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of the natural numbers.

AMS subject classiήcations: Primary 60F05; secondary 60E07.
Keywords and phrases: Trimmed sums, domains of partial attraction, semistable laws,
asymptotic normality.

1 Introduction

Let XL, X2,. be a sequence of independent and identically distributed ran-
dom variables, and for each natural number n G N consider the order statis-
tics Xι,n < < Xn,n pertaining to the sample X\,..., Xn. Trimmed sums
ΈrZi+i Xj,n for Z, ra E N, l + m < n, are the initial basic objects in statistical
theories of robust estimation, so it is not surprising that there has been con-
siderable interest in the investigation of their asymptotic distribution. The
large literature on a number of versions of the problem may be traced back
from our references; see in particular the collection edited by Hahn, Mason
and Weiner (1991). Here we deal only with trimming according to natural
order, as in the sums Σ?=/+i ^j>> a n d n o t w ^ h the case when trimming is
done with respect to ordering the moduli \Xi\,..., \Xn\ of the observations.
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Subsequent to specific results on asymptotic normality, Stigler's (1973)
theorem completely solves the problem of the asymptotic distribution for
the classical trimmed mean

n-{n-\nβ\) \nβ\

Σ Xj,n/(lnβ\-lnα\)= £ Xj,n/([nβ\ - [nαj),
j=[nα\+l j=[nα\+l

where 0 < α < β < 1 and, with Z standing for the set of integers, [x\ =
max{r E Z: r < x} is the integer part of a real number x E M: In this case of
heavy trimming enough extreme values are discarded so that, with suitable
centering and norming, the remaining mean has an asymptotic distribution
as n -> oo for every underlying distribution function F(x) = Ψ{X\ < x},
xGR, where the basic probability space is denoted by (Ω, A, P). Introducing
the associated quantile function

Q(s) = inf{x E R: F(x) > s}, 0 < s < 1,

this asymptotic distribution is normal if and only if Q is continuous at both
a and β. A proof of the general result, different from Stigler's, and one
that shows his theorem to be a boundary case of asymptotic distributions
for moderately trimmed sums discussed below, is given by Csόrgό, Haeusler
and Mason (1988b); see also Cheng (1992) for further elaborations.

At the other trimming extreme, it is conceivable that for fixed pairs of
positive integers I and m the existence and nature of asymptotic distribu-
tions of the lightly trimmed sums Snk(l,m) = Σ"=/+i ^ > f c , generally along
subsequences { n ^ } ^ C N, are closely connected with those of the limit-
ing distributions of the whole untrimmed sums Snk = Snfc(0,0) = Σj=i Xj
(Asymptotic distributions for any of the sums here and in the sequel are
always meant with suitable centering and norming and all infinite subse-
quences of N are assumed unbounded throughout) Indeed, it was shown in
their Corollary 6 by Csόrgδ, Haeusler and Mason (1988a) that Snk converges
in distribution along some {rik} to a nondegenerate random variable, in other
words, F is in the domain of partial attraction of some infinitely divisible
distribution, if and only if Snfc (Z, m) converges in distribution to nondegener-
ate random variables for every pair (/, m), along the same {n^}. The limiting
distributions of the latter are some "trimmed" forms of a special represen-
tation of an infinitely divisible random variable, the distribution of which is
the limiting distribution of the former; the representation is given in the next
section. One may conjecture that it is sufficient to require the distributional
convergence of 5njb(/,m) for a single pair (/,m) G N2 to achieve the same
conclusion for 5nfc, and hence also for all (Z,m) E N2, along the same {n^}.
For the whole sequence {n} = N this was proved by Kesten (1993), in which
case the conclusion is that F is in the domain of attraction of a stable law.
The general subsequential version is still open.
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Perhaps the most interesting case, the topic of the present note, is that

of moderately trimmed sums Sn{ln,πιn) = Σ?=ίm+i Xj,m where

/ 7T7
(1.1) ln -> oo, — -» 0 and mn -> oo, —-

n n
—> 0 a s n —> oo.

The first deeper result is due to Csόrgδ, Horvath and Mason (1986), who

proved that if the full sums Sn have a nondegenerate asymptotic distribu-

tion along the whole {n} = N, i.e. if F is in the domain of attraction of a

(normal or nonnormal) stable law, then with ln = mn and suitable centering

and norming sequences Sn(mn,mn) is asymptotically normal as n —> oo.

Csόrgδ, Haeusler and Mason (1988b) then determined the class of all possi-

ble asymptotic distributions for Sn(ln,mn) along all possible subsequences

{rik}, together with necessary and sufficient conditions for the convergence in

distribution of Snk(lnk,mnk) as k —> oo. To formulate at least the condition

for asymptotic normality, define f o r O < θ < l — £ < 1 ,

(1.2)

/

l-ί rl-t
/ [min(u, v) - txv] dQ(tί) dQ(v)

Js

= β Q (s) + tQ2(1 -t)+ Q (u) du
Js

- \sQ(s) + tQ(l -t) + f'* Q(u) du} ,

a basic function in Csδrgo, Haeusler and Mason (1988a,b). For given se-

quences {ln} and {mn} set

(1.3) an(ln,mn) = y/nσ[ — ,l ),
\n n J

and introduce the two sequences of functions

ψl,n{X) =

2 '

and

< X < OO,

- o o < z < - ^ ,

< X < OO.
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Also, let —> denote convergence in distribution and let Z be a standard
normal random variable. According to Theorem 4 of Csόrgδ, Haeusler
and Mason (1988b), for sequences {ln} and {mn} satisfying (1.1), there
exist centering and normalizing constants Cn G R and An > 0 such that
A-nl[Sn{ln-> ran) — Cn] —> Z as n -» oo if and only if

(1.4) lim ψjnix) = 0 for every x E l , j = l,2,
n—>oo

in which case Cn = cn(/n,mn) := n / i n ± i

 n Q{u)du and Λn = αn(ln,mn)

work.
The subsequential version of this result is also true. If at least one of the

functions φj,n{
m), or one of the renormalized functions αn(ln,mn)φj,n( )/An

for some An > 0 for which αn{ln,mn)/An —> 0, j = 1,2, converges to a
nonzero function either along the whole {n} or along a subsequence, then
extra terms appear in the limiting random variable so that the asymptotic
distribution, typically obtained along a further subsequence, is no longer
normal; it does not even have a normal component in the renormalized case.
The conditions appearing are optimal; for the precise statements the reader
is referred to Csόrgδ, Haeusler and Mason (1988b, 1991b). Griffin and Pruitt
(1989) rederived this theory by a different method, obtaining the conditions
and the description of limiting random variables in alternative forms, with
numerous additional observations.

While the "asymptotic continuity" condition (1.4) solves the problem of
asymptotic normality of moderately trimmed sums completely from a gen-
eral mathematical point of view, its probabilistic meaning is not so clear until
it is tied to better understood conditions that govern the asymptotic distri-
bution of the entire untrimmed sums. Indeed, it was pointed out by Csόrgδ,
Haeusler and Mason (1988b) and then by Griffin and Pruitt (1989) that if F
is stochastically compact, meaning that the full sums are stochastically com-
pact in the sense that there exist sequences of constants bn G R and dn > 0
such that every subsequence of N contains a further subsequence along which
[Sn — bn]/dn converges in distribution to a nondegenerate random variable,
then the sequences of functions {ψj,n(')}^Lι a r e uniformly bounded, j = 1,2,
and hence the sequence S^(ln,mn) := [Sn(ln,mn) - cn{ln,mn)]/αn(ln,mn)
of centered and normed trimmed sums is also stochastically compact for any
pair (/n?^n) of sequences satisfying (1.1). However, nonnormal subsequen-
tial limiting distributions do arise in this case.

Thus, to date, the only explicitly determined family of underlying distri-
butions for which 5*(mn,mn) is known to be asymptotically normal along
the whole N for every sequence {mn} satisfying (1.1) is the family of those
F that are in the domain of attraction of a stable law [Csόrgδ, Horvath and
Mason (1986)], and the only explicit family for which 5*(ίn,mn) is known
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to be asymptotically normal for every sequence {(/n, mn)} of pairs satisfying
(1.1) is the subfamily attracted by not completely asymmetric stable laws
[Griffin and Pruitt (1989)]. The question arises whether there is a probabilis-
tically meaningful larger class of distributions, necessarily within the class of
stochastically compact distributions, which would respectively contain the
families above and for which the same conclusions for the asymptotic nor-
mality of trimmed sums would still hold true. A feature of the phenomenon
would of course be that the full sums, [Sn — bn]/dn, would no longer converge
in distribution themselves along the whole {n} = N. The aim of this paper is
to show that a larger class of distributions within the class of stochastically
compact distributions does indeed exist with these properties: it is a proper
subfamily of the family of distributions in the domain of geometric partial
attraction of semistable laws. In the next section we describe this family of
distributions, while Section 3 contains the new results and their proofs.

2 Semistable distributions and their domains of geometric partial
attraction

Let Φ be the class of all non-positive, non-decreasing, right-continuous func-

tions φ( ) defined on the positive half-line (0, oo) such that /ε°° ψ2(s) ds < oo

for all ε > 0. Let 2£f', E2 , -.., j = 1,2, be two independent sequences of

independent exponentially distributed random variables with mean 1. With

their partial sums F n = E± + + En as jump points, n E N, con-

sider the standard left-continuous independent Poisson processes Nj(u) :=

ΣΪZLi I{YnJ>} < u), 0 < u < 00, j = 1,2, where /(•) is the indicator function.

For a function φ G Φ, consider the random variables

~ Γ
Ji

- s]dφ(s)

where the first integrals are almost surely well defined, by the condition that

φ G Φ, as improper Riemann integrals. For ψ i G Φ and φ<ι G Φ, consider

the constant

J 1 + ̂ W '

let Z be a standard normal random variable such that iVi( ), Z, and N2( )

are independent, and for a finite constant σ > 0 finally introduce the random

variables

(2.1)
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'ψ2), the latter of which by Theorem

3 in Csδrgό, Haeusler and Mason (1988a) has characteristic function

, x 1 2 7-cx5\ 1 + x 2 /
(2.2) l

+

for all ί E M, where L(x) = inf{s > 0: ψι{s) > χ } for α: < 0 and R(x) —
— inf{s > 0: ^2(5) > —x} for x > 0. Here L( ) is left-continuous and non-
decreasing on (—oo,0) with L(—oc) = 0 and R( ) is right-continuous and
non-decreasing on (0,00) with R(oo) = 0, and f^ε x2dL{x)+^ x2dR(x) < 00
for every ε > 0 since ψutfa G Φ. Thus V(^i,^2,σ) is infinitely divisible by
Levy's formula [see e.g. in Gnedenko and Kolmogorov (1954)]. Conversely,
given the right side of (2.2) with L( ) and R( ) having the properties just
listed, the variable W ^ i , ^ ? ^ ) has this characteristic function again if we
choose ^i(s) = inf{x < 0 : L(x) > s} and ^2(5) = inf{x < 0: -R(-x) > 5},
5 > 0, for then ^ 1 , ^2 G Φ.

Thus the class I of all nondegenerate infinitely divisible distributions
can be identified with the class {(Ί/>I,^2,CΓ) φ (0,0,0) : ^1,^2 G Φ,σ > 0}
of triplets. Then F being in the domain of partial attraction of a G =
Gψιψ2Ί(T G J , written F G Bp(G), means that there exists a subsequence
{kn}™=1 C N and centering and norming constants Ckn G R and Ajςn > 0
such that

ί k~ λ
v

where a convergence relation is meant to hold as n -> 00 unless otherwise
specified and Gφli7/,2iσ is the distribution function of the random variable
V(^i,^2,σ) from (2.1); the characteristic function of V(VΊ>^2,σ) — θ(Ψι 1Ψ2)
is in (2.2). By classical theory [Gnedenko and Kolmogorov (1954) or Corol-
lary 5* in Csόrgό (1990)] this happens for {kn} = {n} = N if and only
if either ( ^ I J ^ J G Γ ) = (0,0, σ) for some σ > 0, in which case F is in the
domain of attraction of the normal distribution, written F G D(2), or
W>i?^2j0") = (mi^α,m2'0Q,O) for some constants α G (0,2), mi,m2 > 0,
m\ + 777,2 > 0, where ψα(s) = — s"1/", s > 0, in which case F is in the do-
main of attraction of a stable distribution of exponent α, written F G B(α).
(The superscript α in i/>α, and in t/>f and ^2 beginning with (2.4) below, is
meant as a label, not as a power exponent.) The normal being the stable
law of exponent 2, let S denote the class of all stable laws.

Levy (1937) introduced the class 5* C I of semistable laws by extending
a defining property of stable characteristic functions and, as translated into
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the framework of the present description of infinitely divisible laws, showed
that Gψliψ2i(T G S* if and only if either (^1, ^25 cr) = (0,0, σ) for some σ > 0,
giving the normal distribution as a semistable distribution of exponent 2, or
(tl>uih,σ) = (ψf,ψξ,0), where

(2.4) ψf(s) = Mj(8)tl>α(8) = -Mj(8)8-1'α, s > 0 , j = l ,2 ,

for some α G (0,2), defining a semistable distribution of exponent α G (0,2),
where M\ and M<ι are nonnegative, right-continuous functions on (0, oo),
either identically zero or bounded away from both zero and infinity, such that
M1+M2 is not identically zero, the functions Mj( )^Q( ) are nondecreasing,
j = 1,2, and Mj(cs) — Mj(s) for all 5 > 0, j = 1,2, for some constant
c > 1; the latter property will be referred to as multiplicative periodicity
with period c. For α G (0,2), Levy's original description of the property in
(2.4) in terms of L and R in (2.2) is that there exist nonnegative bounded
functions ML( ) on (—00,0) and MR( ) on (0,00), one of which has a strictly
positive infimum and the other one either has a strictly positive infimum or
is identically zero, such that L(x) = ML(x)/\x\α, x < 0, is left-continuous
and nondecreasing on (—00,0) and R(x) = —Mjι(x)/xα, x > 0, is right-
continuous and nondecreasing on (0,00), while Mχ/(c1/αa:) = ML(X) for all
x < 0 and Mβ(c1/αx) = MR(X) for all x > 0, for the same period c > 1.
Because of the inversions given above, the two descriptions are equivalent.

The realization of a tangible significance of 5* D S starts with a remark
of Doeblin (1940), without any elaboration or, for that matter, even a pre-
cise statement, to the effect that semistable laws arise in the limit in (2.3) if
the normalizing constants A*n satisfy a geometric growth condition. Thirty
years later, Shimizu (1970) and Pillai (1971) came close while Kruglov (1972)
and Mejzler (1973) fully achieved that realization, all four of them acting
independently of one another. It turned out that the following Character-
ization Theorem is true: If (2.3) holds along a subsequence {kn} C N for
which

(2.5a) liminf -?— = c for some c G (1,00),

then the distribution Gψuψ2tσ of V(ψι,ψ2,σ) is in 5* such that, in the case
when the exponent of Gψλψ2^σ = Gφa^a^ is α < 2, the multiplicative period
of the functions M\ and M2 in (2.4) is the c from (2.5a). Conversely, for
every Gψltψ2tσ G 5* there exists an F such that if ΛΊ, X2,. are independent
random variables with the common distribution function F, then there exists
a subsequence {kn} C N such that

(2.5b) lim -£±^ = c for some c G [1,00)
n->oc k
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and (2.3) holds along {kn}. An equivalent version of this theorem, in terms
of the Levy type description of 5* was proved by Kruglov (1972) and Mejzler
(1973), while the present version was obtained by Megyesi (2000) with an
independent proof within the framework of the 'probabilistic' or 'quantile-
transform' approach of Csδrgό, Haeusler and Mason (1988a,b; 1991a,b) and
Csδrgό (1990) to domains of attraction and partial attraction.

For G = Gψuψ2i(T G 5*, we say that F is in the domain of geometric
partial attraction of G with rank c > 1, in short F G B^(G), if (2.3) holds
along a subsequence {kn} C N satisfying (2.5b). Of course, the geometric
subsequence kn = [cnj, the integer part of cn, is unbounded and satis-
fies the (quasi)geometric growth condition (2.5b) if c > 1. Recalling that
(Ψuψ2,σ) Φ (0,0,0) for G = Gψuψ2tσ G S*, define c = c(Go,o,σ) = 1 for any
σ > 0 and c = c(G^«^«j0) = inf{c > 1: Mj(cs) = Mj(s), s > 0, j = 1,2},
the minimal common period c of the factor functions M\ and M2 in ψf and
ψξ in (2.4) for a G (0,2). Thus c = c(G) is defined for all G G S*. It
turns out for the whole domain Bgp(G) := U c > 1 1%; (G) of geometric partial

attraction of G G S* that Bgp(G) = ΠmeN^gP™^) = ^gϊ>(G). Also, if
c(G) = 1 for G G <S*, then G G S and B g p (G) = B(G), the domain of attrac-
tion of the stable G. In other words, if B(5) := \JσesΌ(G) = Uo<α<2ID>(α)
is the classical domain of attraction and IDgp(G) := UGe^^gp(^) ι s ^ e do-
main of geometric partial attraction of a class 5 c 5 # , then 0 g p (5) = B(5).
Some of these results were first proved by Mejzler (1973), all of them and
related other observations are obtained by Megyesi (2000).

The first characterization of an F G Dgp(«ί>*) was obtained by Grinevich
and Khokhlov (1995). However, besides the fact that it contained an error,
this characterization is in terms of the norming factors Akn in (2.3) and the
tails of F, and so it is not useful when trying to apply the criterion (1.4) to
trimmed sums. The following alternative characterization is due to Megyesi
(2000).

Consider a subsequence {kn}
<^>

=1 C N satisfying (2.5b). If c = 1 in (2.5b),
then put 7(s) = 1 for every 5 G (0,1). If c > 1, then the sequence {kn} is
eventually strictly increasing to 00. Hence, for all s G (0,1) small enough
there exists a uniquely determined fcn*(s) such that k~h^ < s < k~},\v

For any such s we define 7(s) = sfcn*(s), so that for any fixed ε > 0 and all
5 G (0,1) small enough we have 1 < 7(5) < c + ε for the limiting c > 1 from
(2.5b). In particular, for any sequence sm > 0 for which \imm-+oosm = 0,
the limit points of the sequence {7(sm)}^= 1 are in the interval [l,c]. Let
Q+(') denote the right-continuous version of the quantile function Q( ) of the
underlying distribution function F( ). Since Dgp(G) = D(G) for a normal
G G 5*, we only have to describe the domain of geometric partial attraction
of nonnormal semistable laws, for which the Domain Theorem is this: If
GφaφaQ G 5* is semistable with exponent α G (0,2), so that ψf and ψξ
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satisfy (2.4), and F e Bgp(Gψ<*ιφ«β) such that (2.3) holds for V(ψ?,ψ§,0)
and a subsequence {kn}^=ι C N satisfying (2.5b), then for all s G (0,1),

(2 6) Q+{S) = s £ W [ M i ( 7 ( ^ ) ) + Λ i ( * ) ] a n d
Q(l-8)= 8-VH{8) [M2{Ί{S)) + h2(S)]

for some a G (0,2), where έ( ) is a right-continuous function, slowly varying
at zero, and the errors hi and Λ2 are right-continuous functions such that if
Mj is continuous, then limŝ o hj(s) = 0 for the corresponding hj, while if Mj
has discontinuities, then the corresponding hj(s) may not go to zero as s I 0
but limn^oo hj(t/kn) = 0 for every continuity point t > 0 of Mj, j = 1,2.
Conversely, if for the quantile function pertaining to F the equations in
(2.6) hold with the properties of I and of h\ and Λ2 just described, for some
a G (0,2) and functions M\ and M<ι satisfying the properties described at
(2.4), and for 7( ) determined by a given subsequence {kn}™=1 C N satisfying
(2.5b), then F G ̂ gp(G^^fi) for the φf and ψ% given by (2.4), and, in
particular, the relation (2.3) can be specified as

£(l/kn) [j=

Finally we note that if F G ̂ gpiG^^β) for some a G (0,2), so that
(2.6) holds with all the properties of the ingredients described above, then
it is easy to see that

da'^iis) < \Q+(s)\ < DιS-
ιl"ί{s) and

C-ιlH{) < |Q(1 -s)\<

for all 5 > 0 sufficiently small, where 0 < C\ < D\ < 00 and 0 < C2 < D2 <
00 are constants such that C\ + C2 > 0 and Cj = 0 if and only if Dj > 0
can be chosen as small as we wish, which happens if and only if Mj(-) = 0,
J = 1,2.

3 Asymptotic normality of moderately trimmed sums from Bgp(S*)

Our main result is

Theorem 3.1 Suppose that F G Dgp(G) for some nondegenerate semista-
ble law G = Gψuψ2tσ such that both φ\ and Ψ2 are continuous on (0,00).

(i) If neither ofψi and Ψ2 is identically zero, then for any two sequences
{ln}™=ι and {mn}^=ι of positive integers satisfying (1.1),

( 3 1 )
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where α n (/ n , mn) is as in (1-3) and Z is a standard normal random variable.

(ii) If at least one ofψi and Φ2 is identically zero, then (3.1) holds true

for any two sequences {/n}^Li and {mn}^L1 of positive integers satisfying
(1.1) such that

(3.2) 0 < liminf — < Km sup — < 00.
n^HX) rnn Π-KX5 τnn

In this theorem, the distribution G is either normal, i.e. G = (?o,o,σ
for some σ > 0, or G — ί?ψ«,ψ«,θj a semistable law of exponent α E (0,2)
with continuous ψf and ψ% satisfying (2.4). In the first case, the continuity
condition is trivially satisfied and part (ii) for this case is just a restatement
of part of Theorem 1 in Csόrgδ, Horvath and Mason (1986) when ln = mn.
In the second case, the two parts (i) and (ii) here extend results of Csόrgδ,
Haeusler and Mason (1988) and Griffin and Pruitt (1989) mentioned in the
introduction. By (2.4), the theorem's continuity condition is nothing but the
requirement of continuity of the corresponding functions Mi and M2. This
condition cannot be dropped in general as the example of the St. Petersburg
game shows, where the underlying distribution is in the domain of geometric
partial attraction of a semistable law with exponent 1 and Theorem 3.2
of Csόrgδ and Dodunekova (1991) shows that nonnormal limits do arise
for moderately trimmed sums along subsequences of N. The generalized
St. Petersburg games considered by Csόrgδ and Simons (1996) in a different
context and their symmetrized versions may serve to show the same for all
exponents α E (0,2). In terms of the Levy functions L and R in (2.2), we see
that a nonzero ψf (or φξ) 1S continuous, or equivalently the corresponding
Mi (or M2) is continuous if and only if L (or R) does not have flat stretches
in the sense that it is not constant on intervals with positive length.

We emphasize that even though (2.7) holds for the full sums only along
a subsequence satisfying (2.5b), the convergence in (3.1) takes place along
the whole N. If the continuity condition is violated, we still have an existence
result along the whole N.

Theorem 3.2 If F G Όgp(G) for a nondegenerate semistable law G, then
there exist two sequences {/n}ί£Li and {mn}^Lι of integers satisfying (1.1)
such that (3.1) holds.

With some extra work the proof can be modified to allow the choice

ln = mn. Also, if G = Gψ^ψβ^ for some exponent α G (0,2), neither of ψf

and Ψ2 ι s identically zero and ψf is continuous, then there is an {mn}^_i

satisfying (1.1) such that (3.1) holds for every {ln}^Lι satisfying (1.1); an

analogous statement is true when ψ% is continuous.

Our last result extends Theorem 3 of Csόrgδ, Horvath and Mason (1986)
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and demonstrates that asymptotic semistability in (2.7) is determined only
by arbitrarily small moderate portions of upper and lower order statistics in
the sample.

Theorem 3.3 IfF € BgP (G) for a nonnormal semistable law G = fy^>

of exponent a G (0,2), so that (2.7) holds along a subsequence {kn}%L1 C N
satisfying (2.5b), then, for the slowly varying function £(-) from (2.6) and
(2-7),

(3-3)

(3 4)

where —> denotes convergence in probability, and

where the independent random variables W\(ψf) and W^iΦx) are given at
f2.1^, and so

for any two sequences {/n}£Li and {m n }^ = 1 of positive integers satisfying
(1.1).

The general theory in Csόrgό, Haeusler and Mason (1988a, 1991b) and
Csόrgδ (1990) ensures the existence of sequences {/n} and {mn} satisfying
(1.1) for which these statements hold, the point of Theorem 3.3 is that they
hold for all such sequences. If Mj = ψ* = 0, which is allowed in (2.7) and
in Theorem 3.3 above for one of the j , then of course Wj(0) = 0. A more
general version of Theorem 3.3, in which a fixed number of the smallest and
the largest extremes may be discarded from the sums in (3.3) and (3.5) is
also true; the way in which the centering sequences and the limiting random
variables should be changed in (3.3) and (3.5) for this version is clear from
the general scheme in Csόrgδ, Haeusler and Mason (1988a), Csδrgδ (1990),
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or Megyesi (2000). The formulation of Theorem 3.3 above suits well the
genuinely two-sided case. In the completely asymmetric case when one of
Φι and ψξ is identically zero, a somewhat stronger statement can be made,
even in the more general version with possible light trimming: see the end
of the proof of Theorem 3.3 for this in the present case of full extreme sums.

Turning now to the proofs and recalling the notation in (1.2) and the
statement in (2.8), Theorem 3.1 requires the following

Lemma 3.4 If F G Bgp(G-0<*,ψαfi) for a semistable Gψ^ψ^o of exponent
α e (0,2), then

(i) there exist some constants K\,Ki G (0, oo) such that

Kλ < limiπf " ( ' 1 - ' ) < limsup σl^A < K, .
- 40 S

1 - I ^ 2 ( s ) - 40 sι«l2{s) ~

(ii) ifCi > 0 in (2.8), then there exist some constants κ[l\κ^ € (0, oo)
such that

P liminf « y / 2 > < limsup σ \ $\

and if C2 > 0 in (2.8), then there exist some constants K\ ,K^ G (0, ex))
such that

K?< liminf
~ 40

Proof We follow the proof of Lemma 1 in Csόrgό, Horvath and Mason
(1986). Obviously the inequalities in (2.8) directly imply that

C? + Cl < liminf -VM + W-') < l i m s u p ^ W + ^ ( l - . )
- 40 s^ϊPis) ~ 40 sι-U2{s)

Also from (2.8), similarly as at (3.11) and (3.12) in Csδrgδ, Horvath and
Mason (1986),

j < liminf S " ? ( ° ' * < limsup ' • ' " f W d "(3.6) Kj < liminf S ? ( ° ' * < limsup ' • f W d " < K>2

•i" i'-i£2(s) ~ iθ s'-ip(s) ~
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for some constants K^Kζ G (0, oo) and

(3.7) ; 0

40 S2-U{s)

Using these four relations in the second formula in (1.2), the inequalities in
(i) follow.

The symmetric two statements in (ii) are obtained in a similar fashion.
Considering the first, for example, the first pair of inequalities in (2.8) imply
that

C\ < liminf - ^ L < l i m s u p sQ*ω < D2 a n d l i m s\Q{s)\ =

40 sι-«i2(s) 40 sι-«i2{s) 40 S2-U(s)

and (3.6) and (3.7) remain true by the same argument if 1 — s in the upper
limits of the integrals is replaced by 1/2. •

Proof of Theorem 3.1 To prove part (i), consider any two sequences
{ln}^=ι and {mn}'^)

=1 satisfying (1.1) and introduce the "renormalized" half-
sided functions

(x e R), the original functions φι,n( ) and ψ2,n(') being given between (1.3)
and (1.4), where

a>i,n(Q = Vnσ( — , - ) and a2,n(mn) = y/nσ[ - , 1 - — ).
\n 2) \2 n J

Since none of φι = ψf and ψ\ = ψξ is zero anywhere, 0 < a < 2, it follows
from (2.6) and (1.2) that aι,n{ln),a2,n{mn) > 0, and so the definitions of the
renormalized functions are meaningful for all n large enough and, of course,
αi,n(O,α2,n(raτι) < a>n(l"n,™>n)' Hence, to prove (1.4), it suffices to show
that

(3.8) lim φ[n]Sx) = ° a n d Jl™, φ$™n(x) = ° f o r

To deal with φ^]n(x) at any fixed x e M, note that by the domain
theorem at (2.6),

+ x ) + x γ e ( + x )
n n J \n n J \n n J

\Λ/Γ ( (In ̂  >fa\\>h (ln , Vk
x Mi 7 — + x +hι[ — +x

[ \\n n JJ \n n
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for all n large enough. We substitute these into the formula for ψn \ (x)
through the formula given for φ\tn(x). Using then the fact that

K := < lim inf
σ{ln/n,1/2)

... σ{ln/n,1/2) ^
< limsup —{—j——-— <

by the first statement of Lemma 3.4(ii), for all n large enough we obtain

+ Λi( —

where

s/ΓJ

by the slow variation of (̂ ) at zero. Since Mi( ) is bounded, we see, there-
fore, that the first convergence in (3.8) will follow if we show that

(3.9) + Mtn(*))] " [Mi{-y(an)) + 0,

where sn = U " 1 -> 0 and tn(a;) = lnn~ι + xy/ΐnΠ'1 = sn [1 + xίή1^2] -> 0.
Since also, as a result of our continuity assumption, limŝ o h\(s) = 0 by the
domain theorem at (2.6), and tn(0) = sn of course, for (3.9) it suffices to
show that

(3.10) υn(x) := |Mi(7(tn(a?))) - 0 for each x φ 0.

Let c > 1 be the limit in (2.5b) for the sequence {kn}^=ι which defines
7( ) preceding (2.6). We may and do assume that c > 1 since in the case of
c = 1, when F E D(α) for the given α G (0,2) at hand and Mχ( ) is a constant
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function, (3.10) is trivial. Then for all n large enough, η{sn),η{tn{x)) G
[l,c2], say, the definitions

-y(tn(x))> i f 7 ( ( ) ) 7 ( ) ,
Ίn(x) := < for x > 0,

I ( ί n ( x ) ) , if 7(*»(z))<

and

Ί(tn{x)), if 7(*n(a;)) < 7(«n),
7*0*0 : = < for a: < 0,

U ( ( ) ) ^ ( W ) ( )
are meaningful and c~ι < ηn{x) < c2 for x < 0 and 1 < ηn(x) < c3 for
a; > 0. Since Mι(^y(tn(x))) = Mι{ηn{x)) by the multiplicative periodicity of
Mi( ), we have vn(x) = \Mι{ηn(x)) - Λfi(7(sn))| and, using the continuity
condition for the second time, the function Mχ( ) is uniformly continuous
on the closed interval [ c " 1 , ^ ] . Now, based on the definition of 7( ) above
(2.6), the asymptotic equality

7nQg) tn{x) tn(x)
—.—r- ~ , where > 1,
Ί{S) S S

can be shown by elementary arguments, which since the sequence {7(sn)} is

bounded, implies that |7n(ar) —j(sn)\ -> 0. The uniform continuity of Mi( )

then implies (3.10), proving the first statement in (3.8). Using the second

statement of Lemma 3.4(ii), the proof of the second statement in (3.8) is

completely analogous, and hence we have part (i) of the theorem.

Condition (3.2) for part (ii) of the theorem implies the existence of

some finite positive constants A\ < 1 < A<ι such that A\mn < ln < A2mn

and A^ln ^ η^n ^ A^[ιln for all n large enough. When proving (1.4),

we renormalize φ\,n{') and ψ2,n{m) replacing αn(ln,mn) in the denominator

by the sequences αn(Λ^ 1/n, A^lln) < αn(ln,mn) and α n (A 2 ra n , A 2ran) <

α>n{ln, ™>n) to obtain the present versions of φ^ J (•) and φh;mn(') of the proof

above, respectively. For unified notation, we write r^n = ln and Γ2,n = mn.

Part (ii) itself has two cases. When G = C?o,o,σ ι s normal for some σ > 0,

we see by the criterion (1.26a) in Corollary 1 of Csόrgδ, Haeusler and Mason

(1988a) for the domain of attraction of a normal distribution that both terms

in φn,rjjn(x) go to zero separately at every x G K, j = 1,2, and hence (3.8)

holds and implies (1.4) again.

Finally, the other case of part (ii) is when one of Mi( ) and Λf2( ) in (2.4)

and (2.6) is identically zero while the other is nowhere zero. Replacing K by

\fK{ of part (i) of Lemma 3.4, the proof of (3.8) for that one of the present

two sequences {φn}rjtn{')} for which Mj(>) > 0, j e {1,2}, is practically the

same as the one above for case (i), while it is simpler for the other j G {1,2}



188 Sandor Csδrgo and Zoltan Megyesi

for which Mj( ) = 0 because (3.9) for that Mj(-) is trivial. Thus condition
(1.4) for asymptotic normality holds true once more. •

We also separate two lemmas for the proofs of Theorems 3.2 and 3.3,
respectively.

Lemma 3.5 Suppose that F G ̂ gpiGφ^^β) with & quantile function
given by (2.6). Then for any α, b G [ 1, c), α < b, that are continuity points
of both Mj, j = 1,2, and for any δ > 0 and ε G (0,1) there exists a threshold
number N(α, 6,5, ε) such that the inequality

(3.11)

< 2 [\Mj (α) - Mj (6) I + C(α, b, α, ε) + δ]

holds true for all n > N{α, 6, δ, ε) and yi, j/2 £ [α> &L i = 1,2, where

with the constants D\ and Z?2 from 2̂.8̂  and M*j(-) = Mj{η(Ίkn)) +
hj( /kn),j = 1,2.

Proof Notice first that (3.11) is trivial if Mj = 0. Thus, since the half-sided
version of the proof below will be an obvious special case when exactly one
Mj = 0, it suffices to deal with the situation when Mj φ 0, j = 1,2. In
this situation M\ and M<ι both have positive infima on (0, oo) and we see by
applying (2.6) for s = t/kn, where t > 0 is a continuity point of M\ and M2,
and by the monotone nondecreasing nature of Q that limŝ o Q(s) — ~°° a n d
lims |i Q(s) = 00. We choose iV* = Λf(α, 6, <5, ε) so that, for j = 1,2,

Q J — J < 0 and Qyl - — J > 0, and so M*j(y) > 0, α<y<b,

η/(α/kn) = α and "y{b/kn) = 6,

' e, 2/1,1/2 ^ fα,&L and

hold simultaneously whenever n > N* and show (3.11) with this choice of
the threshold.

Assuming without loss of generality that α < y\ < 3/2 < 6, notice that

and -^ * 4 > 1 , that is, V f c " ;

 t

 K*nJ '3 > 1,

( ) " M ) "
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(j = 1,2), and so

if n > JV*. Recalling (2.8) we see that for n> N* the inequality

(3.12) \Kj(Vi) - Kj(V2)\ < C(a,6,a,e)

holds true for any choice of yuy2 6 [α,6], yi < y2, provided M*j(yι) <
Mnj(V2), 3 = 132. If this is the case indeed, then (3.12) in itself proves
(3.11), but the following considerations apply in general. Indeed, observe
that the choice of N* ensures that

(3.13) \KAa)-KM < I M J M - M J WI + J, j = 1,2,

for all n> JV*, and note also that

Here \M*j(α) - M*j(yι)\ < C(α,b,α,ε) by (3.12) if M*d(α) < M
l,j G {1,2}, but if this fails for some /, j G {1,2} then we still have

where the first term can be estimated using (3.13) and C(α, 6, α, ε) is an
upper bound on the second one, provided M*j(yι) < M*j(b). However,
if the latter inequality is not the case either, then \M*j(α) — M*j(yι)\ <
\M*j{α) - M*j(b)\9 since M * » > M*j(yι) > M*d(b). All this together
imply (3.11). •

Proof of Theorem 3.2 We only have to deal with the case when G =
G ψ β ^ o for some α G (0,2), where at least one of φf and ψξ is not iden-
tically 0. The other case being analogous, suppose that ψf φ 0. Retaining
the notation in the proof of Theorem 3.1, we show that a sequence {ln} of
positive integers can be chosen to satisfy both (1.1) and the first conver-
gence relation in (3.8). The latter follows, through the same considerations
as there, if {ln} is chosen to make sure that (3.9) holds.

By the monotonicity of ψf we can pick a sequence of pairs (αj,6j),
1 < αj < bj < c, and constants Sj £ (0,1) such that both αj and bj are
continuity points of M\ and the inequalities \Mχ(αj) — M\{bj)\ < gk and
C(α,j, 6j, α, Sj) < jp hold for all j E N. Next, put NQ := 0 and, by means of
the threshold numbers of Lemma 3.5, define an increasing sequence {Nj} of
positive integers by setting Nj := max{N(αj,bj, gj,ej),-/Vjli + 1}, j € N.
Elementary consideration shows now that for each j G N there exists a



190 Sandor Csδrgδ and Zoltan Megyesi

threshold number Nj G N such that for every n > NJ one can choose an

ζ ; GN with the properties that
(3.14)

^~ in:
n π ' n n

C and

and it can clearly be stipulated that 1 < N* < Nζ < . By Lemma 3.5 we
see that

/I* /I*

i
for all x 6 [—j, j] and n> Nf.

Now we axe ready to choose the desired sequence {ln}. We set ln := 1
for n < N* and define {ίnj^L v* by the following algorithm, in which T G N
is a new auxiliary variable:
Step 1. Let the initial values of j and n be j := 1 and n := ΛΓ*, and put
T:=JVf.

Sfep «. If NJ <n< ΛΓ/+1 then let Zn := Γnj.

Step 3. If n > iVJ+1 then put ln := /* j or ln := l^j+i according as lnj+i ^ fa
or Inj+i > fa-> a n d if 'n,j+i > ' r then set also j := j + 1 and T := n.
5ίep ^. Set n := n + 1 and go to Step 2.

Then ln -> ex) by the choices of T and, since iV? —>• ex) as j -> oo, we
also have Zn/n -> 0 by (3.14). Thus (1.1) holds for the chosen sequence {ln}
and the displayed inequality following (3.14) above shows that (3.9) is also
satisfied for any fixed i G l

If ψ% φ 0, then the sequence {mn} can be chosen in a similar fashion.
If Φ2 = 0? then simply put mn := ln for every n G N, and the desired
asymptotic normality follows as in the proof of part (ii) of Theorem 3.1. •

Lemma 3.6 If a function ί( ) on (0,1) is slowly varying at zero and {rn}
is a sequence of positive numbers such that rn —> 00 and rn/n -> 0, then

If, in addition j F G B g p(G^« ,«0<*,o) f°r a semistable G-0«,̂ α,o of exponent
αe (0,2), then

( r r ) 0.

Proof The first statement is just a special case of Lemma 2 in Csόrgό,

Horvath and Mason (1986), while the second follows from the first and part

(i) of Lemma 3.4. •
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Proof of Theorem 3.3 We see by (2.8) and the first statement of Lemma

3.6 that for all x G M,

Ώ r θ and \ .

In fact, these convergences take place along the whole sequence {n} = N.
Next, according to Megyesi (2000), since the main source of the domain
theorem at (2.6) is that Mj(η(y/kn)) —> Mj(y) for every continuity point
y > 0 of Mj, we have

at all the respective continuity points y > 0 of the limiting functions. Fur-

thermore, Lemma 3.4(i) implies that

l imsup —-rη-^ — <

«̂ oo ki/αe(i/kn) ~

lim sup

kTl{llkn)
Finally, Lemma 3.6 implies

for any sequence {rn} of positive numbers such that r n —)• oo, rn//n —> 0 and
rn/™>n -> 0; in fact, these are true along the whole N again.

These four pairs of facts allow a subsequential application of that vari-
ant of a two-sided version of Theorem 1 in Csδrgδ, Haeusler and Mason
(1991a), the version alluded to on p. 789 there, in which the basic functions
Q+{s) and Q(l — 5), 0 < s < 1, are taken right-continuous and the Poisson
processes A î( ) and A^(-) are taken left-continuous as in the present paper.
Using the eight facts above, this variant implies that every subsequence of N
contains a further subsequence such that (3.3) and (3.5) hold jointly along
that subsequence. This implies that (3.3) and (3.5) hold jointly as stated.

By the convergence of types theorem, (3.3) and (3.5) already imply (3.4)
for the subsequence {fcn}. However, if neither of Mi and M2, or equivalently,
neither of ψf and ip% is identically zero, then the left side of (3.9) is bounded,
by 2(Dι + D2) from (2.8), for both Mi and M 2 even if they are not con-
tinuous, implying that the two sequences of functions in (3.8) are pointwise
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bounded. Hence the same is true for the sequences {φj,n{')}, j £ {1?2}.
Also, setting rn = min(Zn, ran), we have αn(lni mn) < αn(rn, rn) for all n £ N
and αn(rn,r7 l)/[n1/α^(l/n)] -> 0 by Lemma 3.6. Therefore, the discussion
at (1.13) in Csόrgδ, Haeusler and Mason (1988b) yields (3.4) as stated.

If, on the other hand, M\ = 0 and M2 φ 0, then by the same argument

^>0
._

and, since in this case the first convergence in (3.15) takes place along the
whole {n} = N with an identically zero limiting function, we also get

for both rn = ίn and rn = mn, which together prove (3.4).
We see that if Mi( ) = 0 and M2( ) > 0, then in fact we have

along with (3.5). Similarly, if M2( ) = 0 and Mi( ) > 0, then again we have
(3.4) and, in fact,

U

along with (3.3).
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