results

In this section we compute up to a constant the minimax risk

oo

rε(y, L) = inf sup Rφ(u,u) = inf sup Eφ V] b\{y)\φk - φk\
2,
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where inf is taken over all estimators. In order to describe the asymptotic
behavior (ε -> 0) of this risk we consider an auxiliary statistical problem.

For convenience denote vectors from R 2 by bold letters. Assume that
one observes
(8) zk = θk + σξk,

where ξk are iid Λ/*(0, /) and / is the identity matrix. We also suppose that
the unknown vectors θk belong to the set

(9) & = \θk: f ; \\θk\\2e2e**Lk <l\,
J

where || || is the Euclidean norm in R2. The goal is to find the best in the
minimax sense estimator of θk, k E (—00,00) based on the data z^, when
the risk is defined for L > y as

(10) p(σ,2/,L)=infsupEβ £ \\θk -

Let θ* = {..., θ*k_x, θk, 0fc+i,...} be the minimax estimator in (8)-(10) with
the components

zlm

We construct now a counterpart φ* of θ* in the model (4). Let

(11) W{ε) = argmin 1 - -j=

where the minimum is taken over all integers. Denote for brevity

For \k\ < y/W(ε) we set

We continue this estimator over the set of all integers as follows

Λ * - / ' I l ( )
Ψk ~ \ 4 , |Aτ| < W(ε) -

The following theorem determines relations between the estimators φ*,
θ* and the minimax risk rε(y,L).
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T h e o r e m 2.1 For 0<y<Lαsε->0

oo

2sup Ê  £ fiivM - Ψk\
Φ k=-oo

4n(y-L)W(ε) (8[πW(ε)}2

where
(14) σε = εD~ιl2 exp(2πLW(ε)).

Proof The proof is based on a modification of renormalization arguments
(see, for instance, Donoho and Low (1992)). It is divided into two steps.
First, we obtain a lower bound for the minimax risk. For brevity we use
from now on W instead of W(ε) and y/W instead of y/W(ε). Let

(15) Φe = Φ Π {φk : ψk = 0, \k-W\> y/W, \k + W\ >

Since Φe C Φ, it follows that

oo

(16) rε{y,L) > inf sup E^ ^ 6fc(y)|c?fc-^|2

ε \k-w\<Vw

\φ-k -φ-k\
2)

e 4 π ^ i r i f s u P E Σ

Define the vectors θ\ E R 2 as follows

(17) θι = A(e)(<pt+w, Ψ-i-wf

In view of (15) and (17), it follows that (... ,0/_i,0/,0/+i,...) belongs to
the set

|/|<VW

l - l

= O, ΐoτ\p\>Vw\,

with dε = [l + e - 8 π L ( l y + v / ^ ) j . Let E^ be the expectation with respect to

the measure generated by the observations (cf. (8))

= θk
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and E# is the expectation, which corresponds to the observation from (8)
with σ = σε (see (14)). Since dε < 1 we have

inf sup E$ Y" e4 7 r y / | |0/-0/||2>infsupEβ Vs e4πyl\\θι - θι\
d θ Θ 7j dθeΘ \ι\<Vw

4πyl\\θι - θι\\2

and hence

inf sup Eβ y e4πyl\\θι-θι\\2 = dεmfsvφE$ V e4πyl\\θt - θ{\\2

? β Θ t l dβeθ \ι\<vw
> 4 infsupE β V

S β e Θ |«|<V^

Therefore noting that dε —> 1, we obtain by (16) and (17)

Thus to complete the proof of the lower bound it remains to check that

(18) inf sup Eθ V e47r2/i||0, - θι\\2

β βeθ

By the triangle inequality, which guarantees that in/ taken over all
estimators coincides with inf over θ € θ , we have

(19) inf supEβ Y e^βi - θt\\2 = inf
d βeθ j βθ

< inf supEθ y e^ ' l f t-βj lP + supsupEβ V e^ 'yβ,-βi | | 2

< inf supEθ

d θ 9 e ι<VW

< inf sup Eβ
δ θ θ

Define

ε 1

\k\<VW
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Since evidently θ C Θ+ we have

(20) inf sup Eθ Σ e 4 π 2 / ί | |θz-0/| | 2<inf sup EΘ Σ e4πyl\\θι -
θ θeΘ ι<Vw θ θeΘ* ι<Vw

= inf sup E J Σ e*πyl\\θι-θι\\2+ Σ {

l f l- /777 κ-Vw

= inf s u p E β
θ β e 0 ί \ι\<Vw

+ inf sup Eθ
δ

On the other hand it is clear that

inf sup Eθ

The above equality together with (19) and (20) completes the proof (18).
Let us turn to the upper bound for the minimax risk. In proving of the

lower bound we used the following relations between the estimated parame-
ters and the data in the models (8) and (4)

ilk ) = A(ε) ( φk+w V
θ2k ) V Ψ-k-W )

The above equations provide a motivation for the estimator (12). By (12),
(13) and simple algebra we have

(21) SUpEy, yZ bk(y)\ψk ~~ Ψk\ = °(l)rε{y,L),
φ£ \k\>w+Vw

(22) supEy, Σ bl(y)\Ψk ~ Ψk\2 = o(l)rε(y,L).
φeΦ \k\<w-Vw

On the other hand we obtain

(23) supE^ Σ bl(y)\<Pk-Vk\2

\k-w\<Vw

where

Σ
\k\<Vw

\k\<Vw
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It is also clear that

BupE,

This inequality together with (21)-(23) completes the proof of the upper
bound. •

Remark 2.1 As ε -* 0

rε(y,L) x D

Proof easily follows from Theorem 2.1 since by (11)

(4πL)~ι log(2D/ε2) - 0.5 <Wε< (4πL)- χ log(2JD/ε2) + 0.5

and hence by (14) exp(-πL) < σε < exp(πL), so that the limiting risk
p(σ ε,y,L) is 0(1).

3 Asymptotic behavior of the limit minimax risk

The minimax estimator in the problem (8)-(10) is of course nonlinear. Un-
fortunately in the general case it is impossible to find it in an explicit form.
Therefore, we study in this section the behavior of the minimax risk p(σ, j/, L)
and respectively the minimax estimator for L <C 1 and for L » 1. In the
first case we recover the solution in the vicinity of the boundary and show
that the minimax estimator can be well approximated by a linear smoother.
The second case is related to estimation of "very smooth" functions. There
are two possibilities in this situation. The asymptotically minimax estimator
may be either a simple nonlinear estimator or a linear projection estimator.
Denote [x]+ = max(0, x).

Theorem 3.1 Uniformly in y such that

(24) 2*f_+

y

yϊ<l-δ, δ>0

the following assertion holds

(25) Mm % ^ # = 1,v ' L->O plm{y,L)

where

is the risk of the best in minimax sense linear estimator

(27) M

in the model (8-10) with σ = 1.
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Proof The proof consists of two steps. First we compute the risk of θk

thus proving the upper bound for the minimax risk and then we show by

constructing a prior distribution on Θ, that our upper bound cannot be

improved. Notice that by (14) σ 2 —> 1 as L —> 0, so that

oo

(28) p(σε,y,L)< sup Eβ

< e-4πto(L-y) _|_ ^ ^ Γj _ e2π(L-y)(fe-^)l 2

k=—oo

+ (2 + O ( l))e 4 ^ Γ-i - ί - ^ +
[4πy τr(L + y) 4πL

Our next step is to prove that the above upper bound is precise. Here we

follow the idea of Pinsker (1982). Let ζk G R 2 be iid λf(O,I). Define

σ 2 = h _ e2π(L-y)(fc-tn)j e~2π(L-y)(k-w) ^

We shall show that

(29) ^of
k

We have by simple algebra

(30) E^e^σ^Hαil 2 - 2)1=
k

o
e V^ e8πfcL L-4irfe(L-») _ 2 e -

fc=-oo

2(1 + o ( l ) ) e 8 π ω L Γ 1 2

thus proving (29). Let ΘQ be the subset in Θ

θ o H β : 2_, 11**11 e4 1™ < 1, θk=0, k>w
fe=-oo
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Then by the triangle inequality we have

(31) p(σ,y) > inf sup E β Σ \\θk -

= Jnf supEθ
0eΘ o βGΘo

Assuming that for some δ > 0

0 = J ί 1 ~ 5 ) σ fcCb k<w
k \ o, fc > tϋ

we get

and hence by the Markov inequality and (30) P< θ ^Θo | = o(l). Therefore,

by the Cauchy-Schwartz inequality and (29-31) we obtain

tu

(32) p(σ,y) > inf E

lϋ

> Jnf E Σ

- sup E Σ H'fl~* ~ θkfe
iηχyk\{θ i Θo}

> Jnf E V \\θk-θk\\2e4*yk-

> inf E Σ \\θk-θk\\2eAπyk-o(l)e4™(L-yϊ
δe®° fc=-oo

> infE f̂  \\θk-θk\\2eiπyk-o(l)plin(σ,y).
k=-oo

Since βfe are independent Gaussian random variables and σε = 1 + O(L) we
have

w

infE
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Equation (32) together with the above formula complete the proof. •

Remark 3.1 It follows from Theorems 2.1, 3.1 that the asymptotically min-
imax estimator in the initial problem is linear as L —> 0 and condition (24)
is fulfilled.

Let us look at the asymptotic behavior of the minimax risk p(σ, y, L)
as L —> oo. There is a simpler statistical problem, which determines the
asymptotics. Assume that we are given the sample

(33) z = θ + σξ,

where ξ is Λf(0, /), and we want to estimate the unknown vector θ provided
that it belongs to the ball

(34) θo

Let

(35) p°°(σ) = inf sup E||θ - 0| |2

θ θθ

be the minimax risk in the considered problem.

Theorem 3.2 Uniformly in σ and y < L as L —> oo

(36) p(σ,y,L) = [l + O

+ O

Proof In order to obtain an upper bound for the risk p(σ, y, L) we denote

by θ* the minimax estimator in the problem (33)-(35) and consider the

following estimator

f fc, k < 0,

[ 0, k>0.

Then we have

supE V \\θk-θk\\2e4πvk< supE||βo-βo||2

2σ2
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Let us turn to the lower bound. The idea is to construct a suitable prior
distribution on Θ. First of all, we assume that θk = 0 for k > 0. Next we
suppose that | |0O | |2 < 1 - δ. For k < 0 the unknown vectors are defined
as follows θk = S(ηik,η2k)T, where ηjk G [-1,1] are iid with the density
p(x) = cos2(πx/2), and 5 is such that

252 V e4 π L f c = δ.

Noting that the Fisher information of θk for k < 0 is π2/S2 we obtain from
the Van Trees (1968) inequality

p(σ,y,L) > inf sup EllflQ-floll2 + * V
βo ||βo||2<i-£ π S +σ £r^λ

2n-292

— δ) inf sup
0 " 0 I ^ •*•

2σ2

2σ2 ,. nn/ x 7Γ2CΓ4

Maximizing the right-hand side of the above equation with respect to δ we
arrive at

p(a,y,L) > ^ W

This concludes the proof. •

In proving Theorem 2.1 we have assumed that y is fixed. On the other
hand we see from Theorem 3.2 that ρ(σ,y,L) w O(y~1) for small y, thus
indicating that the rate of convergence of the minimax risk (see Theorem
2.1) is not uniform with respect to y. To cover this gap we describe in the
next theorem the asymptotics of the minimax risk and an asymptotically
minimax estimator, when y is in a vicinity of 0.

Theorem 3.3 Let yε be such that

Then uniformly in y G [0, yε] as ε -¥ 0
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and the projection estimator

uw(x,y,zε)= Σ h(y)zε

ke
2*ikx, W(ε) = ̂  log ^

\k\<W(ε)

is asymptotically minimax.

Proof The upper bound for the minimax risk follows from the Taylor

formula for δfc(y), when y E [0,yε]

h(y) =y + (2π

where ζy E [0, yε]. Therefore, we have (see (7))

rε(y,L) < supRφ{uw,u) < Db2

w{ε)(y)cmYrl{4n

log °
\k\<W(e)

The proof of the lower bound is based on arguments used in Golubev Sz
Levit (1996). •
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