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Generalized Accept–Reject sampling

schemes
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University of Florida, Université Paris 9 – Dauphine and Cornell University

Abstract: This paper extends the Accept–Reject algorithm to allow the pro-
posal distribution to change at each iteration. We first establish a necessary
and sufficient condition for this generalized Accept–Reject algorithm to be
valid, and then show how the resulting estimator can be improved by Rao-
Blackwellization. An application of these results is to the perfect sampling
technique of Fill (1998), which is a generalized Accept–Reject algorithm.

1. Preface by GC

This paper is especially appropriate for a volume dedicated to Herman Rubin, as
he was the first person who ever mentioned the Accept–Reject algorithm to me
although, at the time, I didn’t understand a word that he was talking about. I was
a graduate student at Purdue in the mid-70s, and Herman was always working on
some problem, and if he saw you in the hall he would tell you about it. One day
he told me he was working on an algorithm that generated “test exponentials” to
get normal random variables. I had no idea why anyone would want to do such a
thing (remember the 70s ? – we were proving theorems!). Herman eventually wrote
a technical report, but I don’t think I ever read it and don’t know if it ever was
published. And then Herman got interested in other things. But when I think of
this story I often wonder how much further along Monte Carlo methods would be
today if Herman kept his interest in those “test exponentials”!

2. Introduction

Accept–Reject algorithms are based on the use of a proposal distribution g which
serves to simulate from a given target density f , when the ratio f/g is bounded by
1/ε, say. The standard Accept–Reject Algorithm is

Algorithm A1—Accept–Reject.
At iteration i (i ≥ 1)

1. Generate Xi ∼ g and Ui ∼ U([0, 1]), independently.

2. If Ui ≤ εf(Xi)/g(Xi), accept Xi ∼ f ;

3. otherwise, move to iteration i + 1.
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e-mail: xian@ceremade.u-dauphine.fr
3Cornell University, Ithaca, NY 14851. e-mail: mtw1@cornell.edu
Keywords and phrases: Monte Carlo methods, Accept–Reject, stopping rule, recycling, uni-

form variable.
AMS 2000 subject classifications: 65C60.

342

http://www.imstat.org/publications/lecnotes.htm
http://www.imstat.org
mailto:casella@stat.ufl.edu
mailto:xian@ceremade.u-dauphine.fr
mailto:mtw1@cornell.edu


Generalized Accept–Reject sampling schemes 343

Since the inequality is not always satisfied, the algorithm generates pairs (Xi, Ui)
that are rejected. These pairs can be recycled in many ways, including the Rao-
Blackwellizing approach by Casella and Robert (1996) which replaces the stan-
dard estimator δ based on the accepted pairs with the conditional expectation
E[δ|x1, . . . , xn, n], which integrates out the uniform variables.

We give in this note a necessary and sufficient condition for a generalized
Accept–Reject algorithm to be valid and show that Rao–Blackwellization also ap-
plies here, allowing the use of the rejected samples to produce an improved estima-
tor.

This work was partially motivated by that of Fill (1998), who developed an
interruptible perfect sampling algorithm as an alternative to Propp and Wilson’s
(1996) coupling from the past technique. Perfect sampling results in iid outputs
from the stationary distribution of the MCMC Markov chain (see Dimakos (2001),
Robert and Casella (1999) or Casella, Lavine and Robert (2000) for introductions
to perfect sampling). At the core of Fill’s algorithm, described in Section 5, is an
Accept–Reject algorithm with the feature that the proposal distribution can be
modified at each step.

The possibility of changing the proposal distribution at each failure/rejection
implies that his method does not fall in the category of a standard Accept–Reject
algorithm. It is this more general Accept–Reject algorithm that we are interested
in.

3. A generalized Accept–Reject algorithms

We consider the following extension to the standard Accept–Reject algorithm:

Algorithm A2—Generalized Accept–Reject.
At iteration i (i ≥ 1)

1. Generate Xi ∼ gi and Ui ∼ U([0, 1]), independently.

2. If Ui ≤ εif(Xi)/gi(Xi), accept Xi ∼ f ;

3. otherwise, move to iteration i + 1. -

Thus, at each iteration i (0 < i < ∞), the algorithm uses a different pair (gi, εi)
such that εif(x)/gi(x) ≤ 1, uniformly in x. Each of these pairs is thus acceptable
for the original Accept–Reject scheme. However, the proposal distribution keeps
changing at each reject iteration and may be more adaptive than the single Accept–
Reject proposal distribution, or even the adaptive rejection algorithm of Gilks and
Wild (1992), which uses an envelope on the target density.

If the proposal distribution is parameterized by a parameter θ, we can select a
pre-determined sequence of values of θ to monitor the performance in simulating
the distribution of interest f . The value of θ at the time of acceptance can then be
exploited in further simulations without jeopardizing the independence properties
of the algorithm.

The extension of the Accept–Reject Algorithm does not hold in full generality, in
the sense that the distribution of the accepted random variable may not necessarily
be the correct one. A minimum requirement must be imposed on the sequence of
the εi’s (and hence on the gi’s).



344 G. Casella et al.

If we denote by Z the (possibly defective) random variable that is output by
Algorithm A2, Z has the cdf (for simplicity, in the univariate continuous case):

P (Z ≤ z)

=
∞∑

i=1

P (Z ≤ z, Z = Xi)

=
∞∑

i=1

P
(
Xi ≤ Z, Ui ≤ f(Xi)εi/gi(Xi)

) i−1∏
j=1

P
(
Uj ≥ f(Xj)εj/gj(Xj)

)

=
∞∑

i=1

∫ z

−∞

f(x)εi

gi(x)
gi(x) dx

i−1∏
j=1

(1 − εj) =
∫ z

−∞
f(x) dx

∞∑
i=1

εi

i−1∏
j=1

(1 − εj).

Therefore, the output is distributed from f if
∑∞

i=1 εi

∏i−1
j=1(1 − εj) = 1. The fol-

lowing theorem ties this condition to the divergence of an associated series.

Theorem 3.1. The Generalized Accept–Reject Algorithm is valid if, and only if,
the series

∑∞
i=1 log(1 − εi) diverges, since

∞∑
i=1

εi

i−1∏
j=1

(1 − εj) = 1 if and only if
∞∑

i=1

log(1 − εi) diverges. (1)

Proof. Note first that
∑

εi

∏i−1
j=1(1 − εj) necessarily converges to a limit less than,

or equal to, 1 since

(a) for every n ≥ 1,

ξn =
n∑

i=1

εi

i−1∏
j=1

(1 − εj)

= ε1 + (1 − ε1)
{
ε2 + (1 − ε2)[. . . (1 − εn−1)εn) . . .]

}
≤ ε1 + (1 − ε1)

{
ε2 + (1 − ε2)[. . . εn−1 + (1 − εn−1)) . . .]

}
= 1.

(b) the sequence {ξn} is increasing with n.

Now, {ξn} converges to 1 if, and only if, for every 0 < η < 1, there exists n0 such
that

ξn > 1 − η for n > n0. (2)

The condition (2) is equivalent to, for n > n0,

ε1 + (1 − ε1)
{
ε2 + (1 − ε2)[ . . . (1 − εn−1)εn) . . .]

}
> 1 − η

⇔ ε2 + (1 − ε2)
{
ε3 + . . . (1 − εn−1)εn] . . .

}
>

1 − ε1 − η

1 − ε1
= 1 − η

1 − ε1
⇔ . . .

⇔ εn > 1 − η∏n−1
i=1 (1 − εi)

. (3)

The sequence ωn =
∏n−1

i=1 (1− εi) with ω1 = 1 is decreasing and nonnegative. Thus,
it either converges to 0 or to α > 0. If it converges to 0, that is, if

∑
log(1 − εi)
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diverges, the ratio η/ωn goes to +∞ with n and the right hand side in (3) is negative
for n large enough, which ensures that (2) holds.

If {ωn} converges to α > 0, the series
∑

log(1 − εi) converges and log(1 − εn)
goes to 0 as n goes to infinity by Cauchy’s criterion. Thus, {εn} converges to 0.
Therefore, for δ small enough, there exists n1 such that εn < δ for n > n1. If
one chooses η such that 1 − η

α = δ and if (2) holds, one gets εn < δ < εn for
n > max(n0, n1), which is impossible.

This result has several implications. First, it shows that continued modifications
of the proposal distribution in the Accept–Reject algorithm are legitimate as long
as the acceptance rate εn does not converge to zero too fast. Second, the acceptance
rate εn does not have to go to 1 with n, so some εn’s (even an infinity of them)
may be equal to 0, and the algorithm remains valid. Note however, that if one εn

is equal to 1, the sequence terminates.
Theorem 3.1 applies to and validates the generalized Accept–Reject algorithm

not only when εn is constant, but also when the εn’s are periodic in n, and when
the sequence {εn} is uniformly bounded away from 0.

4. Rao–Blackwellization

The output from the generalized Accept–Reject algorithm is as follows: A sequence
Y1, Y2, . . . of independent random variables is generated from the gi’s along with a
corresponding sequence U1, U2, . . . of uniform random variables. We show how to
extend the results of Casella and Robert (1996) to this more general algorithm.

Given a function h, the Accept–Reject estimator of E
f{h(X)}, based upon a

sample X1, . . . , Xt, with t fixed, is made of the t accepted values among the Yj ’s
and is given by

τ̂1 =
1
t

t∑
i=1

h(Xi) =
1
t

N∑
i=1

I(Ui ≤ Wi)h(Yi), (4)

where N , the number of Yj ’s generated, is a random integer satisfying

N∑
i=1

I(Ui ≤ Wi) = t and
N−1∑
i=1

I(Ui ≤ Wi) = t − 1,

with Wi = f(Yi)εi/gi(Yi). By the Rao-Blackwell Theorem, the conditional expec-
tation

τ̂2 =
1
t
E

{
N∑

i=1

I(Ui ≤ Wi)h(Yi)
∣∣∣N, Y1, . . . , YN

}
(5)

improves upon (4).
The joint distribution of (N, Y1, . . . , YN , U1, . . . , UN ) is given by

P (N = n, Y1 ≤ y1, . . . , Yn ≤ yn, U1 ≤ u1, . . . , Un ≤ un)

=
∫ yn

−∞
gn(vn)(un ∧ wn)dvn

∫ y1

−∞
. . .

∫ yn−1

−∞
g1(v1) . . . gn−1(vn−1)

×
∑

(i1,...,it−1)

t−1∏
j=1

(wij ∧ uij )
n−1∏
j=t

(uij − wij )
+dv1 . . . dvn−1,

where w = εf(v)/g(v) (with appropriate subscripts) and the last sum is over all
subsets of {1, . . . , n− 1} of size t− 1. Therefore, the conditional density of the Ui’s
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is given by

f(u1, . . . , un|N = n, y1, . . . , yn)

=




∑
(i1,...,it−1)

t−1∏
j=1

wij

n−1∏
j=t

(1 − wij )




−1

×




∑
(i1,...,it−1)

t−1∏
j=1

I(uij ≤ wij )
n−1∏
j=t

I(uij > wij )


 I(un ≤ wn)

wn
,

where, analogously, w = εf(y)/g(y). Using this distribution we can calculate, con-
ditional on (N, y1, . . . , yN ), the probability ρi of the events {Ui ≤ wi} and thus
derive the weights of h(Yi) in the estimator τ̂2. The calculations involve averaging
over permutations of the realized sample and yield, for i < n,

ρi = wi

∑
(i1,...,it−2)

t−2∏
j=1

wij

n−2∏
j=t−1

(1 − wij )
/ ∑

(i1,...,it−1)

t−1∏
j=1

wij

n−1∏
j=t

(1 − wij ), (6)

while ρn = 1. The numerator sum is over all subsets of {1, . . . , i−1, i+1, . . . , n−1}
of size t−2, and the denominator sum is over all subsets of size t−1. The following
result therefore holds.

Theorem 4.1. For N = n, the Rao–Blackwellized version of (4) is given by

τ̂2 =
1
t

n∑
i=1

ρih(Yi)

where ρi is given by equation (6).

5. Perfect sampling

A perfect sampling algorithm for a Markov chain is an algorithm that produces a
random variable that is exactly distributed according to the stationary distribution
of the Markov chain using variables that are (typically) generated from the condi-
tional distributions of the chain. Perfect sampling in Markov chains originated with
the ingenious “coupling from the past” algorithm of Propp and Wilson (1996). In
practice, however, this algorithm has some drawbacks, such as – for example – not
being interruptible and thus creating biases in the output in cases of interruption
for insufficient memory and such.

An alternative, interruptible, perfect sampling algorithm was proposed by Fill
(1998). Since it is interruptible, Fill’s perfect sampling algorithm seems to be some-
what more practical than coupling from the past, although it requires delicate
reversibility and coupling arrangements as shown below.

Fill’s algorithm (see also Fill et al. 1999) can be described as follows:

(a) Starting at an arbitrary state 0, run a finite state Markov chain (Xi) for t
(fixed) steps, and record Xt = x.

(b) Starting Markov chains in at all possible states at time t, run them in reversed
time, coupled with the original chain.

(c) If all these chains have coalesced, that is, if they all are in state 0 at time 0,
then accept Xt = x as an observation from the stationary distribution. If not,
reject Xt and start again, possibly with different values of 0 and of t.
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We now relate the result of the previous sections to Fill’s algorithm.

◦ The surprising feature of this method is that it is a rejection algorithm with
the clever twist that the probability of acceptance is exactly the probability
of coalescence. This circumvents the problem of calculating this acceptance
probability, which is typically not feasible.

◦ Fill’s (1998) algorithm depends on a parameter t, which is the number of
forward steps in the Markov chain and which can be modified at each iteration,
by, for instance, doubling the value of t in a typical CFTP manner. Thus,
the proposal distribution is changing at every iteration, and the algorithm is
covered by Theorem 3.1 (but is not covered by the standard Accept–Reject
algorithm).

◦ For Theorem 3.1 to validate Fill’s (1998) algorithm, the series
∑

log(1−εi) of
acceptance probabilities εi must diverge. The difficulty then lies in establishing
this without the εi’s being available, which is the essence of Fill’s technique.
However, if the selection is periodic, Fill’s algorithm is indeed valid, provided
some εi’s are different from 0. In fact, in most practical cases Fill’s algorithm
will have an increasing acceptance rate, so will be covered by Theorem 3.1.

◦ The application of Theorem 4.1 to Fill’s algorithm requires some further work
since, in that case, the weights wi = f(xi)/Kt(0, xi) are not directly available.
Note however that in some setups Kt(0, x) may be known, while, in others,
it can be estimated, since it is also equal to the probability of acceptance,
that is, the probability of coalescence in state 0. Thus, we can implement the
Rao–Blackwellized improvement with estimated weights.
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