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We consider testing a simple hypothesis about the mean vector of an iV-variate normal
distribution against shift alternatives in a Bayesian setting specifying a prior distribution
of the mean vector under the alternative. We treat the problem asymptotically, as N —• oo,
and state fairly general conditions on the sequence of prior distributions under which the
Bayes tests have asymptotically ellipsoidal acceptance regions.
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1 Introduction

We consider testing a simple hypothesis about the mean vector of an N-
variate normal distribution against shift alternatives in a Bayesian setup
specified by a prior distribution of the mean vector under the alternative.
Specifically, based on a single observation of an iV-variate normal vector
with identity covaxiance matrix we test the hypothesis that it has zero mean
vector. We assume that for each N the prior distribution is the product of
symmetric univariate distributions, or, in other words, under this prior the
mean vector has independent symmetrically distributed components. Fur-
thermore, we require these components to be in a certain sense asymptoti-
cally uniformly negligible. The result obtained can be viewed as an asymp-
totically complete class theorem saying that for this kind of alternatives in
large dimension one can restrict oneself to tests with ellipsoidal acceptance
regions. At the end of this section we give an example of a prior distribution
for which our conditions fail.

The normal shift model of fixed dimension arises in asymptotic hypothe-
sis testing problems about a multivariate parameter, the normal vector under
consideration being the limit in distribution of a sequence of (vector-valued)
asymptotically sufficient statistics, see, e.g., Roussas (1972), Chapter 6. (The
general case of a known positive definite covariance matrix treated therein
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reduces to the case of the identity matrix by a linear transformation.) It
is customary for multivariate analysis to use the chi-squared test for this
testing problem. However, the underlying property of rotational invariance
may often be inadequate, and discarding it we are left with a variety of tests
neither of which is intrinsically dominant. Hence we look for a reduction
which could be achieved under some natural additional requirements.

It is well known that the shifts of a normal distribution form an expo-
nential family in which case tests with convex acceptance regions constitute
an essentially complete class of tests; these are Bayes tests and their weak
limits, see, e.g., Roussas (1972), Appendix 4, and references therein. Our
study is motivated by nonparametric goodness of fit and signal detection
problems, see Ingster (1993), Spokoiny (1998), and references therein. In
the former problem the normal shift model again is obtained asymptotically,
for large sample size, while in the latter case, when the signal is observed in
a white Gaussian noise, it is obtained directly by taking the Fourier coeffi-
cients of the observed process with respect to some orthonormal basis on the
observation interval. In both these cases it appears natural to consider prior
distributions rendering the components of the mean vector independent and
symmetrically distributed. (Thus we think, say, of a possible signal as being
composed of random and independent harmonics.) For fixed N these as-
sumptions provide a certain reduction (in particular, the acceptance regions
become symmetric in each coordinate). However, the treatment of this prob-
lem for large dimension (as N -> oo) allows for a substantial reduction to
the class of tests of a specific structure, viz., tests with ellipsoidal acceptance
regions, provided the priors satisfy a certain uniform negligibility condition.
To explain the nature of the result we state in this section a corollary to the
main theorem having a more transparent form.

Thus we observe the random vector

(1.1) X = (XU...,XN)

having normal distribution N(μw, IN) with μπ = (μM,. . . , μNN) £ R N and
Ijy the NxN identity matrix. We test the hypothesis HNO ' βN = 0 against
HN\ VN Φ 0. In the Bayesian setup we assume that μjy under HNI has a
prior distribution TΓΛΓ, which is the product of N coordinate distributions,

N

(1.2) πN(dμN) = x πNi(dμNi),
2 = 1

so that //ΛΓ is a random vector with independent components having distri-

butions TΓM, . . . , KNN. We assume throughout that TΓJV», i — 1? > -ΛΓ? are

symmetric about the origin.

By (1.1) for a given μjv the distribution of X has Lebesgue density
N

(1.3)
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where φ(-) denotes the density of the standard normal distribution. We de-

note this distribution by P;v,μ and the corresponding expectation by E^μ. In

particular, the distribution of X under HNO has density </?ΛΓ(X) = Π ϋ i φ{%%)

This distribution will be denoted by PJV O and the corresponding expectation

by EJV,O

The power of a test with test function ΨN(X) against a particular alter-
native μw equals

(1.4) /MAW ΦN) = ENtμψN(X).

In the Bayesian setup, (1.3) is a conditional density of X given μ^, and
the marginal distribution of X has density

(1.5) PJV(X) = /

Then the power of the test ΦN is

(1.6) /?ΛΓ(TΓΛΓ; ΦN) = I ^Λτ(x)PΛr(x)rfx = / /MAWφN)πN{dμN)>

We will refer to /?jv(μjv; ΦN) given by (1.4) as the power function of the test
ΦN and to PN(^N\ΦN) given by (1.6) as the average power.

For a preassigned size α, the Bayes test maximizing PN{^N\ΦN) over
size a tests ΦN rejects HNO for large values of the likelihood ratio (LR)

(1.7)

More precisely, the level a Bayes test has critical function

(1.8)
) < cN,

with CN and ^ΛΓ(X) on {x : /iiv(x) = CN} defined so that

= / ^iv(x)^Λr(

The level a > 0 will be kept fixed as N —> oo.

In Theorem 2.4 we state conditions on the priors TΪN under which the

LR IIN is asymptotically approximated by

(1.9) gN(x) = exp[i £ bm (x] - l) - \BN] ,

where b^ > 0 are certain characteristics of TΓJVI and BN = Σ ^2Ni (which

is assumed to be bounded as N —> oo). Namely, QN approximates HN in

Li-norm w.r.t. PΛΓ,O, ί e.,

(1.10) ENio\hN - 9N\ -> 0 as N -^ oo.
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It follows from (1.10) that the test ψ9

N(x) defined for gx similarly to (1.8)

has asymptotically the same average power as the Bayes test V>JV(X)> i e >

βN(τrN;φ9

N)-βN(πN;φ^)^0 as N -> oo.

To illustrate Theorem 2.4 we state here a special case. Suppose that the

distributions n^i in (1.2) are scale transforms of one and the same distribu-

tion π on R with scale factors

UNi(μ) = U(μ/bNi), i = 1,..., N,

where Πjvj(μ) and Π(μ), μ E R, denote the distribution functions corre-
sponding to ΈNi and π. Let π and {&#;} satisfy the following conditions:

(Πl) π is symmetric, i.e., Π(μ) = 1 — Π(—μ), μ E R;

(Π2) /μ 2 π(dμ) = 1, /μ 4 π(dμ) < oo;

(Bl) bNi > 0, fciv,max := maxi<i<jv bNi -> 0 as N -* oo;

(B2) Σ i I i ^ - ^ J B > 0 asiV-^oc.

Note that the first condition in (Π2) is merely a normalization of π, under

which b2

Ni is the variance of μNi-

Corollary 1.1 Let Conditions (Πl), (Π2), (Bl), (B2) be fulfilled and let
gN be defined by (1.9) with BN = B. Then (1.10) holds.

Consider the particular case where 6 M = . . . = b^N- Obviously, (Bl),
(B2) are satisfied for 6 ^ = ( J3/JV) 1 / 4 , i = 1,...,JV. Then Corollary 1.1
says that, under the independence assumption on the components of μ # ,
Conditions (Πl) and (Π2) are sufficient for the Bayes test to be asymptoti-
cally chi-squared. It is well known that for any spherically symmetric prior
distribution the Bayes test is exactly chi-squared. Under the independence
assumption spherical symmetry holds only for π normal. Corollary 1.1 says,
however, that Bayes tests become approximately chi-squared for large di-
mension under arbitrary symmetric π unless π is heavy-tailed (the second
condition in (Π2)).

Note that in the setup of Corollary 1.1, when the prior distribution has
independent symmetric components differing only by scale factors, (Π2),
(Bl), and (B2) are exactly conditions for asymptotic normality of

The same is true in the general case (see Remark 2.2).
In the literature Bayes tests in the normal shift model of increasing di-

mension are used in asymptotically minimax nonparametric hypothesis test-
ing, see Ingster (1993), (1997), and Spokoiny (1998), where further references
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can be found. In these studies the original problem of signal detection or
goodness of fit reduces by a suitable orthogonal decomposition to a testing
problem in the normal shift model (possibly, infinite-dimensional). Typically
in the minimax setting this is the problem of testing for zero mean against
the set of alternatives specified by a "big" ball or ellipsoid in a certain norm,
say, Zς-norm, with a "small" ball or ellipsoid in, say, ίp-norm around the
origin removed. The problem is treated asymptotically as the size of these
domains varies and/or the common variance of the X^s tends to zero. For
some particular prior distributions used in those papers the asymptotically
ellipsoidal form of the Bayes tests was established directly. For example, In-
gster (1993) uses "Bernoulli priors" specified by symmetric two-point prior
distibutions of components. These distibutions obviously satisfy conditions
(Πl) and (Π2).

The choice of the prior distribution depends on the shape of the param-
eter set, specifically, on the degrees p and q of the norms. If the normal shift
model originates from, say, a signal detection problem, these degrees are
related, qualitatively, to smoothness properties of the least favorable signals
and restrictions on their "energy". In this respect Spokoiny (1998) distin-
guishes four types of alternative sets. Apparently the type of alternatives
treated here fits in one of those classes, viz., that of "smooth" signals. An-
other type of prior distributions used by Ingster (1993) and Spokoiny (1998)
for other types of alternatives has three-point component distributions Έ^I
with masses pw at points ±1 (up to scale factors) and mass 1 — 2pχ at 0
with PN -> 0 as N -» oo. Note that the ratio of the fourth moment to
the squared variance equals here 1/PN —̂  oo For this prior distribution the
conditions and the conclusion of Theorem 2.4 fail.

We state the main Theorem 2.4 in Section 2 and give its proof in Sec-
tion 3. Section 4 contains the proofs of auxiliary results and Corollary 1.1.

2 Main Theorem

Recall that we consider testing the hypothesis Ho : μjsf = 0 based on the ob-
served iV-variate random vector X = (Xi,..., XJV) with normal distribution
ΛΓ(μw,/#). Under the alternative μN has prior distribution (cf. (1.2))

N
πN(dμN) = x πNi(dμNi).

i=l

Thus under this prior {μNί} form a triangular array of r.v.'s independent
within each row (for each N) with corresponding distributions π/vι, i —
1,...,ΛΓ.

Assumption ( A l ) . The distributions TΓ^, i = 1,...,JV, JV E N =
{1,2,...}, are symmetric, i.e., πjVi(A) = fκ^i{—A) for any Borel set A.
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In terms of the corresponding distribution functions this assumption
means that UNi(μ) = 1 - ΠΛΓΪ(—μ), μ G R (cf. (Πl) in Section 1).

For α > 0, denote

(2.1) ΊNi(α) = 1- 7Γjvi([-α, α]) = 2πNi((α, oo)).

Assumption (A2). For any α > 0,

For a measure ζ) and a measurable function / (on the same space) we
will write

(2.2) Q(f) = Jf(x)Q(dx).

For α > 0, denote by τr^\ the measure πjsn restricted to the interval [—α, α],

(2.3) π(£)

i(A)=πNi(An[-α,α}).

Define the corresponding truncated moments as

(2.4) ^ v > ) = 41(μjvi), * = 0,1,2,...

Note that due to symmetry of π ^ (see (Al) and (2.3)), f̂c,ΛΓ,i(α) = 0 for

odd k. Obviously, Vk,N,i(β) for &ny even k is a nondecreasing function of α.

Lemma 2.1 Under Assumptions (Al), (A2),

N N

(2.5)

for any fixed αi, α<ι > 0 and any even fc > 0.

Proof For 0 < αi < α2 the left-hand side of (2.5) is nonnegative and

bounded by αί> Σ7ΛΓi(αi), which tends to zero by (A2). •

Assumption (A3). For any α > 0,

ΛΓ

t = i

By Lemma 2.1 the requirement "for any α > 0" can be equivalently

reduced to the requirement "for some α > 0".

Since ^N,i(α) ^ "4,ΛΓ,i(α)> Assumption (A.3) implies
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Corollary 2.2 Under Assumption (A3),

(2.6) limsupί?Λr(α) < oo,

for any α > 0, where

(2.7)

L e m m a 2.3 Under Assumptions (A1)-(A3), for any fixed oi, α^ > 0

AN := BN{α2) - BN{α{) -» 0 as iV ->• oo.

The proof of this lemma will be given in Section 4.

Theorem 2.4 Under Assumptions (A1)-(A3)

(2.8) E | M X ) ~ ffiv(X; α)| -> 0 as N -> oo

for any α > 0, where (see (2.4), (2.7))

1
(2.9) 5n(x,α) = exp(-

N

i

Remark 2.1 The relation (2.8) implies, in particular, that the functions
^jv( ,α) for different choices of α approach each other in L\ norm. This can
also be verified directly by using Lemmas 2.1 and 2.3.

Remark 2.2 Assumptions (A1)-(A3) imply asymptotic normality of the

sequence Σιμ2

Ni with mean BN(O) and variance X) ί̂ 4,ΛΓ,i(α) ~^|,iv,i(α))

for any α > 0, see Loeve (1960), Section 22.5. In this respect Corollary 1.1

relates to Theorem 2.4 in the same way as Theorem V.1.2 in Hajek and

Sidak (1967) to the general normal convergence theorem in Loeve (1960)

mentioned above.

3 Proof of Theorem 2.4

Take an α > 0. Without loss of generality we will assume that there exists
the limit B(α) := limjv->oo-Biv(α). (Otherwise assume that (2.8) fails, select
a subsequence where the left-hand side of (2.8) stays bounded away from zero
and find by (2.6) a further subsequence where Bjsf(α) converges.) The proof
relies on the following one-sided version of Scheίfe's Lemma (see Chibisov
(1992), Lemma 3.1).
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Lemma 3.1 Let for each J V G N the random variables UN > 0 and VN > 0

be denned on a probability space (AJV,*AΛΓ,PΛΓ) Assume: (i) ENUN -> 1,

-> 1; (ii) V# are uniformly integrable w.r.t. PN, or, equivalently,

EΛΓ[VΛΓ; AN] := / Vfr dPjv -> 0 whenever PN(AN) -» 0;

(iii) PN(UN < VN - ε) -» 0 for any ε > 0. Then

EN\UN-VN\->0.

We will apply this lemma with PN := PJV,O = iV(0,/JV)? ^ : = ̂ iv? and
VJV := 9N(' >°>)' Condition (i) for h^ holds by definition (see (1.5), (1.7)),
since EJV,O^JV = 1. The following lemma will be used to verify Condition (i)
for gN.

Lemma 3.2 For any even k > 0 and any α > 0

max Vk Ni(α) ~+ 0.
l<i<N

Proof For an arbitrary ε > 0,

limsup max i/fe^ifα) < εfc + li
1 < < J V ΛΓ-)-oo

By Lemma 2.1, the latter term equals 0. Hence the lemma follows. •

To check Condition (i) for QN = 5iv( , α), we use the formula: for a r.v.
X with standard normal distribution and any b < 1,

When applied to (2.9), this yields (with dependence on α suppressed)

N 1 χ

EN,o9N = Π t 1 " zy2,iv,i)~1/2exp(--i/2,ivJi - 4^2,;v,i)

By Taylor we have with some 0 < ΘNΪ < 1

which tends to zero by (2.6) and Lemma 3.2.

To verify condition (ii), assume the contrary. Then there exist ε > 0, a

subsequence {N'} C {iV}, and sets ANι C R^' with PN'${ANI) -> 0 such

that

(3.1) EN'fl\gN'l AN>] > ε for all N'.



158 DM. Chibisov

Recall that we assume the limit B(a) = limw^ooiJjv'^) to exist. Let
B(a) > 0. Then

(3.2) (2S(α))~1/2 £ u2^(a)(Xf - 1) ̂ d ΛΓ(0,1)

because Lemma 3.2 implies the Lindeberg condition (see Theorem V.I.2
in Hajek and Sidak (1967)). Hence gw( -,a) converges in distribution to
g = exp[ iy - iβ(α)] , where Y ~ N(Q,2B(a)). If B{a) = 0, one checks
directly that Sjv( α) converges in distribution to g = 1. In both cases
Eg = 1. Therefore gw are uniformly integrable (see Loeve (1960), 9.4.e and
11.4.A), which contradicts (3.1).

Thus it remains to prove that

(3.3) PNfl(hN<gN(a)-ε)^Q for any ε > 0.

If B(ά) = 0, one can check directly that both hjsr and pjv(a) converge to 1 in
probability, which implies (3.3). So, assuming B(a) > 0 we will prove that

(3.4) P#,o(log h,N < log <7;v(α) — ε) —> 0 for any ε > 0.

It is readily shown that (3.4) implies (3.3). Indeed, the inequality in (3.4) en-
tails an inequality as in (3.3) unless gx takes large values, which occurs with
a small probability by an argument similar to the one used when check-
ing condition (ii). Thus having shown (3.4) we will have established the
conditions of Lemma 3.1, which then implies the theorem.

Now we proceed to the proof of (3.4). By (1.2), (1.3), (1.5), and (1.7),

1 l

where πjvi[- •] means the integral w.r.t. μjsn as in (2.2). Obviously,

N

(3.5)

where

(3.6) h>Ni(x, a) = πNi [exp(xμNi — ̂ Ni)]

(see (2.3)).

Now we use the fact that for odd m G N

xk

k=i

m xk

ex > 1 + Σ 7τ for any x 6 R.
k
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Applying this inequality with m = 5 to (3.5) we obtain

(3.7) hNi(x,α) > l+ξNi(x,α),

where, using the notation (2.1) and the abbreviation v^ = Vk,N,i{Q)->

(3.8) ξmM = -7ΛΓ»(α) - -u2 + ^ ( Λ + ^ Ά ) - ^ A +

l / 4 , 3 o 1 ^ 1/^4 5 2 1

To complete the proof, we need the following two lemmas. Their proofs

will be given in Section 4.

L e m m a 3.3 Under Assumptions (A1)-(A3), for any δ > 0,

(3.9) PNfi(minξNi(Xuα) < -δ) -> 0.

Lemma 3.4 Under Assumptions (A1)-(A3)

(3.10) J2^i(Xuα) - iΣ^Mti&i ~ 1) ->P̂ ,O 0.
t=l l i=l

By Taylor, for any ε > 0 there exists δ = δ(ε) > 0 such that

log(l + x) > x- -{l + ε)x2 for x > -δ.

Hence by (3.5), (3.6), and (3.7), Lemma 3.3 implies that

(3.11) P * f o ( l o g M X ) > /ΛΓ(X)) ~> 1,

where

(3.12) 1

-I ley

Lemma 3.4 and (3.2) imply that (2/J3w(a)) Σ£/Vi(^ΐ) ^s asymptoti-
cally normal iV(0,1). Therefore

(see Gnedenko and Kolmogorov (1949), Section 28, Theorem 4). Hence

comparing (2.9) and (3.12) we obtain by Lemma 3.4

(3.13) fN(X) - loggN{X,a) + 6-BN(a) -> P i V 0 0.
4 '

Since {Bχ(a)} is bounded, (3.11) and (3.13) imply (3.4) and hence the

theorem.

4 Proofs of auxiliary results
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4.1 Proof of Lemma 2.3

Assume 0 < aγ < a2. Then, obviously, AN > 0. By (2.7),

(4.1) f

N

For each i = 1,. . . , TV, when the inequality

holds, we have

( 4 2 )

Otherwise,

Hence in this latter case

(4.3) "IN^M ~ 4iv,i(αi) < 2ε"1(ι/2

Therefore (4.1), (4.2), and (4.3) show that

N N

(4.4) Δiv < 2ε ^ ^lN^{a2) + 2ε~ι

The second term in (4.4) tends to 0 as N -> oo by Lemma 2.1, while the

sum in the first term is bounded by Corollary 2.2. Hence limsup^ AN can

be made arbitrarily small by the choice of ε.

4.2 Proof of Lemma 3.3

Rewrite (3.8) as

(4.5) 6\ri(α) = - 7ΛΓi(α) + VNΪ (α) + ^Ni (α) + ^Ni (α)>

where τ$](α) = r$](-Y<,α) with

/J Λ\ (1) / \ i 2 -I \ / \

(A fγ\ (2) / \ -*• / 4 fi^y.2

14 O VNi\X^a) ~ WΛ\X ~~ΌX

(4.8) ηNi(x,a) =
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The sum in (4.8) contains a finite number of terms (actually, six) with even

j > 0 and k > 6.

For the proof of Lemma 3.3 it suffices to establish the corresponding

assertions for each term in the RHS of (4.5). The ones for 7 ^ , ηNi, and ψN\

follow from Assumption (A2) and Lemma 3.2 (notice that the polynomials

in (4.6) and (4.7) are bounded from below). The counterpart of (3.9) for

ψNl is obtained from the following two lemmas.

Lemma 4.1 For any α > 0 and any even k > 4

N

(4.9)

Proof By Lemma 2.1, for an arbitrary ε > 0,

N N

limsupΣ^,ΛΓ,i(α) = limsup^ I /Mr,*(e)
N-ϊoo i = ι N-ϊoo i = 1

N

4jiV,i(ε) = Cek~4

with C < oo by Assumption (A3). Hence (4.9) follows. •

Lemma 4.2 Let YΊ, Y2, be i.i.d. r.v.'s with E|YΊ| < 00, and let {CNΪ,i =
1,.. . , N}, N £ N, be a triangular array of nonnegative numbers such that

N

(4.10) Σ c M - > °
z ' = l

Then maxi<ί<jv Cjvi|Yί| —tp 0.

Proof For an arbitrary ε > 0 we have, using the Markov inequality,

which proves the lemma. •

Now the counterpart of (3.9) for each term of ψNl(Xi,α) (see (4.8))

follows by Lemma 4.2, with condition (4.10) for CJV; := i>fc,jv,i(a) fulfilled by

Lemma 4.1.
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4.3 Proof of L e m m a 3.4

Comparing (3.10) with (4.5) and taking into account Assumption (A2), we
see that it remains to show

2 = 1

and

N

(4.12J 2^3 : = / J ηNi (Q

2 = 1

It is directly verified that E(Xf-6X^+3) = 0, so that E Σ 2 = 0; further,

var Σ2 = const ] P v%,N,i(a) ^ const maxu^N^a) ^ ^ j v ^ α ) -> 0

by Assumption (A3) and Lemma 3.2. This implies equation (4.11). Next,

by Lemma 4.1, E | Σ 3 | -> 0, which proves (4.12).

4.4 Proof of Corollary 1.1

We have (a) to check that (Πl), (Π2), (Bl), and (B2) imply Assumptions
(A1)-(A3) and (b) to show that the truncated moments V2,N,i{a) &nd the
quantity J5jv(α) can be asymptotically replaced by b2

Ni and B respectively.

Assumption (Al) obviously follows from (Πl). The 4th moment as-
sumption in (Π2) implies

14 p

(4.13) ηNi{a) = π{bNi\μNi\ > a) < -& / \μ\4π{dμ)

The last integral tends to zero uniformly in 1 < i < N by (Bl) and (Π2), so

(A2) follows from (B2).

To check Assumption (A3), note that

J\μ\<bNia

Hence (A3) follows from (B2) and (Π2).
For (b) we have to show that for any a > 0

(4.14) Σ > 2 , J V » - b2

Ni) (Xf - 1) -»PjVj0 0
2 = 1

and

(4.15) BN(a) -> B.
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We establish (4.14) by showing that the 2nd moment of the LHS tends
to 0, which amounts to

(4.16)

Observe that
/ \ 12 f

Nι JM<a/bm '

hence

(δ/Vi "" ^2,ΛΓ,ί(α)) = bNi[ / μ dπ) < bNi I
KJ\μ\>a/bNi

 J J\L
μ %{ f |/|

\μ\>α/bNi ' J\μ\>α/bNi

Thus (4.16) is obtained by (B2) and the argument following (4.13).
Now (4.15) follows from (4.16) by the triangle inequality.

It remains to show that under the assumptions of Corollary 1.1 </jv(x, α)
given by (2.16) is approximated in Xi-norm by #JV(X) given by (1.9) with
BN = B, i.e.,

E\gN( ,α)-gN( )\^0.

This follows from Lemma 3.1. Conditions (i) and (ii) of this lemma for
<7iv( ,α) were established in the proof of Theorem 2.4, condition (i) for gπ
is verified in a similar manner, and the two-sided version of condition (iii)
follows from (4.14) and (4.15) since they imply that

gN(X, α) - 0ΛΓ(X) -+pN0 0.
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