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ABSTRACT. The estimation of the probability of success p from independent binomial
samples b(p,ri) and b(q,m) where p > q is considered using a likelihood approach.

1. INTRODUCTION

Consider the model B of two independent binomial samples x ~ b(n,p), y ~ b(m,q)

under the restriction p> q. The problem is to make quantitative statements about p,

based on the information contained in both samples.

The focus of previous approaches to this problem has been on point estimates,

for instance the maximum likelihood estimate (mle), and their optimal properties, such

as mean squared error (mse), bias, variance, admissible and minimax estimators, the

use of certain loss functions, etc. See, for example, Robertson and Waltman (1968),

Sackrowitz (1970), Johnson (1971), and Hengartner (1999). One conclusion of these

approaches has been that in order to have higher precision for estimating p, depending

on the value of g, y should be discarded.

Here the consequences of basing inferences about p on the whole observed likeli-

hood function based on both samples are examined. The use of the whole likelihood

function, and not just its mle, has been increasingly used in problems of estimation

since Fisher (1956, p. 73), (e.g. Barnard, Jenkins and Winston (1963), Edwards (1992),

Sprott (2000)). The purpose is to make quantitative statements of uncertainty about

unknown parameters based on all of the sample information. "The likelihood supplies a

natural order of preference among the possibilities under consideration", Fisher (1956,

p. 73). For a single parameter the results can usually be given in the form of graph of

the likelihood function supplemented by a set of nested likelihood intervals - see Sprott

(2000, Section 2.8) - as in Figure 1.
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2. THE PROFILE LIKELIHOOD FUNCTION

Under the binomial model β, the joint likelihood function based on the two

independent samples is

Lβ oc f(l - p)n-χf(l - q)m-y; where p > q.

First Sample Second Sample

For this model, the marginal distribution of x does not provide a marginal likelihood

of p since the range of p depends on q. Therefore in the absence of knowledge of q the

maximized or profile likelihood of p under the restricted model B will be considered,

which is

LM(P] X, y) oc LB[p, q(p)\ x, y],

where q(p) is the restricted mle of q for a specified value of p,

,p) = \ ?ϊ ] P " \ ,
[ p, if p < q

so that q(p) < p.

Therefore the profile likelihood of p is

\ Pr-*qy(l-qΓ-y ήp>q

The global maximum of LM(J>] x,y) is at p *,

+ m) i f p < ς .
P < , . , . . . • ( 2 2)

I x/n if p > q

The relative profile likelihood function RM{P) = LM{P)/LM{P*) is LM{P) stan-

dardized to be one at its maximum.

The likelihood ratio Liϊ,

LR = LM{p*\ x, y)/Lg{p, q\ x, y)

= ί LA [{x + y)/(n + m); x, y] / Lα(p, g; x, y) if p < q

\ LB{x/n\x,y) / Lg[p,q\x,y) = 1 if p > ς

can be used to assess the restricted model B relative to the general model Q of two

independent binomial samples, where

I σ = P * ( l - p ) n - V ( l - ϊ ) m - ι \ (2-4)
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Figure 1 (a). Example 1, n =m = 5, x =y = 4
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where no restrictions are imposed on either p or q.

Whenever ft < q, the data can provide evidence against the restricted model as the

distance between p and q increases. In contrast, if ft > q, the data cannot give evidence

against the restricted model, since LR = 1. The quantity LR can be interpreted in

terms of how less probable are x, y under B than under Q. Another interpretation is

in terms of P ( - 2 log LR > - 2 log LRO), where LRO is the observed value of (2.3). The

likelihood ratio statistic — 2 log Li? will not have the χ2 distribution. But its exact

distribution is easily calculated with modern computing power by enumerating from

(2.3) all samples (x,y\n,m) for which LR < LRO. The resulting test of the model B

against Q is

P = max
P>Q

Σ
LR<LRO

(2.5)

This will be illustrated in the following examples.
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3. EXAMPLES

Example 1: If p > q, then from (2.2) the maximum of LM{p\x,y) occurs in

LB(p;x,y) at p = x/n, and is px(l - p)n~xqy(l - q)m~y. This facilitates comparing

RM{P] X: y) with R(p\ x), the binomial relative likelihood of p based on x alone. Under

this condition, RM{V\ XIV) is given by

p)n-χqy(l-q)m-y iΐp<q

\ RB{p;x,y) = px{l -p)n-χ/px{l -p)n~x iΐp>q '

In the range p > q the component RB(p] x,y) of RM(P\ x->y) is the same as the ordinary

relative likelihood function R(p;x) of p based on x alone obtained from Lg, (2.4). In

the range p < q the remaining component RA(P\ X, y) ^ R{p\ x) > so that the function

RM{p\x,y) lies entirely within the function R{jρ\x) in this range, indicative of the

higher precision of RM(P\ X, y) in this range. These facts are exemplified in Figure l(a)

with x = 4, y = 4, n = m = 5, so that p = q = .8.

If q is sufficiently small then RM{p\x1y) = RB(p\x) over practically the entire

range of p, and hence equal to R(p\ x). For example ifα; = 4, y = l , n = ra = 5, the

range of RB is p > .2 and RM(P) is indistinguishable from i?(p) as shown in Figure

From (2.3) —2 log Li? = 0 so that there is no evidence against the model B in

this situation.

Example 2: The remaining case is that of p < q in (2.2). Here the maximum

occurs in L^, so that comparisons with R(p;x) are complicated. Their maxima occur

at different places, so that the likelihoods have more complicated differences. Also this

is the case where the data can present evidence against the model B. These facts are

exemplified in Figure 2 with x = 1, y = 4, m = n = 5, so that p = 0.2 < q = 0.8,

and p* = 0.5. Here LRO = 0.1455. This means that the maximum probability of

ar = l,j/ = 4|m = n = 5 under model # is only 0.1455 of the maximum probability

under the general model Q. Thus B is somewhat implausible relative to Q. Using

—2 log LRO = 3.8552 in (2.5) gives P = 0.055, the exact significance level obtained

with p = q = 0.5. Based on this the observations contradict model B at the 0.055

level of significance. Thus the inferences about p based on B would be suspect. This

suggests reverting to the general model Lg in which y contains no information about
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Figure 1 (b). Example l,n =m = 5, x-4,y~l
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p. It is interesting that the χ ^ approximation applied to the distribution of —2 log LR

in this example gives P = 0.0496,. This is perhaps surprising since - 2 log LR is not

supposed to have the χ2 distribution.

4. SOME CONCLUSIONS

(1) The likelihood function to be used is determined by the model that is selected

based on scientific considerations. In model #, x and y both contribute to the

estimation of p. The relative contribution of each is determined automatically

by the profile likelihood function.

(2) More generally, as shown in the Figures, these likelihood functions are often too

intricate in shape to be described by point estimates and their properties such as

mse. The latter are not adequate to make informative quantitative estimation

statements using all of the sample information. In contrast, the purpose of the

likelihood function is to make such statements.

(3) The likelihood function also leads to an assessment of the legitimacy of the

underlying assumption that p > g, for example by using the likelihood ratio

test (2.5).
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