
Chapter 4

Support Vector Machines

4.1. How to build them

4.1.1. The canonical hyperplane. Support Vector Machines, of wide use and
renown, were conceived by V. Vapkik (Vapnik, 1998). Before introducing them,
we will study as a prerequisite the separation of points by hyperplanes in a finite
dimensional Euclidean space. Support Vector Machines perform the same kind of
linear separation after an implicit change of pattern space. The preceding PAC-
Bayesian results provide a fit framework to analyse their generalization properties.

In this section we deal with the classification of points in R
d in two classes. Let

Z = (xi, yi)N
i=1 ∈

(
R

d × {−1, +1}
)N be some set of labelled examples (called the

training set hereafter). Let us split the set of indices I = {1, . . . , N} according to
the labels into two subsets

I+ = {i ∈ I : yi = +1},
I− = {i ∈ I : yi = −1}.

Let us then consider the set of admissible separating directions

AZ =
{
w ∈ R

d : sup
b∈R

inf
i∈I

(〈w, xi〉 − b)yi ≥ 1
}
,

which can also be written as

AZ =
{
w ∈ R

d : max
i∈I−

〈w, xi〉 + 2 ≤ min
i∈I+

〈w, xi〉
}
.

As it is easily seen, the optimal value of b for a fixed value of w, in other words the
value of b which maximizes infi∈I(〈w, xi〉 − b)yi, is equal to

bw =
1
2

[
max
i∈I−

〈w, xi〉 + min
i∈I+

〈w, xi〉
]
.

Lemma 4.1.1. When AZ �= ∅, inf{‖w‖2 : w ∈ AZ} is reached for only one value
wZ of w.

Proof. Let w0 ∈ AZ . The set AZ ∩ {w ∈ R
d : ‖w‖ ≤ ‖w0‖} is a compact convex

set and w �→ ‖w‖2 is strictly convex and therefore has a unique minimum on this
set, which is also obviously its minimum on AZ . �
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132 Chapter 4. Support Vector Machines

Definition 4.1.1. When AZ �= ∅, the training set Z is said to be linearly sepa-
rable. The hyperplane

H = {x ∈ R
d : 〈wZ , x〉 − bZ = 0},

where

wZ = arg min{‖w‖ : w ∈ AZ},
bZ = bwZ

,

is called the canonical separating hyperplane of the training set Z. The quantity
‖wZ‖−1 is called the margin of the canonical hyperplane.

As mini∈I+〈wZ , xi〉 − maxi∈I−〈wZ , xi〉 = 2, the margin is also equal to half the
distance between the projections on the direction wZ of the positive and negative
patterns.

4.1.2. Computation of the canonical hyperplane. Let us consider the con-
vex hulls X+ and X− of the positive and negative patterns:

X+ =
{∑

i∈I+

λixi :
(
λi

)
i∈I+

∈ R
I+
+ ,

∑
i∈I+

λi = 1
}
,

X− =
{∑

i∈I−

λixi :
(
λi

)
i∈I−

∈ R
I−
+ ,

∑
i∈I−

λi = 1
}

.

Let us introduce the closed convex set

V = X+ − X− =
{
x+ − x− : x+ ∈ X+, x− ∈ X−

}
.

As v �→ ‖v‖2 is strictly convex, with compact lower level sets, there is a unique
vector v∗ such that

‖v∗‖2 = inf
v∈V

{
‖v‖2 : v ∈ V

}
.

Lemma 4.1.2. The set AZ is non-empty (i.e. the training set Z is linearly separa-
ble) if and only if v∗ �= 0. In this case

wZ =
2

‖v∗‖2
v∗,

and the margin of the canonical hyperplane is equal to 1
2‖v∗‖.

This lemma proves that the distance between the convex hulls of the positive
and negative patterns is equal to twice the margin of the canonical hyperplane.

Proof. Let us assume first that v∗ = 0, or equivalently that X+ ∩X− �= ∅. For
any vector w ∈ R

d,

min
i∈I+

〈w, xi〉 = min
x∈X+

〈w, x〉,

max
i∈I−

〈w, xi〉 = max
x∈X−

〈w, x〉,

so mini∈I+〈w, xi〉 − maxi∈I−〈w, xi〉 ≤ 0, which shows that w cannot be in AZ and
therefore that AZ is empty.
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Let us assume now that v∗ �= 0, or equivalently that X+ ∩ X− = ∅. Let us put
w∗ = 2v∗/‖v∗‖2. Let us remark first that

min
i∈I+

〈w∗, xi〉 − max
i∈I−

〈w∗, xi〉 = inf
x∈X+

〈w∗, x〉 − sup
x∈X−

〈w∗, x〉

= inf
x+∈X+,x−∈X−

〈w∗, x+ − x−〉

=
2

‖v∗‖2
inf
v∈V

〈v∗, v〉.

Let us now prove that infv∈V〈v∗, v〉 = ‖v∗‖2. Some arbitrary v ∈ V being fixed,
consider the function

β �→ ‖βv + (1 − β)v∗‖2 : [0, 1] → R.

By definition of v∗, it reaches its minimum value for β = 0, and therefore has
a non-negative derivative at this point. Computing this derivative, we find that
〈v − v∗, v∗〉 ≥ 0, as claimed. We have proved that

min
i∈I+

〈w∗, xi〉 − max
i∈I−

〈w∗, xi〉 = 2,

and therefore that w∗ ∈ AZ . On the other hand, any w ∈ AZ is such that

2 ≤ min
i∈I+

〈w, xi〉 − max
i∈I−

〈w, xi〉 = inf
v∈V

〈w, v〉 ≤ ‖w‖ inf
v∈V

‖v‖ = ‖w‖ ‖v∗‖.

This proves that ‖w∗‖ = inf
{
‖w‖ : w ∈ AZ

}
, and therefore that w∗ = wZ as

claimed. �
One way to compute wZ would therefore be to compute v∗ by minimizing{∥∥∥∥∥∑

i∈I

λiyixi

∥∥∥∥∥
2

: (λi)i∈I ∈ R
I
+,
∑
i∈I

λi = 2,
∑
i∈I

yiλi = 0

}
.

Although this is a tractable quadratic programming problem, a direct computation
of wZ through the following proposition is usually preferred.

Proposition 4.1.3. The canonical direction wZ can be expressed as

wZ =
N∑

i=1

α∗
i yixi,

where (α∗
i )

N
i=1 is obtained by minimizing

inf
{
F (α) : α ∈ A

}
where

A =
{

(αi)i∈I ∈ R
I
+,
∑
i∈I

αiyi = 0
}

,

and
F (α) =

∥∥∥∑
i∈I

αiyixi

∥∥∥2

− 2
∑
i∈I

αi.
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Proof. Let w(α) =
∑

i∈I αiyixi and let S(α) = 1
2

∑
i∈I αi. We can express

the function F (α) as F (α) = ‖w(α)‖2 − 4S(α). Moreover it is important to no-
tice that for any s ∈ R+, {w(α) : α ∈ A, S(α) = s} = sV. This shows that
for any s ∈ R+, inf{F (α) : α ∈ A, S(α) = s} is reached and that for any
αs ∈ {α ∈ A : S(α) = s} reaching this infimum, w(αs) = sv∗. As
s �→ s2‖v∗‖2 − 4s : R+ → R reaches its infimum for only one value s∗ of s, namely
at s∗ = 2

‖v∗‖2 , this shows that F (α) reaches its infimum on A, and that for any
α∗ ∈ A such that F (α∗) = inf{F (α) : α ∈ A}, w(α∗) = 2

‖v∗‖2 v∗ = wZ . �

4.1.3. Support vectors.

Definition 4.1.2. The set of support vectors S is defined by

S = {xi : 〈wZ , xi〉 − bZ = yi}.

Proposition 4.1.4. Any α∗ minimizing F (α) on A is such that

{xi : α∗
i > 0} ⊂ S.

This implies that the representation wZ = w(α∗) involves in general only a limited
number of non-zero coefficients and that wZ = wZ′ , where Z ′ = {(xi, yi) : xi ∈ S}.

Proof. Let us consider any given i ∈ I+ and j ∈ I−, such that α∗
i > 0 and α∗

j > 0.
There exists at least one such index in each set I− and I+, since the sum of the
components of α∗ on each of these sets are equal and since

∑
k∈I α∗

k > 0. For any
t ∈ R, consider

αk(t) = α∗
k + t1(k ∈ {i, j}), k ∈ I.

The vector α(t) is in A for any value of t in some neighbourhood of 0, therefore
∂
∂t |t=0

F
[
α(t)

]
= 0. Computing this derivative, we find that

yi〈w(α∗), xi〉 + yj〈w(α∗), xj〉 = 2.

As yi = −yj , this can also be written as

yi

[
〈w(α∗), xi〉 − bZ

]
+ yj

[
〈w(α∗), xj〉 − bZ

]
= 2.

As w(α∗) ∈ AZ ,
yk

[
〈w(α∗), xk〉 − bZ

]
≥ 1, k ∈ I,

which implies necessarily as claimed that

yi

[
〈w(α∗), xi〉 − bZ

]
= yj

[
〈w(α∗), xj〉 − bZ

]
= 1.

�

4.1.4. The non-separable case. In the case when the training set Z = (xi,

yi)N
i=1 is not linearly separable, we can define a noisy canonical hyperplane as fol-

lows: we can choose w ∈ R
d and b ∈ R to minimize

(4.1) C(w, b) =
N∑

i=1

[
1 −

(
〈w, xi〉 − b

)
yi

]
+

+ 1
2‖w‖2,

where for any real number r, r+ = max{r, 0} is the positive part of r.
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Theorem 4.1.5. Let us introduce the dual criterion

F (α) =
N∑

i=1

αi −
1
2

∥∥∥∥ N∑
i=1

yiαixi

∥∥∥∥2

and the domain A′ =
{

α ∈ R
N
+ : αi ≤ 1, i = 1, . . . , N,

N∑
i=1

yiαi = 0
}

. Let α∗ ∈ A′

be such that F (α∗) = supα∈A′ F (α). Let w∗ =
∑N

i=1 yiα
∗
i xi. There is a threshold

b∗ (whose construction will be detailed in the proof), such that

C(w∗, b∗) = inf
w∈Rd,b∈R

C(w, b).

Corollary 4.1.6. (scaled criterion) For any positive real parameter λ let us
consider the criterion

Cλ(w, b) = λ2
N∑

i=1

[
1 − (〈w, xi〉 − b)yi

]
+

+ 1
2‖w‖2

and the domain

A′
λ =

{
α ∈ R

N
+ : αi ≤ λ2, i = 1, . . . , N,

N∑
i=1

yiαi = 0
}

.

For any solution α∗ of the minimization problem F (α∗) = supα∈A′
λ

F (α), the vector

w∗ =
∑N

i=1 yiα
∗
i xi is such that

inf
b∈R

Cλ(w∗, b) = inf
w∈Rd,b∈R

Cλ(w, b).

In the separable case, the scaled criterion is minimized by the canonical hyper-
plane for λ large enough. This extension of the canonical hyperplane computation
in dual space is often called the box constraint, for obvious reasons.

Proof. The corollary is a straightforward consequence of the scale property
Cλ(w, b, x) = λ2C(λ−1w, b, λx), where we have made the dependence of the crite-
rion in x ∈ R

dN explicit. Let us come now to the proof of the theorem.
The minimization of C(w, b) can be performed in dual space extending the couple

of parameters (w, b) to w = (w, b, γ) ∈ R
d × R × R

N
+ and introducing the dual

multipliers α ∈ R
N
+ and the criterion

G(α,w) =
N∑

i=1

γi +
N∑

i=1

αi

{[
1 − (〈w, xi〉 − b)yi

]
− γi

}
+ 1

2‖w‖2.

We see that
C(w, b) = inf

γ∈RN
+

sup
α∈RN

+

G
[
α, (w, b, γ)

]
,

and therefore, putting W = {(w, b, γ) : w ∈ R
d, b ∈ R, γ ∈ R

N
+

}
, we are led to solve

the minimization problem

G(α∗, w∗) = inf
w∈W

sup
α∈RN

+

G(α,w),



136 Chapter 4. Support Vector Machines

whose solution w∗ = (w∗, b∗, γ∗) is such that C(w∗, b∗) = inf(w,b)∈Rd+1 C(w, b),
according to the preceding identity. As for any value of α′ ∈ R

N
+ ,

inf
w∈W

sup
α∈RN

+

G(α,w) ≥ inf
w∈W

G(α′, w),

it is immediately seen that

inf
w∈W

sup
α∈RN

+

G(α,w) ≥ sup
α∈RN

+

inf
w∈W

G(α,w).

We are going to show that there is no duality gap, meaning that this inequality is
indeed an equality. More importantly, we will do so by exhibiting a saddle point,
which, solving the dual minimization problem will also solve the original one.

Let us first make explicit the solution of the dual problem (the interest of this
dual problem precisely lies in the fact that it can more easily be solved explicitly).
Introducing the admissible set of values of α,

A′ =
{
α ∈ R

N : 0 ≤ αi ≤ 1, i = 1, . . . , N,

N∑
i=1

yiαi = 0
}
,

it is elementary to check that

inf
w∈W

G(α,w) =

{
inf

w∈Rd
G
[
α, (w, 0, 0)

]
, α ∈ A′,

−∞, otherwise.

As

G
[
α, (w, 0, 0)

]
= 1

2‖w‖2 +
N∑

i=1

αi

(
1 − 〈w, xi〉yi

)
,

we see that infw∈Rd G
[
α, (w, 0, 0)

]
is reached at

wα =
N∑

i=1

yiαixi.

This proves that
inf

w∈W
G(α,w) = F (α).

The continuous map α �→ infw∈W G(α,w) reaches a maximum α∗, not necessarily
unique, on the compact convex set A′. We are now going to exhibit a choice of
w∗ ∈ W such that (α∗, w∗) is a saddle point. This means that we are going to show
that

G(α∗, w∗) = inf
w∈W

G(α∗, w) = sup
α∈RN

+

G(α,w∗).

It will imply that

inf
w∈W

sup
α∈Rd

+

G(α,w) ≤ sup
α∈RN

+

G(α,w∗) = G(α∗, w∗)

on the one hand and that

inf
w∈W

sup
α∈Rd

+

G(α,w) ≥ inf
w∈W

G(α∗, w) = G(α∗, w∗)
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on the other hand, proving that

G(α∗, w∗) = inf
w∈W

sup
α∈RN

+

G(α,w)

as required.
Construction of w∗

.

• Let us put w∗ = wα∗ .
• If there is j ∈ {1, . . . , N} such that 0 < α∗

j < 1, let us put

b∗ = 〈xj , w
∗〉 − yj .

Otherwise, let us put

b∗ = sup{〈xi, w
∗〉 − 1 : α∗

i > 0, yi = +1, i = 1, . . . , N}.

• Let us then put

γ∗
i =

{
0, α∗

i < 1,

1 − (〈w∗, xi〉 − b∗)yi, α∗
i = 1.

If we can prove that

(4.2) 1 − (〈w∗, xi〉 − b∗)yi

⎧⎪⎨⎪⎩
≤ 0, α∗

i = 0,

= 0, 0 < α∗
i < 1,

≥ 0, α∗
i = 1,

it will show that γ∗ ∈ R
N
+ and therefore that w∗ = (w∗, b∗, γ∗) ∈ W. It will also

show that

G(α,w∗) =
N∑

i=1

γ∗
i +

∑
i,α∗

i
=0

αi

[
1 − (〈w∗, xi〉 − b∗)yi

]
+ 1

2‖w
∗‖2,

proving that G(α∗, w∗) = supα∈RN
+

G(α,w∗). As obviously G(α∗, w∗) = G
[
α∗, (w∗,

0, 0)
]
, we already know that G(α∗, w∗) = infw∈W G(α∗, w). This will show that

(α∗, w∗) is the saddle point we were looking for, thus ending the proof of the theo-
rem. �

Proof of equation (4.2). Let us deal first with the case when there is j ∈
{1, . . . , N} such that 0 < α∗

j < 1.
For any i ∈ {1, . . . , N} such that 0 < α∗

i < 1, there is ε > 0 such that for any
t ∈ (−ε, ε), α∗ + tyiei− tyjej ∈ A′, where (ek)N

k=1 is the canonical base of R
N . Thus

∂
∂t |t=0

F (α∗ + tyiei − tyjej) = 0. Computing this derivative, we obtain

∂

∂t |t=0
F (α∗ + tyiei − tyjej) = yi − 〈w∗, xi〉 + 〈w∗, xj〉 − yj

= yi

[
1 −

(
〈w, xi〉 − b∗

)
yi

]
.

Thus 1−
(
〈w, xi〉 − b∗

)
yi = 0, as required. This shows also that the definition of b∗

does not depend on the choice of j such that 0 < α∗
j < 1.
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For any i ∈ {1, . . . , N} such that α∗
i = 0, there is ε > 0 such that for any

t ∈ (0, ε), α∗ + tei − tyiyjej ∈ A′. Thus ∂
∂t |t=0

F (α∗ + tei − tyiyjej) ≤ 0, showing
that 1 −

(
〈w∗, xi〉 − b∗

)
yi ≤ 0 as required.

For any i ∈ {1, . . . , N} such that α∗
i = 1, there is ε > 0 such that α∗ − tei +

tyiyjej ∈ A′. Thus ∂
∂t |t=0

F (α∗ − tei + tyiyjej) ≤ 0, showing that 1 −
(
〈w∗, xi〉 −

b∗
)
yi ≥ 0 as required. This shows that (α∗, w∗) is a saddle point in this case.
Let us deal now with the case where α∗ ∈ {0, 1}N . If we are not in the trivial case

where the vector (yi)N
i=1 is constant, the case α∗ = 0 is ruled out. Indeed, in this

case, considering α∗ + tei + tej , where yiyj = −1, we would get the contradiction
2 = ∂

∂t |t=0
F (α∗ + tei + tej) ≤ 0.

Thus there are values of j such that α∗
j = 1, and since

∑N
i=1 αiyi = 0, both

classes are present in the set {j : α∗
j = 1}.

Now for any i, j ∈ {1, . . . , N} such that α∗
i = α∗

j = 1 and such that yi = +1 and
yj = −1, ∂

∂t |t=0
F (α∗ − tei − tej) = −2 + 〈w∗, xi〉 − 〈w∗, xj〉 ≤ 0. Thus

sup{〈w∗, xi〉 − 1 : α∗
i = 1, yi = +1} ≤ inf{〈w∗, xj〉 + 1 : α∗

j = 1, yj = −1},

showing that
1 −

(
〈w∗, xk〉 − b∗

)
yk ≥ 0, α∗

k = 1.

Finally, for any i such that α∗
i = 0, for any j such that α∗

j = 1 and yj = yi, we have

∂

∂t |t=0
F (α∗ + tei − tej) = yi〈w∗, xi − xj〉 ≤ 0,

showing that 1−
(
〈w∗, xi〉 − b∗

)
yi ≤ 0. This shows that (α∗, w∗) is always a saddle

point.

4.1.5. Support Vector Machines.

Definition 4.1.3. The symmetric measurable kernel K : X×X → R is said to be
positive (or more precisely positive semi-definite) if for any n ∈ N, any (xi)n

i=1 ∈ Xn,

inf
α∈Rn

n∑
i=1

n∑
j=1

αiK(xi, xj)αj ≥ 0.

Let Z = (xi, yi)N
i=1 be some training set. Let us consider as previously

A =

{
α ∈ R

N
+ :

N∑
i=1

αiyi = 0

}
.

Let

F (α) =
N∑

i=1

N∑
j=1

αiyiK(xi, xj)yjαj − 2
N∑

i=1

αi.

Definition 4.1.4. Let K be a positive symmetric kernel. The training set Z is
said to be K-separable if

inf
{
F (α) : α ∈ A

}
> −∞.



4.1. How to build them 139

Lemma 4.1.7. When Z is K-separable, inf{F (α) : α ∈ A} is reached.

Proof. Consider the training set Z ′ = (x′
i, yi)N

i=1, where

x′
i =

{[{
K(xk, x�)

}N N

k=1,�=1

]1/2

(i, j)
}N

j=1

∈ R
N .

We see that F (α) = ‖
∑N

i=1 αiyix
′
i‖2−2

∑N
i=1 αi. We proved in the previous section

that Z ′ is linearly separable if and only if inf{F (α) : α ∈ A} > −∞, and that the
infimum is reached in this case. �

Proposition 4.1.8. Let K be a symmetric positive kernel and let Z = (xi, yi)N
i=1

be some K-separable training set. Let α∗ ∈ A be such that F (α∗) = inf{F (α) : α ∈
A}. Let

I∗− = {i ∈ N : 1 ≤ i ≤ N, yi = −1, α∗
i > 0}

I∗+ = {i ∈ N : 1 ≤ i ≤ N, yi = +1, α∗
i > 0}

b∗ =
1
2

{ N∑
j=1

α∗
jyjK(xj , xi−) +

N∑
j=1

α∗
jyjK(xj , xi+)

}
, i− ∈ I∗−, i+ ∈ I∗+,

where the value of b∗ does not depend on the choice of i− and i+. The classification
rule f : X → Y defined by the formula

f(x) = sign

(
N∑

i=1

α∗
i yiK(xi, x) − b∗

)
is independent of the choice of α∗ and is called the support vector machine defined
by K and Z. The set S = {xj :

∑N
i=1 α∗

i yiK(xi, xj) − b∗ = yj} is called the set of
support vectors. For any choice of α∗, {xi : α∗

i > 0} ⊂ S.

An important consequence of this proposition is that the support vector machine
defined by K and Z is also the support vector machine defined by K and Z ′ =
{(xi, yi) : α∗

i > 0, 1 ≤ i ≤ N}, since this restriction of the index set contains the
value α∗ where the minimum of F is reached.

Proof. The independence of the choice of α∗, which is not necessarily unique,
is seen as follows. Let (xi)N

i=1 and x ∈ X be fixed. Let us put for ease of notation
xN+1 = x. Let M be the (N +1)× (N +1) symmetric semi-definite matrix defined
by M(i, j) = K(xi, xj), i = 1, . . . , N + 1, j = 1, . . . , N + 1. Let us consider the
mapping Ψ : {xi : i = 1, . . . , N + 1} → R

N+1 defined by

(4.3) Ψ(xi) =
[
M1/2(i, j)

]N+1

j=1
∈ R

N+1.

Let us consider the training set Z ′ =
[
Ψ(xi), yi

]N
i=1

. Then Z ′ is linearly separable,

F (α) =
∥∥∥ N∑

i=1

αiyiΨ(xi)
∥∥∥2

− 2
N∑

i=1

αi,

and we have proved that for any choice of α∗ ∈ A minimizing F (α),
wZ′ =

∑N
i=1 α∗

i yiΨ(xi). Thus the support vector machine defined by K and Z
can also be expressed by the formula

f(x) = sign
[
〈wZ′ , Ψ(x)〉 − bZ′

]
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which does not depend on α∗. The definition of S is such that Ψ(S) is the set of
support vectors defined in the linear case, where its stated property has already
been proved. �

We can in the same way use the box constraint and show that any solution
α∗ ∈ arg min{F (α) : α ∈ A, αi ≤ λ2, i = 1, . . . , N} minimizes

(4.4) inf
b∈R

λ2
N∑

i=1

[
1 −

( N∑
j=1

yjαjK(xj , xi) − b

)
yi

]
+

+
1
2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi, xj).

4.1.6. Building kernels. Except the last, the results of this section are drawn
from Cristianini et al. (2000). We have no reference for the last proposition of this
section, although we believe it is well known. We include them for the convenience
of the reader.

Proposition 4.1.9. Let K1 and K2 be positive symmetric kernels on X. Then for
any a ∈ R+

(aK1 + K2)(x, x′) def= aK1(x, x′) + K2(x, x′)

and (K1 · K2)(x, x′) def= K1(x, x′)K2(x, x′)

are also positive symmetric kernels. Moreover, for any measurable function
g : X → R, Kg(x, x′) def= g(x)g(x′) is also a positive symmetric kernel.

Proof. It is enough to prove the proposition in the case when X is finite and
kernels are just ordinary symmetric matrices. Thus we can assume without loss of
generality that X = {1, . . . , n}. Then for any α ∈ R

N , using usual matrix notation,

〈α, (aK1 + K2)α〉 = a〈α, K1α〉 + 〈α, K2α〉 ≥ 0,

〈α, (K1 · K2)α〉 =
∑
i,j

αiK1(i, j)K2(i, j)αj

=
∑
i,j,k

αiK
1/2
1 (i, k)K1/2

1 (k, j)K2(i, j)αj

=
∑

k

∑
i,j

[
K

1/2
1 (k, i)αi

]
K2(i, j)

[
K

1/2
1 (k, j)αj

]
︸ ︷︷ ︸

≥0

≥ 0,

〈α, Kgα〉 =
∑
i,j

αig(i)g(j)αj =

(∑
i

αig(i)

)2

≥ 0.

�

Proposition 4.1.10. Let K be some positive symmetric kernel on X. Let p : R →
R be a polynomial with positive coefficients. Let g : X → R

d be a measurable func-
tion. Then

p(K)(x, x′)
def
= p

[
K(x, x′)

]
,
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exp(K)(x, x′)
def
= exp

[
K(x, x′)

]
and Gg(x, x′)

def
= exp

(
−‖g(x) − g(x′)‖2

)
are all positive symmetric kernels.

Proof. The first assertion is a direct consequence of the previous proposition. The
second comes from the fact that the exponential function is the pointwise limit of a
sequence of polynomial functions with positive coefficients. The third is seen from
the second and the decomposition

Gg(x, x′) =
[
exp

(
−‖g(x)‖2

)
exp

(
−‖g(x′)‖2

)]
exp

[
2〈g(x), g(x′)〉

]
�

Proposition 4.1.11. With the notation of the previous proposition, any training
set Z = (xi, yi)N

i=1 ∈
(
X×{−1, +1}

)N is Gg-separable as soon as g(xi), i = 1, . . . , N
are distinct points of R

d.

Proof. It is clearly enough to prove the case when X = R
d and g is the identity.

Let us consider some other generic point xN+1 ∈ R
d and define Ψ as in (4.3). It is

enough to prove that Ψ(x1), . . . ,Ψ(xN ) are affine independent, since the simplex,
and therefore any affine independent set of points, can be split in any arbitrary way
by affine half-spaces. Let us assume that (x1, . . . , xN ) are affine dependent; then
for some (λ1, . . . , λN ) �= 0 such that

∑N
i=1 λi = 0,

N∑
i=1

N∑
j=1

λiG(xi, xj)λj = 0.

Thus, (λi)N+1
i=1 , where we have put λN+1 = 0 is in the kernel of the symmetric

positive semi-definite matrix G(xi, xj)i,j∈{1,...,N+1}. Therefore

N∑
i=1

λiG(xi, xN+1) = 0,

for any xN+1 ∈ R
d. This would mean that the functions x �→ exp(−‖x − xi‖2)

are linearly dependent, which can be easily proved to be false. Indeed, let n ∈ R
d

be such that ‖n‖ = 1 and 〈n, xi〉, i = 1, . . . , N are distinct (such a vector exists,
because it has to be outside the union of a finite number of hyperplanes, which is
of zero Lebesgue measure on the sphere). Let us assume for a while that for some
(λi)N

i=1 ∈ R
N , for any x ∈ R

d,

N∑
i=1

λi exp(−‖x − xi‖2) = 0.

Considering x = tn, for t ∈ R, we would get

N∑
i=1

λi exp(2t〈n, xi〉 − ‖xi‖2) = 0, t ∈ R.

Letting t go to infinity, we see that this is only possible if λi = 0 for all values of i.
�
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4.2. Bounds for Support Vector Machines

4.2.1. Compression scheme bounds. We can use Support Vector Machines
in the framework of compression schemes and apply Theorem 3.3.3 (page 125).
More precisely, given some positive symmetric kernel K on X, we may consider
for any training set Z ′ = (x′

i, y
′
i)

h
i=1 the classifier f̂Z′ : X → Y which is equal to

the Support Vector Machine defined by K and Z ′ whenever Z ′ is K-separable,
and which is equal to some constant classification rule otherwise; we take this
convention to stick to the framework described on page 117, we will only use f̂Z′

in the K-separable case, so this extension of the definition is just a matter of
presentation. In the application of Theorem 3.3.3 in the case when the observed
sample (Xi, Yi)N

i=1 is K-separable, a natural if perhaps sub-optimal choice of Z ′

is to choose for (x′
i) the set of support vectors defined by Z = (Xi, Yi)N

i=1 and to
choose for (y′

i) the corresponding values of Y . This is justified by the fact that
f̂Z = f̂Z′ , as shown in Proposition 4.1.8 (page 139). If Z is not K-separable, we
can train a Support Vector Machine with the box constraint, then remove all the
errors to obtain a K-separable sub-sample Z ′ = {(Xi, Yi) : α∗

i < λ2, 1 ≤ i ≤ N},
using the same notation as in equation (4.4) on page 140, and then consider its
support vectors as the compression set. Still using the notation of page 140, this
means we have to compute successively α∗ ∈ arg min{F (α) : α ∈ A, αi ≤ λ2}, and
α∗∗ ∈ arg min{F (α) : α ∈ A, αi = 0 when α∗

i = λ2}, to keep the compression set
indexed by J = {i : 1 ≤ i ≤ N, α∗∗

i > 0}, and the corresponding Support Vector
Machine f̂J . Different values of λ can be used at this stage, producing different
candidate compression sets: when λ increases, the number of errors should decrease,
on the other hand when λ decreases, the margin ‖w‖−1 of the separable subset Z ′

increases, supporting the hope for a smaller set of support vectors, thus we can use λ
to monitor the number of errors on the training set we accept from the compression
scheme. As we can use whatever heuristic we want while selecting the compression
set, we can also try to threshold in the previous construction α∗∗

i at different levels
η ≥ 0, to produce candidate compression sets Jη = {i : 1 ≤ i ≤ N, α∗∗

i > η} of
various sizes.

As the size |J | of the compression set is random in this construction, we must
use a version of Theorem 3.3.3 (page 125) which handles compression sets of arbi-
trary sizes. This is done by choosing for each k a k-partially exchangeable posterior
distribution πk which weights the compression sets of all dimensions. We immedi-
ately see that we can choose πk such that − log

[
πk(Δk(J))

]
≤ log

[
|J |(|J | + 1)

]
+

|J | log
[

(k+1)eN
|J|

]
.

If we observe the shadow sample patterns, and if computer resources permit, we
can of course use more elaborate bounds than Theorem 3.3.3, such as the transduc-
tive equivalent for Theorem 1.3.15 (page 30) (where we may consider the submod-
els made of all the compression sets of the same size). Theorems based on relative
bounds, such as Theorem 2.2.4 (page 72) or Theorem 2.3.9 (page 107) can also be
used. Gibbs distributions can be approximated by Monte Carlo techniques, where
a Markov chain with the proper invariant measure consists in appropriate local
perturbations of the compression set.

Let us mention also that the use of compression schemes based on Support Vector
Machines can be tailored to perform some kind of feature aggregation. Imagine that
the kernel K is defined as the scalar product in L2(π), where π ∈ M1

+(Θ). More
precisely let us consider for some set of soft classification rules

{
fθ : X → R ; θ ∈ Θ

}
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the kernel
K(x, x′) =

∫
θ∈Θ

fθ(x)fθ(x′)π(dθ).

In this setting, the Support Vector Machine applied to the training set Z = (xi,
yi)N

i=1 has the form

fZ(x) = sign

(∫
θ∈Θ

fθ(x)
N∑

i=1

yiαifθ(xi)π(dθ) − b

)

and, if this is too burdensome to compute, we can replace it with some finite
approximation

f̃Z(x) = sign

(
1
m

m∑
k=1

fθk
(x)wk − b

)
,

where the set {θk, k = 1, . . . , m} and the weights {wk, k = 1, . . . , m} are computed
in some suitable way from the set Z ′ = (xi, yi)i,αi>0 of support vectors of fZ . For
instance, we can draw {θk, k = 1, . . . ,m} at random according to the probability
distribution proportional to ∣∣∣∣∣

N∑
i=1

yiαifθ(xi)

∣∣∣∣∣π(dθ),

define the weights wk by

wk = sign

(
N∑

i=1

yiαifθk
(xi)

)∫
θ∈Θ

∣∣∣∣∣
N∑

i=1

yiαifθ(xi)

∣∣∣∣∣π(dθ),

and choose the smallest value of m for which this approximation still classifies Z ′

without errors. Let us remark that we have built f̃Z in such a way that

lim
m→+∞

f̃Z(xi) = fZ(xi) = yi, a.s.

for any support index i such that αi > 0.
Alternatively, given Z ′, we can select a finite set of features Θ′ ⊂ Θ such that Z ′

is KΘ′ separable, where KΘ′(x, x′) =
∑

θ∈Θ′ fθ(x)fθ(x′) and consider the Support
Vector Machines fZ′ built with the kernel KΘ′ . As soon as Θ′ is chosen as a function
of Z ′ only, Theorem 3.3.3 (page 125) applies and provides some level of confidence
for the risk of fZ′ .

4.2.2. The Vapnik–Cervonenkis dimension of a family of subsets. Let
us consider some set X and some set S ⊂ {0, 1}X of subsets of X. Let h(S) be the
Vapnik–Cervonenkis dimension of S, defined as

h(S) = max
{
|A| : A ⊂ X, |A| < ∞ and A ∩ S = {0, 1}A

}
,

where by definition A∩S = {A∩B : B ∈ S} and |A| is the number of points in A.
Let us notice that this definition does not depend on the choice of the reference set
X. Indeed X can be chosen to be

⋃
S, the union of all the sets in S or any bigger

set. Let us notice also that for any set B, h(B ∩ S) ≤ h(S), the reason being that
A ∩ (B ∩ S) = B ∩ (A ∩ S).
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This notion of Vapnik–Cervonenkis dimension is useful because, as we will see
for Support Vector Machines, it can be computed in some important special cases.
Let us prove here as an illustration that h(S) = d + 1 when X = R

d and S is made
of all the half spaces:

S = {Aw,b : w ∈ R
d, b ∈ R}, where Aw,b = {x ∈ X : 〈w, x〉 ≥ b}.

Proposition 4.2.1. With the previous notation, h(S) = d + 1.

Proof. Let (ei)d+1
i=1 be the canonical base of R

d+1, and let X be the affine subspace
it generates, which can be identified with R

d. For any (εi)d+1
i=1 ∈ {−1, +1}d+1,

let w =
∑d+1

i=1 εiei and b = 0. The half space Aw,b ∩ X is such that {ei ; i =
1, . . . , d + 1} ∩ (Aw,b ∩ X) = {ei ; εi = +1}. This proves that h(S) ≥ d + 1.

To prove that h(S) ≤ d + 1, we have to show that for any set A ⊂ R
d of size

|A| = d+2, there is B ⊂ A such that B �∈ (A∩S). Obviously this will be the case if
the convex hulls of B and A\B have a non-empty intersection: indeed if a hyperplane
separates two sets of points, it also separates their convex hulls. As |A| > d + 1,
A is affine dependent: there is (λx)x∈A ∈ R

d+2 \ {0} such that
∑

x∈A λxx = 0 and∑
x∈A λx = 0. The set B = {x ∈ A : λx > 0} and its complement A \ B are non-

empty, because
∑

x∈A λx = 0 and λ �= 0. Moreover
∑

x∈B λx =
∑

x∈A\B −λx > 0.
The relation

1∑
x∈B λx

∑
x∈B

λxx =
1∑

x∈B λx

∑
x∈A\B

−λxx

shows that the convex hulls of B and A \ B have a non-void intersection. �
Let us introduce the function of two integers

Φh
n =

h∑
k=0

(
n

k

)
,

which can alternatively be defined by the relations

Φh
n =

{
2n when n ≤ h,

Φh−1
n−1 + Φh

n−1 when n > h.

Theorem 4.2.2. Whenever
⋃

S is finite,

|S| ≤ Φ
(∣∣∣⋃S

∣∣∣ , h(S)
)

.

Theorem 4.2.3. For any h ≤ n,

Φh
n ≤ exp

[
nH

(
h
n

)]
≤ exp

[
h
(
log(n

h ) + 1
)]

,

where H(p) = −p log(p)− (1−p) log(1−p) is the Shannon entropy of the Bernoulli
distribution with parameter p.

Proof of theorem 4.2.2. Let us prove this theorem by induction on |
⋃

S|. It
is easy to check that it holds true when |

⋃
S| = 1. Let X =

⋃
S, let x ∈ X and

X ′ = X \ {x}. Define (� denoting the symmetric difference of two sets)

S′ = {A ∈ S : A � {x} ∈ S},
S′′ = {A ∈ S : A � {x} �∈ S}.



4.2. Bounds for Support Vector Machines 145

Clearly, � denoting the disjoint union, S = S′�S′′ and S∩X ′ = (S′∩X ′)�(S′′∩X ′).
Moreover |S′| = 2|S′ ∩ X ′| and |S′′| = |S′′ ∩ X ′|. Thus

|S| = |S′| + |S′′| = 2|S′ ∩ X ′| + |S′′| = |S ∩ X ′| + |S′ ∩ X ′|.

Obviously h(S∩X ′) ≤ h(S). Moreover h(S′∩X ′) = h(S′)−1, because if A ⊂ X ′ is
shattered by S′ (or equivalently by S′∩X ′), then A∪{x} is shattered by S′ (we say
that A is shattered by S when A∩S = {0, 1}A). Using the induction hypothesis, we
then see that |S∩X ′| ≤ Φh(S)

|X′| +Φh(S)−1
|X′| . But as |X ′| = |X|−1, the right-hand side

of this inequality is equal to Φh(S)
|X| , according to the recurrence equation satisfied

by Φ.
Proof of theorem 4.2.3: This is the well-known Chernoff bound for the

deviation of sums of Bernoulli random variables: let (σ1, . . . , σn) be i.i.d. Bernoulli
random variables with parameter 1/2. Let us notice that

Φh
n = 2n

P

(
n∑

i=1

σi ≤ h

)
.

For any positive real number λ ,

P

( n∑
i=1

σi ≤ h

)
≤ exp(λh)E

[
exp

(
−λ

n∑
i=1

σi

)]
= exp

{
λh + n log

{
E
[
exp

(
−λσ1

)]}}
.

Differentiating the right-hand side in λ shows that its minimal value is
exp

[
−nK(h

n , 1
2 )
]
, where K(p, q) = p log(p

q ) + (1− p) log(1−p
1−q ) is the Kullback diver-

gence function between two Bernoulli distributions Bp and Bq of parameters p and
q. Indeed the optimal value λ∗ of λ is such that

h = n
E
[
σ1 exp(−λ∗σ1)

]
E
[
exp(−λ∗σ1)

] = nBh/n(σ1).

Therefore, using the fact that two Bernoulli distributions with the same expecta-
tions are equal,

log
{
E
[
exp(−λ∗σ1)

]}
= −λ∗Bh/n(σ1) − K(Bh/n, B1/2) = −λ∗ h

n − K(h
n , 1

2 ).

The announced result then follows from the identity

H(p) = log(2) − K(p, 1
2 )

= p log(p−1) + (1 − p) log(1 +
p

1 − p
) ≤ p

[
log(p−1) + 1

]
.

4.2.3. Vapnik–Cervonenkis dimension of linear rules with margin. The
proof of the following theorem was suggested to us by a similar proof presented in
Cristianini et al. (2000).

Theorem 4.2.4. Consider a family of points (x1, . . . , xn) in some Euclidean vec-
tor space E and a family of affine functions

H =
{
gw,b : E → R ; w ∈ E, ‖w‖ = 1, b ∈ R

}
,
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where
gw,b(x) = 〈w, x〉 − b, x ∈ E.

Assume that there is a set of thresholds (bi)n
i=1 ∈ R

n such that for any
(yi)n

i=1 ∈ {−1, +1}n, there is gw,b ∈ H such that

n

inf
i=1

(
gw,b(xi) − bi

)
yi ≥ γ.

Let us also introduce the empirical variance of (xi)n
i=1,

Var(x1, . . . , xn) =
1
n

n∑
i=1

∥∥∥∥xi −
1
n

n∑
j=1

xj

∥∥∥∥2

.

In this case and with this notation,

(4.5)
Var(x1, . . . , xn)

γ2
≥
{

n − 1 when n is even,
(n − 1)n2−1

n2 when n is odd.

Moreover, equality is reached when γ is optimal, bi = 0, i = 1, . . . , n and (x1, . . . ,
xn) is a regular simplex (i.e. when 2γ is the minimum distance between the convex
hulls of any two subsets of {x1, . . . , xn} and ‖xi − xj‖ does not depend on i �= j).

Proof. Let (si)n
i=1 ∈ R

n be such that
∑n

i=1 si = 0. Let σ be a uniformly distributed
random variable with values in Sn, the set of permutations of the first n integers
{1, . . . , n}. By assumption, for any value of σ, there is an affine function gw,b ∈ H

such that
min

i=1,...,n

[
gw,b(xi) − bi

][
21(sσ(i) > 0) − 1

]
≥ γ.

As a consequence〈
n∑

i=1

sσ(i)xi, w

〉
=

n∑
i=1

sσ(i)

(
〈xi, w〉 − b − bi

)
+

n∑
i=1

sσ(i)bi

≥
n∑

i=1

γ|sσ(i)| + sσ(i)bi.

Therefore, using the fact that the map x �→
(
max

{
0, x

})2

is convex,

E

(∥∥∥∥ n∑
i=1

sσ(i)xi

∥∥∥∥2
)

≥ E

⎡⎣(max

{
0,

n∑
i=1

γ|sσ(i)| + sσ(i)bi

})2
⎤⎦

≥
(

max

{
0,

n∑
i=1

γE
(
|sσ(i)|

)
+ E

(
sσ(i)

)
bi

})2

= γ2

(
n∑

i=1

|si|
)2

,

where E is the expectation with respect to the random permutation σ. On the other
hand

E

(∥∥∥∥ n∑
i=1

sσ(i)xi

∥∥∥∥2
)

=
n∑

i=1

E(s2
σ(i))‖xi‖2 +

∑
i �=j

E(sσ(i)sσ(j))〈xi, xj〉.
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Moreover

E(s2
σ(i)) =

1
n

E

(
n∑

i=1

s2
σ(i)

)
=

1
n

n∑
i=1

s2
i .

In the same way, for any i �= j,

E
(
sσ(i)sσ(j)

)
=

1
n(n − 1)

E

⎛⎝∑
i �=j

sσ(i)sσ(j)

⎞⎠
=

1
n(n − 1)

∑
i �=j

sisj

=
1

n(n − 1)

[(
n∑

i=1

si︸ ︷︷ ︸
=0

)2

−
n∑

i=1

s2
i

]

= − 1
n(n − 1)

n∑
i=1

s2
i .

Thus

E

(∥∥∥∥ n∑
i=1

sσ(i)xi

∥∥∥∥2
)

=

(
n∑

i=1

s2
i

)⎡⎣ 1
n

n∑
i=1

‖xi‖2 − 1
n(n − 1)

∑
i �=j

〈xi, xj〉

⎤⎦
=

(
n∑

i=1

s2
i

)[(
1
n

+
1

n(n − 1)

) n∑
i=1

‖xi‖2

− 1
n(n − 1)

∥∥∥∥ n∑
i=1

xi

∥∥∥∥2
]

=
n

n − 1

(
n∑

i=1

s2
i

)
Var(x1, . . . , xn).

We have proved that

Var(x1, . . . , xn)
γ2

≥
(n − 1)

( n∑
i=1

|si|
)2

n

n∑
i=1

s2
i

.

This can be used with si = 1(i ≤ n
2 ) − 1(i > n

2 ) in the case when n is even and
si = 2

(n−1)1(i ≤ n−1
2 ) − 2

n+11(i > n−1
2 ) in the case when n is odd, to establish the

first inequality (4.5) of the theorem.
Checking that equality is reached for the simplex is an easy computation when

the simplex (xi)n
i=1 ∈ (Rn)n is parametrized in such a way that

xi(j) =

{
1 if i = j,

0 otherwise.

Indeed the distance between the convex hulls of any two subsets of the simplex is
the distance between their mean values (i.e. centers of mass). �



148 Chapter 4. Support Vector Machines

4.2.4. Application to Support Vector Machines. We are going to apply
Theorem 4.2.4 (page 145) to Support Vector Machines in the transductive case.
Let (Xi, Yi)

(k+1)N
i=1 be distributed according to some partially exchangeable dis-

tribution P and assume that (Xi)
(k+1)N
i=1 and (Yi)N

i=1 are observed. Let us con-
sider some positive kernel K on X. For any K-separable training set of the form
Z ′ = (Xi, y

′
i)

(k+1)N
i=1 , where (y′

i)
(k+1)N
i=1 ∈ Y(k+1)N , let f̂Z′ be the Support Vector

Machine defined by K and Z ′ and let γ(Z ′) be its margin. Let

R2 = max
i=1,...,(k+1)N

K(Xi, Xi) +
1

(k + 1)2N2

(k+1)N∑
j=1

(k+1)N∑
k=1

K(Xj , Xk)

− 2
(k + 1)N

(k+1)N∑
j=1

K(Xi, Xj).

This is an easily computable upper-bound for the radius of some ball containing
the image of (X1, . . . , X(k+1)N ) in feature space.

Let us define for any integer h the margins

(4.6) γ2h = (2h − 1)−1/2 and γ2h+1 =
[
2h

(
1 − 1

(2h + 1)2

)]−1/2

.

Let us consider for any h = 1, . . . , N the exchangeable model

Rh =
{
f̂Z′ : Z ′ = (Xi, y

′
i)

(k+1)N
i=1 is K-separable and γ(Z ′) ≥ Rγh

}
.

The family of models Rh, h = 1, . . . , N is nested, and we know from Theorem 4.2.4
(page 145) and Theorems 4.2.2 (page 144) and 4.2.3 (page 144) that

log
(
|Rh|

)
≤ h log

( (k+1)eN
h

)
.

We can then consider on the large model R =
⊔N

h=1 Rh (the disjoint union of the
sub-models) an exchangeable prior π which is uniform on each Rh and is such that
π(Rh) ≥ 1

h(h+1) . Applying Theorem 3.2.3 (page 116) we get

Proposition 4.2.5. With P probability at least 1 − ε, for any h = 1, . . . , N , any
Support Vector Machine f ∈ Rh,

r2(f) ≤

k + 1
k

inf
λ∈R+

1 − exp
[
− λ

N r1(f) − h
N log

(
e(k+1)N

h

)
− log[h(h+1)]−log(ε)

N

]
1 − exp(− λ

N )

− r1(f)
k

.

Searching the whole model Rh to optimize the bound may require more computer
resources than are available, but any heuristic can be applied to choose f , since the
bound is uniform. For instance, a Support Vector Machine f ′ using a box constraint
can be trained from the training set (Xi, Yi)N

i=1 and then (y′
i)

(k+1)N
i=1 can be set to

y′
i = sign(f ′(Xi)), i = 1, . . . , (k + 1)N .
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4.2.5. Inductive margin bounds for Support Vector Machines. In or-
der to establish inductive margin bounds, we will need a different combinatorial
lemma. It is due to Alon et al. (1997). We will reproduce their proof with some tiny
improvements on the values of constants.

Let us consider the finite case when X = {1, . . . , n}, Y = {1, . . . , b} and
b ≥ 3. The question we will study would be meaningless when b ≤ 2. Assume
as usual that we are dealing with a prescribed set of classification rules R =

{
f :

X → Y
}
. Let us say that a pair (A, s), where A ⊂ X is a non-empty set of shapes

and s : A → {2, . . . , b − 1} a threshold function, is shattered by the set of func-
tions F ⊂ R if for any (σx)x∈A ∈ {−1, +1}A, there exists some f ∈ F such that
minx∈A σx

[
f(x) − s(x)

]
≥ 1.

Definition 4.2.1. Let the fat shattering dimension of (X,R) be the maximal size
|A| of the first component of the pairs which are shattered by R.

Let us say that a subset of classification rules F ⊂ YX is separated whenever for
any pair (f, g) ∈ F 2 such that f �= g, ‖f − g‖∞ = maxx∈X|f(x) − g(x)| ≥ 2. Let
M(R) be the maximum size |F | of separated subsets F of R. Note that if F is a
separated subset of R such that |F | = M(R), then it is a 1-net for the L∞ distance:
for any function f ∈ R there exists g ∈ F such that ‖f − g‖∞ ≤ 1 (otherwise f
could be added to F to create a larger separated set).

Lemma 4.2.6. With the above notation, whenever the fat shattering dimension of
(X,R) is not greater than h,

log
[
M(R)

]
< log

[
(b − 1)(b − 2)n

]{ log
[∑h

i=1

(
n
i

)
(b − 2)i

]
log(2)

+ 1

}
+ log(2)

≤ log
[
(b − 1)(b − 2)n

]{[
log
[

(b−2)n
h

]
+ 1

]
h

log(2)
+ 1

}
+ log(2).

Proof. For any set of functions F ⊂ YX, let t(F ) be the number of pairs (A, s)
shattered by F . Let t(m, n) be the minimum of t(F ) over all separated sets of
functions F ⊂ YX of size |F | = m (n is here to recall that the shape space X is
made of n shapes). For any m such that t(m, n) >

∑h
i=1

(
n
i

)
(b− 2)i, it is clear that

any separated set of functions of size |F | ≥ m shatters at least one pair (A, s) such
that |A| > h. Indeed, from its definition t(m, n) is clearly a non-decreasing function
of m, so that t(|F |, n) >

∑h
i=1

(
n
i

)
(b−2)i. Moreover there are only

∑h
i=1

(
n
i

)
(b−2)i

pairs (A, s) such that |A| ≤ h. As a consequence, whenever the fat shattering
dimension of (X,R) is not greater than h we have M(R) < m.

It is clear that for any n ≥ 1, t(2, n) = 1.

Lemma 4.2.7. For any m ≥ 1, t
[
mn(b−1)(b−2), n

]
≥ 2t

[
m, n−1

]
, and therefore

t
[
2n(n − 1) · · · (n − r + 1)(b − 1)r(b − 2)r, n

]
≥ 2r.

Proof. Let F = {f1, . . . , fmn(b−1)(b−2)} be some separated set of functions of size
mn(b − 1)(b − 2). For any pair (f2i−1, f2i), i = 1, . . . ,mn(b − 1)(b − 2)/2, there is
xi ∈ X such that |f2i−1(xi) − f2i(xi)| ≥ 2. Since |X| = n, there is x ∈ X such that∑mn(b−1)(b−2)/2

i=1 1(xi = x) ≥ m(b − 1)(b − 2)/2. Let I = {i : xi = x}. Since there
are (b − 1)(b − 2)/2 pairs (y1, y2) ∈ Y2 such that 1 ≤ y1 < y2 − 1 ≤ b − 1, there
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is some pair (y1, y2), such that 1 ≤ y1 < y2 ≤ b and such that
∑

i∈I 1({y1, y2} =
{f2i−1(x), f2i(x)}) ≥ m. Let J =

{
i ∈ I : {f2i−1(x), f2i(x)} = {y1, y2}

}
. Let

F1 = {f2i−1 : i ∈ J, f2i−1(x) = y1} ∪ {f2i : i ∈ J, f2i(x) = y1},
F2 = {f2i−1 : i ∈ J, f2i−1(x) = y2} ∪ {f2i : i ∈ J, f2i(x) = y2}.

Obviously |F1| = |F2| = |J | = m. Moreover the restrictions of the functions of F1 to
X\{x} are separated, and it is the same with F2. Thus F1 strongly shatters at least
t(m, n − 1) pairs (A, s) such that A ⊂ X \ {x} and it is the same with F2. Finally,
if the pair (A, s) where A ⊂ X \ {x} is both shattered by F1 and F2, then F1 ∪ F2

shatters also (A ∪ {x}, s′) where s′(x′) = s(x′) for any x′ ∈ A and s′(x) = �y1+y2
2 �.

Thus F1 ∪ F2, and therefore F , shatters at least 2t(m, n − 1) pairs (A, s). �
Resuming the proof of lemma 4.2.6, let us choose for r the smallest integer such

that 2r >
∑h

i=1

(
n
i

)
(b − 2)i, which is no greater than{

log
[∑h

i=1 (n
i)(b−2)i

]
log(2) + 1

}
.

In the case when 1 ≤ n ≤ r,

log(M(R)) < |X| log(|Y|) = n log(b) ≤ r log(b) ≤ r log
[
(b − 1)(b − 2)n

]
+ log(2),

which proves the lemma. In the remaining case n > r,

t
[
2nr(b − 1)r(b − 2)r, n

]
≥ t
[
2n(n − 1) . . . (n − r + 1)(b − 1)r(b − 2)r, n

]
>

h∑
i=1

(
n

i

)
(b − 2)i.

Thus |M(R)| < 2
[
(b − 2)(b − 1)n

]r
as claimed. �

In order to apply this combinatorial lemma to Support Vector Machines, let us
consider now the case of separating hyperplanes in R

d (the generalization to Support
Vector Machines being straightforward). Assume that X = R

d and Y = {−1, +1}.
For any sample (X)(k+1)N

i=1 , let

R(X(k+1)N
1 ) = max{‖Xi‖ : 1 ≤ i ≤ (k + 1)N}.

Let us consider the set of parameters

Θ =
{
(w, b) ∈ R

d × R : ‖w‖ = 1
}
.

For any (w, b) ∈ Θ, let gw,b(x) = 〈w, x〉 − b. Let h be some fixed integer and let
γ = R(X(k+1)N

1 )γh, where γh is defined by equation (4.6, page 148).
Let us define ζ : R → Z by

ζ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−5 when r ≤ −4γ,

−3 when −4γ <r ≤ −2γ,

−1 when −2γ <r ≤ 0,

+1 when 0 <r ≤ 2γ,

+3 when 2γ <r ≤ 4γ,

+5 when 4γ <r.
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Let Gw,b(x) = ζ
[
gw,b(x)

]
. The fat shattering dimension (as defined in 4.2.1) of(

X
(k+1)N
1 ,

{
(Gw,b + 7)/2 : (w, b) ∈ Θ

})
is not greater than h (according to Theorem 4.2.4, page 145), therefore there is
some set F of functions from X

(k+1)N
1 to {−5,−3,−1, +1, +3, +5} such that

log
(
|F|
)
≤ log

[
20(k + 1)N

]{ h

log(2)

[
log
(

4(k + 1)N
h

)
+ 1

]
+ 1

}
+ log(2).

and for any (w, b) ∈ Θ, there is fw,b ∈ F such that sup
{
|fw,b(Xi)−Gw,b(Xi)| : i =

1, . . . , (k + 1)N
}
≤ 2. Moreover, the choice of fw,b may be required to depend on

(Xi)
(k+1)N
i=1 in an exchangeable way. Similarly to Theorem 3.2.3 (page 116), it can

be proved that for any partially exchangeable probability distribution P ∈ M1
+(Ω),

with P probability at least 1 − ε, for any fw,b ∈ F,

1
kN

(k+1)N∑
i=N+1

1
[
fw,b(Xi)Yi ≤ 1

]
≤ k + 1

k
inf

λ∈R+

[
1 − exp(− λ

N )
]−1

{
1−

exp
[
− λ

N2

N∑
i=1

1
[
fw,b(Xi)Yi ≤ 1

]
−

log
(
|F|
)
− log(ε)

N

]}

− 1
kN

N∑
i=1

1
[
fw,b(Xi)Yi ≤ 1

]
.

Let us remark that

1
{

21
[
gw,b(Xi) ≥ 0

]
− 1 �= Yi

}
= 1

[
Gw,b(Xi)Yi < 0

]
≤ 1

[
fw,b(Xi)Yi ≤ 1

]
and

1
[
fw,b(Xi)Yi ≤ 1

]
≤ 1

[
Gw,b(Xi)Yi ≤ 3

]
≤ 1

[
gw,b(Xi)Yi ≤ 4γ

]
.

This proves the following theorem.

Theorem 4.2.8. Let us consider the sequence (γh)h∈N∗ defined by equation (4.6,
page 148). With P probability at least 1 − ε, for any (w, b) ∈ Θ,

1
kN

(k+1)N∑
i=N+1

1
{

21
[
gw,b(Xi) ≥ 0

]
− 1 �= Yi

}

≤ k + 1
k

inf
λ∈R+,h∈N∗

[
1 − exp(− λ

N )
]−1

{
1−

exp

[
− λ

N2

N∑
i=1

1
[
gw,b(Xi)Yi ≤ 4Rγh

]

−
log
[
20(k + 1)N

]{
h

log(2) log
(

4e(k+1)N
h

)
+ 1

}
+ log

[
2h(h+1)

ε

]
N

]}
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− 1
kN

N∑
i=1

1
[
gw,b(Xi)Yi ≤ 4Rγh

]
.

Properly speaking this theorem is not a margin bound, but more precisely a margin
quantile bound, since it covers the case where some fraction of the training sample
falls within the region defined by the margin parameter γh which optimizes the
bound.

As a consequence though, we get a true (weaker) margin bound: with P proba-
bility at least 1 − ε, for any (w, b) ∈ Θ such that

γ = min
i=1,...,N

gw,b(Xi)Yi > 0,

1
kN

(k+1)N∑
i=N+1

1
[
gw,b(Xi)Yi < 0

]
≤ k+1

k

{
1 − exp

[
− log

[
20(k+1)N

]
N

{
16R2+2γ2

log(2)γ2 log
(

e(k+1)Nγ2

4R2

)
+ 1

}
+

1
N

log( ε
2 )
]}

.

This inequality compares favourably with similar inequalities in Cristianini et al.
(2000), which moreover do not extend to the margin quantile case as this one.

Let us also mention that it is easy to circumvent the fact that R is not observed
when the test set X

(k+1)N
N+1 is not observed.

Indeed, we can consider the sample obtained by projecting X
(k+1)N
1 on some

ball of fixed radius Rmax, putting

tRmax(Xi) = min
{

1,
Rmax

‖Xi‖

}
Xi.

We can further consider an atomic prior distribution ν ∈ M1
+(R+) bearing on Rmax,

to obtain a uniform result through a union bound. As a consequence of the previous
theorem, we have

Corollary 4.2.9. For any atomic prior ν ∈ M1
+(R+), for any partially exchange-

able probability measure P ∈ M1
+(Ω), with P probability at least 1 − ε, for any

(w, b) ∈ Θ, any Rmax ∈ R+,

1
kN

(k+1)N∑
i=N+1

1
{

21
[
gw,b ◦ tRmax(Xi) ≥ 0

]
− 1 �= Yi

}

≤ k + 1
k

inf
λ∈R+,h∈N∗

[
1 − exp(− λ

N )
]−1

{
1−

exp

[
− λ

N2

N∑
i=1

1
[
gw,b ◦ tRmax(Xi)Yi ≤ 4Rmaxγh

]

−
log
[
20(k + 1)N

]{
h

log(2) log
(

4e(k+1)N
h

)
+ 1

}
+ log

[
2h(h+1)
εν(Rmax)

]
N

]}
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− 1
kN

N∑
i=1

1
[
gw,b ◦ tRmax(Xi)Yi ≤ 4Rmaxγh

]
.

Let us remark that tRmax(Xi) = Xi, i = N + 1, . . . , (k + 1)N , as soon as we
consider only the values of Rmax not smaller than maxi=N+1,...,(k+1)N‖Xi‖ in this
corollary. Thus we obtain a bound on the transductive generalization error of the
unthresholded classification rule 21

[
gw,b(Xi) ≥ 0

]
− 1, as well as some incitation to

replace it with a thresholded rule when the value of Rmax minimizing the bound
falls below maxi=N+1,...,(k+1)N‖Xi‖.
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