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1 Introduction

The aim of this paper is threefold. First we want to emphasize the impor-
tance of what is now called "Lepski's method", which appeared in a series
of papers by Lepski (see Lepskii, 1990, 1991, 1992a and b). Then we shall
present this method from an alternative point of view, different from the one
initially developed by Lepski. Finally we shall introduce some generalization
of the method and use it to prove some nice properties of it which, as far as
we know, have not yet been considered, even by its initiator.

Let us first give a brief and simplified account of the classical method
of Lepski. This method has been described in its general form and in great
details in Lepskii (1991) and the interested reader should of course have a
look at this milestone paper. Here we shall content ourselves to consider the
problem within the very classical "Gaussian white noise model". According
to Ibragimov and Has'minskii (1981, p.5), it has been initially introduced as
a statistical model by KoteΓnikov (see KoteFnikov, 1959). Since then, it has
been extensively studied by many authors from the former Soviet Union (see
for instance Ibragimov and Has'minskii, 1981, Pinsker, 1980, Efroimovich
and Pinsker, 1984) and more recently by Donoho and Johnstone (1994a and
b, 1995, 1996) and Birge and Massart (1999), among many other references.
Although not at all confined to this framework, the method has been often
considered in the context of the Gaussian white noise model for the sake of
simplicity. This model can be described by a stochastic differential equation
of the form

(1.1) dYε{t) = s(t) dt + ε dW(t), ε > 0, 0 < t < 1,
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where s E Lβ([0,1]) and W is a standard Brownian motion originating from
0. One wants to estimate the unknown function s using estimators s(ε), i.e.
measurable functions of Yε and ε. By "estimator", Lepski actually means a
family {s(ε)} of estimators depending on the parameter ε which is assumed
to be small enough. In order to measure the performances of such estimators,
a classical way is to fix some distance d on L2 ([0,1]) (or some pseudo-distance
if d(s,t) = 0 does not necessarily imply that s = t in 1L (̂[0,1])), some num-
ber q > 1 and define the risk of the estimator at 5 as Έs[dq(s,s(ε))]. The
point of view chosen by Lepski is then definitely minimax and asymptotic.
He considers a family of parameter sets {Sθ}βeΘ a n d uniform rates of con-
vergences of estimators over those parameter sets. For a given estimator
5, he defines its rate r[s, 0] on Sβ and the minimax rate TM[Θ] on SQ given
respectively by

r[S, θ](ε) = sup Es [dq(s, s(ε))] and rM[θ] = inf r[5,0],
sesθ «

where the infimum is taken over all possible estimators. Comparing estima-
tors then amounts to comparing their rates, the rate r being better than
the rate r' (r ^ r') if and only if limsupε_>o

r(ε)/ r /(ε) < +00 and two rates
being equivalent (r x r') if r ^ r' and r1 •< r. An estimator s is "rate
asymptotically minimax" on S0, and therefore optimal from this point of
view, if r[S, θ] x ΓM[0]

The problem that Lepski considers in his papers is the following: starting
from a family of rate asymptotically minimax estimators {sg}eeGi how can
one get adaptation over the family {Se}θeθ, i e. build a new estimator s
which is simultaneously rate asymptotically minimax over all the sets 5^,
i.e. satisfies r[5, θ] x TM[Θ\ for all θ G Θ. Let us give a brief and rough
account of his solution, rephrasing and simplifying his assumptions in the
following way (see Lepskii, 1991 for the precise ones). Lepski's assumptions
are essentially equivalent to

1. Θ is a bounded subset of M+;

2. the family {Sβ}θeθ ιs nondecreasing with respect to 0;

3. the minimax rates TM[Θ] are, in a suitable sense, continuous with re-
spect to 0;

4. for each 0 E Θ, one has available a rate asymptotically minimax esti-
mator §Θ on SΘ]

5. for ε small enough and each 0 E Θ, dς(s, Sfl(ε)) is suitably concentrated
around its expectation.
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Lepski then chooses, for each ε, a suitable finite discretization θ\ < ... <
θn(ε) of Θ and, given some large enough constant K, defines θ(ε) = θ-(ε)
where

j = mϊ{j < n{ε) \ dq(sθj(ε),sθk(ε)) < Kr[sθk,θk](ε) for all * G (j,n(ε)]}.

He shows that s = 3$ is simultaneously rate asymptotically minimax over
all the sets SQ.

This problem of asymptotic adaptation can also be considered from a
quite different point of view: if s G S = UΘ(ΞΘSΘ, there exists a smallest
value θ(s) of θ such that s G SΘ and, since we have therefore no idea of the
behaviour of the risk Es [dq(s, sθ(ε))] for θ < 0(s), among the estimators at
hand, SQ^ can be considered as the best estimator for estimating s, among
the family of estimators {sβ}θeΘ Prom this point of view, the problem to
be solved is to find a best estimator in a family of such estimators and it still
makes sense without any reference to the minimax and even to the family
{$θ}θeΘ It can also be considered from a purely nonasymptotic point of
view and set up as follows. Given Model (1.1) with a known value of ε
and an unknown value of s, a family of estimators {se(ε)}βeQ and some loss
function t, is it possible to design a method for selecting an "almost best"
estimator in the family? More precisely, assuming that s G S C I^QO, 1]),
does there exist a constant C, independent of ε and s G S and a random
selection procedure θ based on Yε such that the estimator s = s$ satisfies

(1.2) E s[φ,s(ε))] < C inf Es[£(s,sθ(ε))] for all 5 G S and ε > 0.

This is precisely the problem we shall deal with in this paper by a suitable
modification of Lepski's initial recipe. In order to allow an easier understand-
ing of our method and avoid technicalities, we shall stick to the Gaussian
white noise model and restrict our study to the case of a family {sθ(ε)}θe&
of projection estimators over a nested family of finite-dimensional linear sub-
spaces Sβ of lfl([0,1]) indexed by some subset Θ of N. We shall show that
(1.2) actually holds with S = l^([0,1]) and that one can even take C ar-
bitrarily close to 1 when ε goes to zero under some suitable restrictions on
s.

The framework we use here is just the one we considered in Birge and
Massart (1999) for studying penalized least squares estimators. Since penal-
ization can also be viewed as a method for selecting estimators, this allows
us to make a parallel between these two methods. Indeed, under the assump-
tions we use here, they are essentially equivalent. A discussion of the relative
merits of the two methods within a more general framework is beyond the
scope of this paper. Let us merely mention that Lepski's method allows to
handle more general loss functions, while penalization allows to deal with
more general families of estimators.
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Lepski's method has been put to use in various contexts and by sev-
eral authors. Let us mention here the papers by Efroimovich and Low
(1994), Lepski and Spokoiny (1995), Juditsky (1997), Lepski, Mammen and
Spokoiny (1997), Lepski and Levit (1998), Tsybakov (1998) and Butucea
(1999). Recently, Lepski has substantially improved his method by relax-
ing the monotonicity assumptions he previously imposed and which were in
particular inadequate to deal with estimation of multidimensional functions
with anisotropic smoothness. His new method, which he explained in a se-
ries of lectures (Lepski, 1998) could analogously be carried out in the context
we use below. In order to keep our presentation simple and short, we shall
dispense with this extension and content ourselves to present our point of
view derived from the initial method from Lepski (1991).

The procedure for selecting an estimator among some family that we
develop below is actually not exactly the original procedure proposed by
Lepski, but rather some modification of it which is better suited to our non-
asymptotic approach and avoids any reference to minimaxity. Nevertheless,
the ideas underlying our construction definitely belong to Lepski.

2 Preliminary considerations

2.1 The problem at hand

The problem we want to deal with is the estimation of some unknown func-
tion s G LQ ([0,1]) in the Gaussian white noise model (1.1). In order to
accomplish this task, we have at our disposal a family of projection esti-
mators {sm}m£M corresponding to some nested family {Sm}m^M of finite-
dimensional linear subspaces of L2 ([0,1]) with respective positive dimensions
Dm. Here M C N is either N* = N\ {0} or finite and equal to [1; M] ΠN and
the sequence (Dm)m£M is strictly increasing. We recall that the projection
estimator sm onto Sm is derived from Yε by the formula

Dr,

sm = ] Γ / ψj(t)dYε(t) ψj,

where (ψι,... ,ipDm) ι s a n arbitrary orthonormal basis of 5 m .
Our purpose is then as follows: starting from the family of estimators

{s<m}meMi build a new one, denoted by s, function of those, of ε and of the
sequence (Dm)meM and such that

with a constant C independent of s and ε. Here and in the sequel, E denotes
the expectation with respect to the distribution of the process Yε, as defined
by (1.1).
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Since the family {Sm}meM is nested, one can always find an orthonor-
mal basis φ\,... ,ψj,... of L2QO, 1]) such that Sm is the linear span of
(y>i,...,¥>Dm) for each m e M. Then, if s = Σjyiβjψj, it follows from
(1.1) that, for all m E M,

Dm

(2.3) w i t h βj = / Ψj(t)dYe(t) = βj + eZj,

where the random variables Zj, j E ΛΊ, are i.i.d. with distribution Λ/*(0,1).

2.2 Some properties of projection estimators

In order to describe some elementary properties of the projection estimators,
it will be useful to introduce some notations. Setting Do = 0 and D^ = +00,
we consider for all pairs (m, q) with 0 < m < q < +00 the quantities 5 ^ , Vm

and Um given by

and = ε"2

with the convention that Σj=k = ^ when k > I. Since the variables Zj

are i.i.d. Λ/"(0,1), it then follows that V&, has the distribution χ2(Dq — Dm)

of a chi square with Dq — Dm degrees of freedom and Um the distribution

χ/2(Dq — Dm, λ/Bm) of a non-central chi square with Dq — Dm degrees of

freedom and noncentrality parameter y/Bm> Therefore

and = Dq - D

One then derives from (2.3) that

(2-4) ||Sm - Sll2 = Φ — c 2

f + Dm -

and for any pair (j, m) G Λ12 with j < m,

(2.5) \\sm~sj\\2 = ε2up and E [||Sro - ^ | | 2 ] = ε2

2.3 Optimal projection estimators

Given any sequence (xm)meM s u c h that limyn-̂ +oo xm = +00 when Λl is

infinite, one defines in a unique way

(2.6) argmin{xm, m G ΛΊ} = in xj = inf x m >
raEΛΊ J

= inf {j I Xj < xm for all m > j} .
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Then, given s, a best estimator in the family {sm, m E M}, i.e. one min-
imizing the quadratic risk E [||Sm — s||2] = ε2 (Dm + B™) at s is % with
m = argmin{Z)m + i?£ ,̂ 771 E Λ4}. More generally, given some number 7 > 0
one can define

J = argmin{7Z)m + β~, m e

(2.7) = inf {j I β?° - £?~ < 7 ( £ m - Dj) for all m > 3} .

Since 5?° - B% = Bψ, it follows from (2.5) that

(2.8) J - inf {j I E [ p m - sj\\2] < (1 + 7 )ε 2 (A» - Dj) for all m > j } .

On the other hand, by (2.7)

(2.9) ΊDj + B?< ΊDm + B£ < (1 V 7) (Dm + B£),

and therefore the risk of s j satisfies

(2.10) e-*R[\\ij - β\\2] = Dj + Bf < (l V7-1) ir/Dj + Bf)

< {ΊVΊ-')(D^ + B%),

which is equivalent to

E [ | | 5 J - ί | | 2 ] < ( 7 V 7 - 1 ) f m f < E [ | | i r a - β | | 2 ] .

One can therefore conclude that the risk of sj remains within a factor ηVη~ι

of the optimal risk. Of course, from this point of view, the best value of 7
is clearly one. Nevertheless, in order to deal with more general versions of
Lepski's estimators, it is interesting to consider general values of 7.

2.4 Some heuristics

Since the definition of J involves the sequence (B^)meM which depends on

the true unknown parameter s, it cannot be computed but only estimated

from the data. Our purpose here is to find an estimator J of J with the

property that the quadratic risk of the estimator 5 = Sj is close to the

quadratic risk of sj. In order to define J, one first observes that (2.8) gives

a characterization of J in terms of the sequence of estimators (sm)meΛΊ

rather that in terms of the true unknown function 5 to be estimated. Lep-

ski's method is actually based on this argument. Since J depends on the

quantities \\SJ — sm\\2 through their expectations and we only have at hand a

single realization of these variables, we have to replace these expectations by

the random variables themselves and since these variables clearly fluctuate

around their expectations and tend to be larger than them with a nonnegli-

gible probability we have to suitably enlarge the bound (1 +^)ε2(Dm — Dj)

in (2.8) in order to derive a sensible estimator J of J.
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To see what should be added to (1 + η)ε1(Drn — Dj) in (2.8) we observe

that J can equivalently be defined as the smallest index j such that

\\Sj-SmW2 < (l+Ί)ε2(Dm-Dj)

+ (Pj " Sm\\2 - E [WSj - sm\\2]), for all m > j .

Therefore a sensible definition of an estimator J of J is obtained by replacing
in this formula \\Sj - sm\\2 - E [\\SJ - sm\\2] by some quantity which bounds
it with a large enough probability. In order to derive such a quantity, we
recall from (2.5) that ε~2 | |sj — s m | | 2 has a noncentral chi square distribution
and appeal to Lemma 8.1 in the Appendix which controls its deviations from
the mean. More precisely, it follows from this lemma with D = Dm — Dj
and B = B™ < η{Dm — Dj) that whatever m> J and x m ? j > 0

2 p j - Sm | | > (1 + Ί){Dm - Dj)

+ 2η)(Dm - Dj)xmj + 2xm ? JJ < exp(-x m , j ) .

In order to control those deviations for all values of m simultaneously, one
should require that the series Σm>J exp(—xm,j) be summable and suitably
small. This suggests the following version of Lepski's estimator.

3 Construction and existence of our estimator

Let us now define our estimator recalling that the framework we use has
been described in Section 2.1

Definition 3.1 Given the increasing sequence (Dm)meM of positive inte-

gers, the projection estimators {sm} described by (2.3), a family of nonneg-

ative numbers (λm)meM such that

(3.H)
meM

and a family of numbers Kmj defined form>2, 1 < j < m and satisfying

(3.12) K m , i > [ ( l + 2 7 ) λ m ( D m - ^ )]1/2 + λm, for some 7 > 0,

we consider the random integer

J = mϊ{jeM | | | S j - S m | | 2

(3.13) < ε 2[(l + 7 ) ( D r o - Dj) + 2KmJ] for all m>j}.

Our estimator is then given by s = sj.
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Remark: The convergence assumption (3.11) is quite analogous to the as-
sumption Σm G.M exP(~~^m An) < +00 which appears in Assumption B p.70
of Birge and Massart (1997) and in various places in Barron, Birge and Mas-
sart (1999). Its aim is the same, as shown by the proof of the next propo-
sition, namely to ensure that a large number of deviation inequalities be
satisfied simultaneously.

One should observe that J is well-defined when M = [1; M] ΠN is finite since
then the set {m > M} is empty and therefore J < M (an empty restriction
being always true). If M is infinite, one has to check that J < +00 a.s. in
order that s be well-defined, which follows from the next proposition.

Proposition 3.1 Under the conditions of Definition 3.1, J < +00 a.s.

Proof We only have to study the case M. = N*. Let us consider the
subset J = {Jo; Λ; •} of M of those indices j which satisfy Bj° + jDj <
B™ + ηDm for all m> j . By definition,

Jo = argmin {Bψ + Ί{Dm - Dά\ m <Ξ M] = J,

as defined by (2.7), and for k > 0,

J f c + 1 = argmin {j e M, j > Jk \ B]°+ΊDj < B™+ΊDm for all m > j} .

Moreover, since Dm -> +00 when m —> +00, J is infinite. Let now j G J
and m> j . Then BJ1 < η{Dm - Dj) and it follows from (3.12) that

Kmj > J (θm - Dj + 2Bf} λm + λm.

Consequently

^ m - Dj + 2Bf)λm+2\m.

Let us now set, for j (Ξ 3',

Fj,m = {Pi - Bmf > e2[(l + Ί)(Dm - Dj) + 2Km,j)} ,

and
(3-14) Aj = Π Flm.

Since Uψ has the distribution χ'2 \Dm - Dj, JBp\ it follows from Lem-

ma 8.1 that

(3.15) V[Fjtm] = P [Up > (1 + 7)(A* - Dj) + 2KmJ] < e " λ - .
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Then, by (3.13), J < j on A, and therefore {J > j} C A) = U m > i ίj,m- We
conclude from (3.15) that, for any j E JΓ,

(3.16) P [ ] [ $ Σ n j , ] j
τn>j

which implies by (3.11) that P J > j 1 converges to zero when j tends to

infinity in J. •

4 The performance of our estimator

Let us first set the assumptions we shall need to prove our results, recalling
that the numbers λm and Kmj have been given in Definition 3.1.

Assumption 4.1

1. (Drn)rneM ^ a strictly increasing sequence of positive integers such
that, if M is infinite, sup m >! Dm+ι/Dm < +oo.

2. There exists some integerp>2 such that

(

(4.17) Σ ^ Σ e

m>j

3. The numbers Kmj satisfy (3.12) and

Dm

L sup KmJ < +oo
Vl< J

(4.18) sup
ra>2

Let us first observe that, apart from the fact that it should not grow faster
than exponentially, the sequence (Dm)meM can be fairly arbitrary. In prac-
tice, one typically encounters two situations. Either Dm = u + v(m — 1)
(trigonometric type expansions) or Dm = u + vrn~ι (wavelet type expan-
sions) for some suitable nonnegative constants u and v.

The numbers Kmj have to satisfy simultaneously (3.12) and (4.18) and
it is not at first sight obvious to choose the λm 's in such a way that this is
possible when M is infinite. The following proposition gives some hints for
a proper choice of the parameters involved in our construction.

Proposition 4.1 Assume that a > 3, TUQ > 1 and

(4.19) λm > a log Dm for m > m o ,

then (4.17) holds.
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Proof Recalling from (3.16) that Σj = Σ m > j e x p ( - λ m ) , we consider
some integer p > 2 such that a > 3 + 2/(p - 1). We want to prove that
Σj:>1 DjΣ^~lfp < +oo. By (4.19) and the convexity of the function x \-> x'a

one gets for j > UIQ

-j \

i
-α+1

and it follows that DjΈ- p < Dj p for j > TUQ. Since α >

3 + 2/{p — 1), the series Σj>i ^3^j~ converges and (4.17) is satisfied. •

Let us observe that (4.19) is in particular compatible with a choice of
numbers Kmj satisfying for some positive constants A > a > 0,

(4.20) aDm < Kmj < ADm for all m > 2, 0 < j < m,

which ensures that (4.18) holds. In particular, the original method of Lepski
is based on the choice

J = inf {j e M I \\sj - sm\\2 < Kε2Dm for all m>j}

with a suitably large constant K, Choosing K > 1 and 0 < 7 < K — 1 leads
then to

(If - 1 - η)Dm < 2KmJ = (K-1- Ί)Dm + (1 + Ί)Dj < KDm,

which is (4.20). Such a choice is therefore compatible with (3.12) and (4.19)
for suitable values of the parameters λm. In particular, the classical Lepski's
method with a choice of K > 1 satisfies our assumptions. This is not true
anymore if K < 1 and one could prove, in the same way that we proved
lower bounds for the penalty term in Birge and Massart (1999), that K < 1
could lead to inconsistent estimators when ε converges to zero. One shall
not insist on this here. On the other hand, if K > 1, the following theorem
applies.

Theorem 4.1 Under the above assumptions, there exists some constant C
depending only on the various parameters involved in the construction of the
estimator, but neither on ε, nor on s and such that

(4.21) E [ p - S | | 2 ] < C inf E [ p m - S | | 2 ] .
TTlt/Vl

If we fix the values of the various parameters involved in the construction
of our estimator, C can then be taken as a universal constant. For in-
stance, the particular choice of λm = 4log(Dm + l),p = 4, 7 = 1 and
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Kmj = \fi\mDm]ιl2 + λm together with the assumption that An+i <
for all m satisfies our requirements and, although this particular choice of
the parameters has nothing special, it can cope with almost all practical
situations.

5 Proof of Theorem 4.1

For the sake of simplicity we shall prove it below only under the assumption
that M = N*. Only minor modifications in Section 5.5 below are needed to
handle the finite case.

5.1 Basic inequality

It follows from (2.4) and the monotonicity of the sequence B™ that

ε-2\\s-s\\2 =

= (VO

J + Bf) l^jy + (vj + Bf) 1{J>J}

j + BJ + Bf) 1{J<J} + (VJ - Dj) 1

< Bf

O

J - Dj) VQ

Jt{J>J} + Vjh{J>J},

and therefore after integration

(5.22) ε- 2 E[p- S | | 2 ] < Bf+Έ[v0

Jt{j>J}]

[\VO

J - Dj\ H { i < J } ] + E [Vj%>J}\

We shall now bound successively each of the four expectations in the right-
hand side of (5.23).

5.2 Control of the first expectation

Recalling that the set Aj is defined by (3.14), we see that it only depends on

the random variables U™ for m > j and therefore on the variables βm for

m> j which implies that Aj is independent of VQ and therefore by (3.16)

E [VoJtίJ>J}] < E[V0

JlA<] = E[V0

J] P[Acj] < DJΣJ.
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5.3 Control of the second expectation

We want to bound E ί (βj + ηϋλ l {j<j>] W e first notice that if J = 1

and J < J, then J = J and a trivial bound is ΎDJ. Assuming now that
J > 2, we define for ί > 0

Recalling that U^ has a distribution χ / 2 ί i ) j - D m , V ^ ^ ) ' w e derive from

(8.35) of Lemma 8.1 that

0<m<J

(5.23) < ( J - l )

Since E7jJ < (1 + 7)(JDJ - Dj) + 2Kj3 for J < J by the definition of J we

derive that, on the set Et Π {J < J},

t/ > Bj -

Using the fact that —2^/xy = [y/x — y/y) — x — y we then derive that, on

the set EtΠ{J < J}, one has

[(Dj - Dj)/2 + Bj] -y/2tj < ( 7 + l/2)(Dj - Dj) + 2Kj3 + 2ί,

and therefore

- Dj)/2 + Bj] <V2t + J(Ί + l/2)(Dj - Dj) + 2Kj3 + It.

Squaring everything and using y/x + y < y/x + yjy finally gives

V2

Bj < η{Dj - Dj) + 2Kjj + 8ί + [ί(27 + ί)(Dj - Dj) -

Let us now set
(5.24) aj = DJ1 sup KJiTn.

It then follows that Kj3 < ajDj. Therefore, if ί > 1,

(5.25) BJ+ηDj < (y+2aj)Dj+Δt with Δ = (β + \/(2j + 1 + ±aj)Dj}
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on the set Et Π {J < J} since this inequality clearly also holds if J = J. One
then derives from (5.23) that

P [ ( # j + 7£>j) 1 { J < J } > (7 + 2aj)Dj + Δt] < (J - l ) e -* for t > 1.

Integration with respect to t finally leads, for J > 2, to

< (7 + 2aj)Dj + [1 + (1 V log( J -

which clearly remains true when J = 1. Therefore whatever J > 1,

+ (δ + 7(27 + 1 + 4αj)Aj) log(3J + 5).

5.4 Control of the third expectation

Since VQ71 has a χ 2 distribution with £>m degrees of freedom, one can use

Lemmas 8.3 and 8.4 to bound E \\VQ — Dj l/j< n in the following way:

- Dj

m=l

J

m = l

5.5 Control of the fourth expectation

In order to control E V/lr j> j , we introduce an increasing sequence (/fc)fc>o

of elements of J", starting with /o = J, to be defined below. One can there-

fore write, using the monotonicity of the sequence (Vom)m>o that

k>0 fc>0
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Since V* has a χ2(Dk—Dj) distribution and p > 2, it follows from Lemma 8.4

that E Γ (vfY] < (Dk -Dj+p-l)Pfork> j and we then derive from the

Holder Inequality and (3.16) that

fc>0

k>0

We now have to specify how we choose Ik for k > 0. Let us introduce

K = inf Ij Bj° < Ύ{DJ — p + 2) \ which exists since Z)m tends to infinity

ih d dfiwith m and define

h = argmin {Bf + ΊΌj \ j > (J + 1) V K}

/fc+i = argmin { £ f + 7 ^ | j > Ik + 1} for fc > 1.

Now, if Ik > K — 1, according to the definitions of Jfc+i and If,

£/~+1 + ΊDh+1 < Bfk+ι + 7 ^ + 1 < 7(2£>/fc+i - P + 2),

and therefore

(5.27) DIk+1 + p - 1 < 2.0/,+! < 2<5j£>/jb with ί j = sup Dm+i/Dm.
m>J

This inequality holds for all k > 0 if Jo = J > if - 1. Otherwise ΛΓ - 1 >
J > 0 and (5.27) only holds for k > 1. Nevertheless, the same arguments
then show that Bf^+ηD^ < η(2Dκ —p + 2). Therefore, using the definition
of K one gets

Dh+p-l < 2DK < 2δjDK-ι < 2δJ(Ί-
1B%_1+p-2)

< 2δj{Ί-
ιB?+p-2).

Therefore in both cases Dh +p- 1 < 2δj [(-f~ιBf + p - 2 ) v D j ] . It then
follows from (5.26) that

< 2δj[{Ί-
1Bf+p-2)yDJ-(Dj/2)}Σι

J-
l/p

< 2δj [(Ί-ιB?+p- 2)vDj-

+ (2δj - 1
m>J
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5.6 Completing the proof

Putting all four bounds together leads to

ε"2E[p-S | |2] < Bf

V 7-1) (s + V(27 + l + 4αj)£>j) log(3J + 5)

+ 2δj [(Ί-
lBT + P ~ 2) V Dj - ̂ j Σi~

+ (2δj - 1

m>J

which can also be written, since Dj > 1 as

(5.28) E [||β - *||2] < Cjε2 (Bf + ΊDj),

with

Cj = (lVΊ-
ι)(l + 2Ί-

1aj)+Ί-
1Σj

+ 7-1 (1 V 7-1) (8 + s/2Ί + 1 + 4aή Dγ'2 log(3J + 5)

+ 7-1 3i?J1/4 + (2δj -
LL m>J

(5.29) +2δjΊ-
1{p-l)Σ1f1/p.

On the other hand, it follows from (2.9) that

and finally from the definition of m that

(5.30) Έ[\\s-s\\2]<Cj(lV7) inf E[ | |β m -

The constant Cj depends on the various parameters involved in the construc-

tion of the estimator and on ε and 5 only through the parameter J. More-

over, it is bounded independently of J since by assumption, the sequences

(aj)j>u (Σj)j>i and (ίj)j>i are bounded and Σm>o DmΣ^lfp < +00. This

completes the proof of Theorem 4.1.

6 Asymptotic optimality of a modified Lepski's method

Our purpose is now to understand what is going on when J goes to infinity.

Since Dj > J and Σ m > 0 DmΣl^l'p < +00, all the terms in Cj then converge
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to zero, except for the first one which involves αj , defined by (5.24). The
assumption (4.18) only implies that aj is bounded but one could enforce it
to

(6.31) limsupZ)-1 ( sup Kmλ = 0.
m \l<j<τn )

Let us observe that such a requirement is perfectly feasible. The choice
λ m = O(Dm/logm) when m —> +oo is clearly compatible with (4.19) and
one can choose the numbers Kmj in such a way that they satisfy (3.12)
together with sup 1 < : j < m K m j = O(Dm/\ogm) which implies (6.31). It is
now easy to prove the following corollary.

Corollary 6.1 Let us assume that M is infinite as well as the set {m (Ξ
•M I / sΨm Φ 0}. Choose the parameters λ m and Kmj in order to satisfy
the assumptions of Section 4 with U 18) replaced by (6.31) and define the
estimator s as before. Then

(6.32) limsup
V J i

Proof We already noticed that all the terms in Cj, as given by (5.29)
converge to zero when J goes to infinity, except for the first one, which tends
to 1 V 7 " 1 since aj -> 0 by (6.31). We then remark that our assumption on
s implies that ε2B™ is bounded away from 0 independently of ε whatever
me M. Then E [ p m - s||2] = ε2{B% + Dm) remains bounded away from
0 for fixed m when ε —> 0 while it can be made arbitrarily small provided
that both ε and m are suitably chosen. This implies that J ->• +oo when
ε —> 0 and therefore Cj —> 1 V 7 " 1 when ε -> 0. The conclusion then follows
from (5.30). •

One should observe here that (6.31) rules out the initial choice of Lepski

for the parameters Kmj which implies that (4.20) holds.

7 Conclusion

In the framework we have chosen here, an older and very popular method for

choosing an optimal estimator in our family is Mallows' Cp which actually

amounts to choose S = Sj with

J = a r g m i n { - p j | |
2 + 2ε2ίλ/, j (Ξ M}

(7.33) = inf {j e M I p m - Sjf < 2ε2(Dm - Dj) for all m > j } ,

since p m — Sj\\2 = \\sm\\2 — \\SJ\\2 for m > j . One should observe that it

is also the estimator derived from our extension of Lepski's method with
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0 < 7 < 1 and 2Kmj = (1 — 7)(An — Dj). Unfortunately, such a choice of
Kmj does not always satisfy (3.12) when j = m — 1 and m is large since λ m

goes to infinity with m while Dm — Dm-\ may remain bounded. Nevertheless
(3.12) will be satisfied with λ m = αlogJ9 m , as in Proposition 4.1 provided
that Dm > Dm-ι + clogDm for some large enough c. In any case, it has
been proved in Shibata (1981), that the estimator s = sj with J given by
(7.33) satisfies (6.32) with 7 = 1 and by Birge and Massaxt (1999) that it
also satisfies (4.21).

As to the consequences of Theorem 4.1, they have been developed at
length in Birge and Massart (1999) where an analogue of this result has been
proved for penalized estimators. We therefore refer the interested reader to
this paper for applications of this result, just mentioning here the following
one. Assume that M = N* and that Dm = m, which implies that Sm is the
linear span of {φi,... ,<£>m} Given a nonincreasing sequence a = (αm)m>χ
of numbers in [0, +00] such that a\ > 0 and α m -> 0 when m -> +00, we
denote by 6 (a) the ellipsoid defined by

+00

with the convention that 0/0 = 0, x/0 = +00 and x/(+oo) = 0 for x > 0.
Let s be any estimator satisfying (4.21), then it follows from Section 7.2 of
Birge and Massart (1999) that s is minimax, up to constants, over all such
ellipsoids. More precisely, there exists some constant K, such that, whatever
the sequence a satisfying the above requirements,

sup E [ | | 5 - s | | 2 ] < K [l V (ε/αi)2] inf sup E [ p - s | | 2 ] ,

where the infimum is taken over all possible estimators.

8 Appendix

The following lemma is a generalization of Lemma 1 of Laurent and Massart

(1998).

Lemma 8.1 Let X be a noncentral χ 2 variable with D degrees of freedom

and noncentrality parameter Bιl2 > 0, then for all x > 0,

(8.34) Ψ \x > {D + B) + 2yJ(D + 2B)x + 2rr] < exp(-z),

and
(8.35) P \x < {D + B) - 2y/(D + 2B)xj < exp(-x).
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)Proof Since we can write X as (JB1/2 + 17) + V where U and V are

independent with respective distributions Λf(0,1) and χ2(D — 1), the Laplace

transform of X can be written as

E [e«] = (1 - 2ίΓD/2 exp [ ^ y for t < 1/2,

which implies that

< (D + 2B)

(8.36) = (D + 2B) tHi^>t>o} _t{t<o}[loE(l-2t) + 2t]

Then (8.34) follows from Lemma 8.2 below. On the other hand, for z > 0,

PLY <D + B-z] < i n f E

and it follows from (8.36) that, for t < 0

log ( E I e * l * - " - * + * ; I) < _ L - • — JL-^V- -J • -M + ί z >

Setting 2; = y(25 + D) with 0 < y < 1, one observes that the minimum of

the right-hand side is obtained for 2t = — y/(l — y) and therefore

log(P[X < D + B - z]) < \[D + 2S]pog(l - y) + y] < -\[D + 2B]y2.

The result remains clearly true for y > 1 since X > 0 and (8.35) follows by
setting y = 2xλ/2(2B + D ) " 1 / 2 . .

Lemma 8.2 Let X be a random variable such that

log(E[exp(ί-Y)]) < ^ y forO<t< b~\

where a and b are positive constants. Then

Ψ[X > 2ay/x + bx] < exp(-x) for all x > 0.
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Proof For z > 0, Ψ[X >z}< exp[-Λ(*)] with

h(z)= sup
0<t<6-i

and the supremum is achieved for ί' = 6~1[1 — a(bz + α 2 ) " 1 / 2 ] . Taking

z = 6x + 2aφc gives ί' = χ/x/(α + 61/z)

^ ίu . 0 AΛ
 b χ / + 2 a x a x

h (ox + 2a\/x) = r—= —= — x,
v v ; a + by/x a + by/x

which allows to conclude. •

Lemma 8.3 Let M be a finite or countable set of indices, {Xm}meM a set
of nonnegative random variables indexed by M., rh a random variable with
values in M and M some subset of M, then, whatever q > 1,

\meM )

Proof It follows from Holder's Inequality that

E [ X m l { ή ι = m } ]

/ \ !/? / \ 1-1/9

\m£M / \τneM /

which is the desired inequality. •

Lemma 8.4 IfY has a χ2(n) distribution, then E [(Y - n)4] = 12n(2π + 3)

and

E \γk] < {n + k - l)k - 1 for k G N, k > 2.

Proof It is well-known that E [Yk] = Π?=o( n + 2i) T h e first r e s u l t t h e n

follows from elementary computations. As to the second, one derives from
the strict concavity of the logarithm that

( k-l \

k~ι J^(n + 2Ϊ) I = log(n + k - 1)
i=o /

and the conclusion follows since E [Yk] is an integer. •
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