CHAPTER 10

Canonical Correlation
Coefficients

This final chapter is concerned with the interpretation of canonical correla-
tion coefficients and their relationship to affine dependence and indepen-
dence between two random vectors. After using an invariance argument to
show that population canonical correlations are a natural measure of affine
dependence, these population coefficients are interpreted as cosines of the
angles between subspaces (as defined in Chapter 1). Next, the sample
canonical correlations are defined and interpreted as cosines of angles. The
distribution theory associated with the sample coefficients is discussed
briefly.

When two random vectors have a joint normal distribution, indepen-
dence between the vectors is equivalent to the population canonical correla-
tions all being zero. The problem of testing for independence is treated in
the fourth section of this chapter. The relationship between the MANOVA
testing problem and testing for independence is discussed in the fifth and
final section of the chapter.

10.1. POPULATION CANONICAL CORRELATION COEFFICIENTS

There are a variety of ways to introduce canonical correlation coefficients
and three of these are considered in this section. We begin our discussion
with the notion of affine dependence between two random vectors. Let
XeW,(,))and Y € (W, (-, -),) be two random vectors defined on the
same probability space so the random vector Z = { X, Y) takes values in the
vector space V' @ W. It is assumed that Cov(X) = =, and Cov(Y) = =,,
both exist and are nonsingular. Therefore, Cov(Z) exists (see Proposition
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2.15) and is given by

> >
S = Cov(Z) = (2;; > )

Also, the mean vector of Z is

p=6Z=(6X,6Y) = (u,, us).

Definition 10.1. Two random vectors U and U, in (V, (-, -),) are affinely
equivalent if U = AU + a for some nonsingular linear transformation 4 and
some vector a € V.

It is clear that affine equivalence is an equivalence relation among
random vectors defined on the same probability space and taking values
in V.

We now consider measures of affine dependence between X and Y, which
are functions of p = {6X,&6Y) and = = Cov(Z) where Z = (X, Y). Let
m(p, Z) be some real-valued function of p and X that is supposed to
measure affine dependence. If instead of X we observe X, which is affinely
equivalent to X, then the affine dependence between X and Y should be the
same as the affine dependence between X and Y. Similarly, if ¥ is affinely
equivalent to Y, then the affine dependence between X and Y should be the
same as the affine dependence between X and ¥. These remarks imply that
m(p, Z) should be invariant under affine transformations of both X and Y.
If (A, a) is an affine transformation on V, then (4, a)v = Av + a where 4
is nonsingular on ¥ to V. Recall that the group of all affine transformations
on V to V is denoted by A/(V') and the group operation is given by

(4, a,)(4,,a,) = (4,4,, Aja, + ay).

Also, let AI(W) be the affine group for W. The product group AI(V) X
AI(W) acts on the vector space V' @ W in the obvious way:

((4,a), (B, b)){v,w)={Av + b, Bw + b).

The argument given above suggests that the affine dependence between X
and Y should be the same as the affine dependence between (4, a) X and
(B, b)Y for all (4,a)€ AI(V) and (B, b) € AI(W). We now need to
interpret this requirement as a condition on m(u, 2). The random vector

((A4,a),(B,b)){X,Y)={AX + a, BY + b}
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has a mean vector given by
((4,a), (B, b)){p, 1y} = {A4p, + a, Ap, + b)
and a covariance given by

AS, A’ AS,B’
BS,A' BS,B’

Therefore, the group AI(V) X AI(W) acts on the set
0={(p,Z)pevVvewW,2>0,%,>0,i=1,2).
For g = ((4, a), (B, b)) € AI(V) X AI(W), the group action is given by
(1, Z) - (g1, 8(2))
where
g = {Ap, + a, By, + b)
and

g(2) = ;o .-
BS,A' BS,B

Requiring the affine dependence between X and Y to be equal to the affine
dependence between (A4, a) X and (B, b)Y simply means that the function
m defined on © must be invariant under the group action given above.
Therefore, m must be a function of a maximal invariant function under the
action of AI(V') X AI(W') on ©. The following proposition gives one form
of a maximal invariant.

Proposition 10.1. Let g = dimV, r = dim W, and let ¢ = min{q, r). Given

> = (211 212),
212 222

which is positive definite on V@& W, let A, > --- > A, > 0 be the ¢ largest
eigenvalues of

A(Z) = 22,253,
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where 2,, = 2{,. Define a function 4 on © by
h(}l., 2) = (>\1’ }\2’---, A1),

where A, > --- > A, are defined in terms of = as above. Then A is a
maximal invariant function under the action of G = AI(V) X AI(W) on O.

Proof. Let{v,,...,v,) and {w,,..., w,} be fixed orthonormal sets in ¥ and
W. For each 2, define Q,,(Z) by

t
0,,(2) = Z Ali/zvtii
i=1

where A; > --- > A, are the ¢ largest eigenvalues of A(Z). Given (p, 2) €
©, we first claim that there exists a g € G such that gu = 0 and

IV QIZ(E)
8(2) = ((Qn(z))' 1, )

The proof of this claim follows. For g = ((4, a), (B, b)), we have

gy [AZnd AZpB
8(2) = B3, A BS,B'|

Choose 4 = TZ[,'/? and B = AZ},'/? where T € O(V), A € O(W), and
3172 is the inverse of the positive definite square root of 2, i = 1,2. For
each T and A,

AS, A = TS5, ST = 1,
BB = A3 ?3,35 N =1y,
and
AS,B = TS;1/25,55/ 20,

Using the singular value decomposition, write

t
Ay =222,252 = ¥ N/x,0y,

i=1
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where {x,,..., x,} and {(y,,...,y,) are orthonormal sets in ¥ and W,
respectively. This representation follows by noting that the rank of A, is at
most ¢ and

Ap Ay, = 2522, 252,, 2,2
has the same eigenvalues as A(Z), which are A; > --- > A, > 0. For 4 and
B as above, it now follows that
t
Az, B’ = Y} N/*(Tx;)o(4y,).
i=1
Choose I so that I'x; = v, and choose A so that Ay, = w,. Then we have
AZ,B = 0,(Z)

so g(2) has the form claimed. With these choices for A and B, now choose
a= —Ap, and b = —Bp,. Then

gr = g{p, pa) = ((4, a), (B, b)){p), 1)
= {Ap, + a, Bu, + b} = (0,0} = 0.

The proof of the claim is now complete. To finish the proof of
10.1 first note that Proposition 1.39 implies that 4 is a G-invariant function.
For the maximality of A, suppose that (g, 3) = h(», ¥). Thus

Q12(2) = le(‘l'),
which implies that there exists a g and g such that
gn =0, gv =0,

and

IV QIZ(Z)

ey 1

= g(¥).
Therefore,

g7'8(»,¥) = (u,2)

SO h is maximal invariant. O
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The form of the singular value decomposition used in the proof of
is slightly different than that given in Theorem 1.3. For a
linear transformation C of rank k defined on (V, (-, -),) to (W, (-, ),),
Theorem 1.3 asserts that

k
C =Y pw0x,
i

where p; > 0, {x,,..., x;}, and {w,,..., w,} are orthonormal sets in ¥ and
W. With ¢ = dimV, r = dim W, and ¢ = min{q, r}, obviously k < ¢. When
k <t, it is clear that the orthonormal sets above can be extended to
{xy,..., x,} and {w,,..., w,}, which are still orthonormal sets in ¥ and W.
Also, setting p; = 0 fori = k + 1,..., t, we have

t
C =) pwDx,,
1

and p? > --- > p? are the t largest eigenvalues of both CC’ and C’C. This
form of the singular value decomposition is somewhat more convenient in
this chapter since the rank of C is not explicitly mentioned. However, the
rank of C is just the number of p;, which are strictly positive. The
corresponding modification of Proposition 1.48 should now be clear.

Returning to our original problem of describing measures of affine
dependence, say m(p, =), [Proposition 10.1]demonstrates that m is invariant
under affine relabelings of X and Y iff m is a function of the ¢ largest
eigenvalues, A|,..., A,, of A(Z). Since the rank of A(Z) is at most ¢, the
remaining eigenvalues of A(Z), if there are any, must be zero. Before
suggesting some particular measures m(p, 2), the canonical correlation
coefficients are discussed.

Definition 10.2. In the notation of Proposition 10.1] let p, = A'/2, i =
1,..., t. The numbers p, > p, > -+ > p, > 0 are called the population
canonical correlation coefficients.

Since p, is a one-to-one function of A;, it follows that the vector
(py»---» p,) also determines a maximal invariant function under the action
of G on ©. In particular, any measure of affine dependence should be a
function of the canonical correlation coefficients.

The canonical correlation coefficients have a natural interpretation as
cosines of angles between subspaces in a vector space. Recall that Z = { X, Y}
takes values in the vector space V' & W where (¥, (-, -);) and (W, (-, ),)
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are inner product spaces. The covariance of Z, with respect to the natural
inner product, say (-, ), on V & W, is

> >
s - ( 1 12).
2y 2p

In the discussion that follows, it is assumed that 2 is positive definite. Let
(-, *)s denote the inner product on ¥V & W defined by

(21, 25)5 = (21, 22,) = COV[(Zh Z), (z,, Z)]’

for z;, z, € V & W. The vector space V can be thought of as a subspace of
V @ W—namely, just identify V with V @ {0} C V & W. Similarly, W is a
subspace of V' @ W. The next result interprets the canonical correlations as
the cosines of angles between the subspaces ¥ and W when the inner
producton V& Wis (-, *)s.

Proposition 10.2. Given Z, the canonical correlation coefficients p; > - - -
> p, are the cosines of the angles between ¥V and W as subspaces in the
inner product space (V& W, (-, -)s).

Proof. Let P, and P, be the orthogonal projections (relative to (-, -)s) onto
V & {0} and W & {0}, respectively. In view of Proposition 1.48 and Defini-
tion 1.28, it suffices to show that the 7 largest eigenvalues of P,P,P, are
N, =p2i=1,...,t Weclaim that

C = (IV 2"1_1‘212)
0 0

is the orthogonal projection onto ¥V & {0). For {(v,w} € V & W,

—1
(IOV 2“02‘2)(0,w) ={v+ ='S,w,0}

so the range of C, is V @ (0} and C, is the identity on V & {0). That
C? = C, is easily verified. Also, since

S = (Ell 212)’
221 E22

the identity C{2 = ZC, holds. Here C is the adjoint of C, relative to the
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inner product (-, -)—namely,

, I, o0
“T st o)
21<11

This shows that C, is self-adjoint relative to the inner product (-, -)5. Hence
C, is the orthogonal projection onto ¥V @ {0} in (V & W, (-, -)s). A similar
argument yields

0 0
C = _
2 (2221221 IW)

as the orthogonal projection onto {0} ® W in (V & W, (-, -)s). Therefore
P, = C,,i = 1,2, and a bit of algebra shows that

PP, = (A(E) c)

0 0
where A(Z) = £,'2,25,',, and
C=A(2)Z;'S,,.
Thus the characteristic polynomial of P, P, P, is given by
p(a) = det[P,P,P, — aI] = (—a) det[A(Z) — al} ]

where r = dim W. Since ¢ = min{gq, r} where ¢ = dim V, it follows that the ¢
largest eigenvalues of P, P, P, are the ¢ largest eigenvalues of A(Z). These
are p3 > -+ > p?, so the proof is complete. ]

Another interpretation of the canonical correlation coefficients can be
given using Proposition 1.49 and the discussion following Definition 1.28.

Using the notation adopted in the proof of write

t
PP, = Z p;€,0m;

i=1

where {7,,..., 1,} is an orthonormal set in ¥ & {0} and (§,,..., &,) is an
orthonormal set in {0} ® W. Here orthonormal refers to the inner product
(-, -)son V & W, as does the symbol O in the expression for P, P, —that is,
forz,z, e Ve W,

(zlElzz)z = (22, Z)zzl = (Zz, 22)21-
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The existence of this representation for P, P, follows from Proposition 1.48,
as does the relationship

("i’ gj)z = 8ijpj

fori, j=1,..., t. Define the sets D,; and D,,, i = 1,..., t, as in Proposition
1.49 (with M, = V' & (0} and M, = {0} & W), so

sup sup (9,§)s = ("li’ gi)E =p;
neD,,ﬁGDZ,

fori =1,..., t. To interpret p,, first consider the case i = 1. A vector 7 is in
D, iff

1 = {v,0}, vEV
and
1=(n,2n)= (v, Z0), = var(v, X),.
Similarly, ¢ € D,, iff
£={0,w)}, wew
and
1=(¢2¢)=(w,2,,w), = var(w, Y),.
However, for n = {v,0} € D, and £ = {0, w} € D,,,
(n, &)z = (v, 212“’)1 = cov{(v, X)y, (w, Y),}.
This is just the ordinary correlation between (v, X), and (w, Y), asv and w
have been normalized so that 1 = var(v, X), = var(w, Y),. Since (7, £)s
< p, for all € D, and £ € D,,, it follows that for every x € V, x = 0,
and y € W, y = 0, the correlation between (x, X), and (y,Y), is no
greater than p,. Further, writing 7, = {v,,0) and §, = {0, w,}, we have
pr = (m, &)z = (my, 2§)
= (v, Elzwl)l = cov{(v,, X)l, (wy, Y)2>,

which is the correlation between (v,, X), and (w,, Y),. Therefore, p, is the
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maximum correlation between (x, X), and (y, Y), for all nonzero x € V'
and y € W. Further, this maximum correlation is achieved by choosing
x=v,andy = w,.

The second largest canonical correlation coefficient, p,, satisfies the
equality

sup sup (m,§)z = ("IZa 52)2 = pPy-
nE€D, €Dy,

A vector 7 is in D, iff

= (0,0}, vEV

1= (71, "1)2 = (09 2110)1

and
0=(n,m)s=(v,Z0)),.
Also, a vector £ is in D,, iff
(E={0,w), wew

1=(£8)s=(w, 222“’)2

and
0= (£, §1)2 = (W, 222w1)2'

These relationships provide the following interpretation of p,. The maxi-
mum correlation between (x, X), and (y, Y), is p; and is

p, = cov{(v,, X),, (w1, Y)y)

since 1 = var(v,, X), = var(w,, Y),. Suppose we now want to find the
maximum correlation between (x, X), and (y, Y), subject to the condition

(1 {COV((X, X)ls(vl’X)l)=O
cov{(y,Y)z, (W), Y),} = 0.

Clearly (i) is equivalent to

.. (x,20), =0
(i) {(y, 222W1)2 =0.
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Since correlation is invariant under multiplication of the random variables
by positive constants, to find the maximum correlation between (x, X), and
(y,Y), subject to (ii), it suffices to maximize cov{(x, X),, (y,Y),} over
those x’s and y’s that satisfy

(x,2x), =1,(x, 2y0,), =0

(7, 2y),=1,(», Zw1), = 0.

(iii) {

However, x € V satisfies (iii) iff n = (x,0} is in D, and y € W satisfies (iii)
iff £ = {0, y} is in D,,. Further, for such x, y, 1, and §,

COV{(X, X)l’ (y9 Y)2} = ('7, g)Z

Thus maximizing this covariance subject to (iii) is the same as maximizing
(n, é)s for n € D}, and £ € D,,. Of course, this maximum is p, and is
achieved at 7, € D, and &, € D,,. Writing 7, = {v,,0) and £, = {0, w,}, it
is clear that v, € V and w, € W satisfy (iii) and

cov{(v,, X);, (wy, Y),} =p,.

Furthermore, Proposition 1.48 shows that

0=(n,%)s=(n,, §1)2,
which implies that

0 = cov{(vy, X);, (wy, Y),} = cov{(v;, X),, (wy, Y),).

Therefore, the problem of maximizing the correlation between (x, X), and
(»,Y), (subject to the condition that the correlation between (x, X), and
(v, X), be zero and the correlation between (y, Y), and (w,, Y), be zero)
has been solved.

It should now be fairly clear how to interpret the remaining canonical
correlation coefficients. The easiest way to describe the coefficients is by
induction. The coefficient p, is the largest possible correlation between
(x, X), and (y, Y), for nonzero vectors x € V and y € W. Further, there
exist vectors v; € V and w; € W such that

cov{(v,, X),, (wy, Y)z) =P
and

1 = var(v,, X), = var(w,, Y),.
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These vectors came from 7, and £, in the representation

t
PP, = Z p,£,0m;

i=1

given earlier. Since 1, € V & {0}, we can write 0, = {v;,0), i=1,..., ¢.
Similarly, §;, = {0,w,}, i = 1,..., t. Using Proposition 1.48, it is easy to
check that

cov{(vj, X)l, (Wi, Y),} = P8
cov{(vj, X)], (04, X),} = 8y

cov{(w;, Y),, (w,, Y)y) =8y

forj, k = 1,..., t. Of course, these relationships are simply a restatement of
the properties of &,,..., £, and 1,,..., n,. For example,

COV{(Dj, X)l’ (wk’ Y)Z) = (Uj’ 212wk)| = (nj’ gk)z = pjajk'

However, as argued in the case of p,, we can say more. Given p,,..., p, and
the vectors v,,..., v;_, and w,,..., w,_, obtained from 7,,...,n,_, and
£,,-.., &, consider the problem of maximizing the correlation between

(x, X), and (y,Y), subject to the conditions that

cov{(x, X),, (v, X),} =0, j=1,..,i—1
COV{(y,Y)Z, (WJ’Y)2}=0, _]= 1,...,i—1.

By simply unravelling the notation and using Proposition 1.49, this maxi-
mum correlation is p; and is achieved for x = v, and y = w,. This successive
maximization of correlation is often a useful interpretation of the canonical
correlation coefficients.

The vectors v,,..., v, and w,,. .., w, lead to what are called the canonical
variates. Recall that ¢ = dimV, r = dim W and ¢ = min{g, r}. For definite-
ness, assume that ¢ < r so ¢ = g. Thus {v,..., v,} is a basis for V and
satisfies

(Uj’ Ellvk)l = 8jk

forj,k=1,...,q9s0{v..., 0.} is an orthonormal basis for V relative to



PROPOSITION 10.3 415

the inner product determined by Z,,. Further, the linearly independent set
{wy,..., w,) satisfies

(Wj’ 222Wk)2 = 8jk

s0 {wy,..., w,} is an orthonormal set relative to the inner product de-
termined by Z,,. Now, extend this set to {w,,..., w,} so that this is an
orthonormal basis for W in the Z,, inner product.

Definition 10.3. The real-valued random variables defined by

X, = (v, X),, i=1,...,q
and
Y,=(w,Y),, i=1,...,r

are called the canonical variates of X and Y, respectively.

Proposition 10.3. The canonical variates satisfy the relationships

(i) varX;,=varY, = 1.
(ii) cov{X;,Y,} = p;0,.

These relationships hold for j = 1,..., g and kK = 1,..., r. Here, pl,.. s Py
are the canonical correlation coefficients.

Proof. This is just a restatement of part of what we have established above.
O

Let us briefly review what has been established thus far about the
population canonical correlation coefficients p,,..., p,. These coefficients
were defined in terms of a maximal invariant under a group action and this
group action arose quite naturally in an attempt to define measures of affine
dependence. Using Proposition 1.48 and Definition 1.28, it was then shown
that p,,..., p, are cosines of angles between subspaces with respect to an
inner product defined by 2. The statistical interpretation of the coefficients
came from the detailed information given in Proposition 1.49 and this
interpretation closely resembled the discussion following Definition 1.28.
Given X in (¥, (-, -),) and Y in (W, (-, -),) with a nonsingular covariance

2 pX
2 (3 2).
2:21 222
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the existence of special bases {v,,..., v,} and {wy,..., w,} for ¥ and W was
established. In terms of the canonical variates

X, = (v, X))y, Y;':(“’;"Y)z’
the properties of these bases can be written

1 =varX;=vary,

and

cov{ X;, Yj} =p;5;;
for i=1,...,q and j=1,..., r. Here, the convention that p, =0 for
i > t = min{q, r} has been used although p;, is not defined for i > 7. When
q < r, the covariance matrix of the variates Xj,..., X, Y,,..., Y, (in that
order) is

I, (DO)
2=
(poy 1,

where D is a g X g diagonal matrix with diagonal entries p; > --- > p, and

O is a g X (r — q) block of zeroes. The reader should compare this matrix
representation of = to the assertion of Proposition 5.7.

The final point of this section is to relate a prediction problem to that of
suggesting a particular measure of affine dependence. Using the ideas
developed in Chapter 4, a slight generalization of Proposition 2.22 is
presented below. Again, consider X € (V, (-, -);,) and Y € (W, (-, -),) with
bX = p, bY = p,, and

C (20 2
ov{X,Y} = s, =)

It is assumed that 3,, and 2,, are both nonsingular. Consider the problem
of predicting X by an affine function of Y—say CY + v, where C €
£(W,V) and v, € V. Let [-, -] be any inner product on ¥ and let || - || be
the norm defined by [-, -]. The following result shows how to choose C and
v, to minimize

&1 X — (CY + vy)||2.

Of course, the inner product [, -] on Vis related to the inner product (-, -),
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by

[01, 0] = (v, 4p0,),
for some positive definite 4.
Proposition 10.4. For any C € £(W, V) and v, € V, the inequality
EIX = (CY + 0o)lI” = (4o, 2y — 2p25'2y)
holds. There is equality in this inequality iff
vo = 0o = iy — 2251,
and
C=C=3,35"

Here, ( -, -) is the natural inner product on £(V, V) inherited from (V,
(' s ° ) 1 )

Proof. First, write
X-(CY+vy)=U, + U,
where
U=X- (CY'*' 130) =X—p — 225 (Y - py)
and
Uy=(C—-C)Y + 6, — v,.

Clearly, U, has mean zero. It follows from Proposition 2.17 that U, and U,
are uncorrelated and

Cov(U)) = 2, - 2,23,'3,,.
Further, from Proposition 4.3 we have &[U,, U,] = 0. Therefore,
61X = (CY + 0)lI> = 6||U, + Uy||* = §||U||% + 6||Uy)|?
= 5(U1, AOUI) + 5||U2”2 = 6<Ao, U15U1> + g”Uz”Z

= (4o, 2} — Z2,25'3,) + 6Ly,
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where the last equality follows from the identity
6&Uay, =2, - 21222_21221

established in Proposition 2.21. Thus the desired inequality holds and there
is equality iff &||U5||> = 0. But &||U,||? is zero iff U, is zero with probability

one. This holds iff v, =06, and C = C since Cov(Y) = Z,, is positive
definite. This completes the proof. O

Now, choose 4, to be =;;! in Proposition 10.4] Then the mean squared

error due to predicting X by CY + ©,, measured relative to 2;;', is
$(2) = (31, 2y = 2p35'Sy) = 61X = (CY + 5, )I1%.
Here, || - || is obtained from the inner product defined by

[v,0,]= (01, 21_11"2)-

We now claim that ¢ is invariant under the group of transformations
discussed in Proposition 10.1] and thus ¢ is a possible measure of affine
dependence between X and Y. To see this, first recall that { -, -) is just the
trace inner product for linear transformations. Using properties of the trace,
we have

¢(2) = <1, I 2:1_11/221222—2122121—11/2>

= tr(I - 21_11/22125‘-‘2—2122121—11/2)

=Y (-2)

i=1

where A, > --- >\, > 0 are the eigenvalues of 2;'/?3,3,'3, 3"/
However, at most ¢ = min{g, r} of these eigenvalues are nonzero and, by
definition, p; = N,/ 2 j=1,...,t, are the canonical correlation coefficients.
Thus

t

$(Z)=X(1-p)+(qg-1)

1

is a function of p,,..., p, and hence is an invariant measure of affine
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dependence. Since the constant g — ¢ is irrelevant, it is customary to use
t
6(2)=2 (1 - plz)
i=1

rather than ¢(2) as a measure of affine dependence.

10.2. SAMPLE CANONICAL CORRELATIONS

To introduce the sample canonical correlation coefficients, again consider
inner product spaces (V, (-, -),) and (W, (-, -),) and let (V & W, (-, -)) be
the direct sum space with the natural inner product (-, -). The observations
consist of n random vectors Z, =(X,Y)e Ve W, i=1,...,n. It is
assumed that these random vectors are uncorrelated with each other and
£(Z) = £(Z)) for all i, j. Although these assumptions are not essential in
much of what follows, it is difficult to interpret canonical correlations
without these assumptions. Given Z,,..., Z,, define the random vector Z
by specifying that Z takes on the values Z; with probability 1/n. Obviously,
the distribution of Z is discrete in ¥ @ W and places mass 1/n at Z, for
i =1,..., n. Unless otherwise specified, when we speak of the distribution
of Z, we mean the conditional distribution of Z given Z,,..., Z, as
described above. Since the distribution of Z is nothing but the sample
probability measure of Z,,..., Z,, we can think of Z as a sample approxi-
mation to a random vector whose distribution is £(Z,). Now, write Z =
{X,Y)with X € Vand Y € W so X is X, with probability 1/» and Y is ¥,
with probability 1/n. Given Z,,..., Z,, the mean vector of Z is

6Z=Z=

S |-

Yz =(X,7)
i=1

and the covariance of Z is

This last assertion follows from Proposition 2.21 by noting that
CovZ=6(Zz-Z)Nz-2Z)

since the mean of Z is Z. When ¥V = R? and W = R” are the standard
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coordinate spaces with the usual inner products, then S is just the sample
covariance matrix. Since S is a linear transformationon V& Wto Ve W,
S can be written as
Sy, S
S = ( 11 12 ) .

Su Sn

It is routine to show that

S22=%Zn:( i_Y)D(Yi_l?)

and S,, = Si,. The reader should note that the symbol O appearing in the
expressions for S}, S;,, and S,, has a different meaning in each of the three
expressions—namely, the outer product depends on the inner products on
the spaces in question. Since it is clear which vectors are in which spaces,
this multiple use of O should cause no confusion.

Now, to define the sample canonical correlation coefficients, the results
of are applied to the random vector Z. For this reason, we
assume that S = Cov Z is nonsingular. With ¢ = dimV, r = dim W, and
t = min{q, r}, the canonical correlation coefficients are the square roots of
the ¢ largest eigenvalues of

A(S) = S,‘,‘SQS—‘Q'SZI.

In the sampling situation under discussion, these roots are denoted by
r, = --+ > r,> 0 and are called the sample canonical correlation coefficients.
The justification for such nomenclature is that rZ,..., r? are the ¢ largest
eigenvalues of A(S) where S is the sample covariance based on Z,..., Z,.
Of course, all of the discussion of the previous section applies directly to the
situation at hand. In particular, the vector (ry,..., r,) is a maximal invariant
under the group action described in Also, ry,..., r, are the
cosines of the angles between the subspaces V' & {0) and {0} ® W in the
vector space V' @ W relative to the inner product determined by S.
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Now, let {v,,..., v,} and {w,..., w,} be the canonical bases for V" and

W. Then we have
cov{(”i’ X)), (Wj’ Y)z} = risij

for i=1,...,q9 and j = 1,..., r. The convention that r, =0 for i > ¢ is
being used. To interpret what this means in terms of the sample Z,,..., Z,,
consider r,. For nonzero x € V and y € W, the maximum correlation
between (x, X), and (y, Y), is r; and is achieved for x = v, and y = w,.
However, given Z,,..., Z,, we have

var(x, X), = var({x,0}, Z) = ({x,0}, S{x,0})

(x, X, - X);

X |-
.M=

= (x, Sllx)l =
1

1

and, similarly,

1 —
Var(y,Y)2=; Z(y’x_ Y)i'

i=1

An analogous calculation shows that

cou(x, XDy (V) =1 X (5 %= X), (1%~ F),

1
n i
Thus var(x, X), is just the sample variance of the random variables
(x, X;);, i=1,...,n, and var(y, Y), is the sample variance of (y, Y)),,
i=1,...,n. Also, co/{(x, X),, (»,Y),} is the sample covariance of the
random variables (x, X;),, (3, Y;),, i = 1,..., n. Therefore, the correlation
between (x, X), and (y, Y), is the ordinary sample correlation coefficient
for the random variables (x, X;),, (¥, Y;),, i = 1,..., n. This observation
implies that the maximum possible sample correlation coefficient for
(x, X)), (»,Y),, i=1,...,n is the largest sample canonical correlation
coefficient, r;, and this maximum is attained by choosing x = v, and
y = w,. The interpretation of r,,..., r, should now be fairly obvious. Given
i,2<i<t, and given ry,..., r,_,, 0y,..., v,_,, and wy,..., w,_,, consider
the problem of maximizing the correlation between (x, X), and (y,Y),
subject to the conditions

cov{(x, X),, (v, X)} =0, j=1,..,i—1

Cov{()”Y)Z’(wj’ Y)2}=O, j=1,...,i—1.
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These conditions are easily shown to be equivalent to the conditions that the
sample correlation for

(%, X1 (vj,Xk)l, k=1,...,n

be zero for j = 1,...,i — 1 with a similar statement concerning the Y’s.
Further, the correlation between (x, X), and (y, Y), is the sample correla-
tion for (x, X;);, (¥, ¥),, kK = 1,..., n. The maximum sample correlation
is r; and is attained by choosing x = v; and y = w,. Thus the sample
interpretation of r,..., r, is completely analogous to the population inter-
pretation of the population canonical correlation coefficients.

For the remainder of this section, it is assumed that V= R?7and W = R”
are the standard coordinate spaces with the usual inner products, so V & W

is just R? where p = g + r. Thus our sampleis Z,,..., Z, with Z, € R” and
we write
V4 X R?
i )II €
with X; € R? and Y, € R’, i = 1,..., n. The sample covariance matrix,

assumed to be nonsingular, is

where

>

1 n
S12=;Z(‘Xi_
1

)Y, -Y)

and S, = S},. Now, form the random matrix Z:n X p whose rows are
(Z; — Z) and partition Z into U: n X g and V': n X r so that

Z=(Uv).
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The rows of U are (X, — X) and the rows of V are (Y, - Y),i=1,...,n.
Obviously, we have nS = Z'Z, nS,, = U'U, nS,, = V'V, and nS,, = U'V.
The sample canonical correlation coefficients r, > --- > r, are the square
roots of the ¢ largest eigenvalues of

A(S) = 5;,'8,,85'S,, = (UU) " 'uv(vv)~'vu.

However, the ¢ largest eigenvalues of A(S) are the same as the ¢ largest
eigenvalues of Py Py where

P, =U(UU) U

and

P, =v(Vv) 'v.

Now, Py is the orthogonal projection onto the g-dimensional subspace of
R", say My, spanned by the columns of U. Also, Py is the orthogonal
projection onto the r-dimensional subspace of R”, say My, spanned by the
columns of V. It follows from Proposition 1.48 and Definition 1.28 that
the sample canonical correlation coefficients r,,. .., r, are the cosines of the
angles between the two subspaces M, and M, contained in R". Summariz-
ing, we have the following proposition.

Proposition 10.5. Given random vectors

Z X R? =1
i=ly € R?, i=1,...,n

i

where X; € R? and Y, € R’, form the matrices U: n X g and V:n X r as
above. Let M, C R" be the subspace spanned by the columns of U and let
M, C R" be the subspace spanned by the columns of V. Assume that the
sample covariance matrix

U

s=1%(z-2)z-z)

S |-

is nonsingular. Then the sample canonical correlation coefficients are the
cosines of the angles between M, and M,

The sample coefficients r,,..., r, have been shown to be the cosines of
angles between subspaces in two different vector spaces. In the first case,
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the interpretation followed from the material developed in of
this chapter: namely, r,,..., r, are the cosines of the angles between R? &
{0}y € R? and {0} ® R” C R? when R?” has the inner product determined by
the sample covariance matrix. In the second case, described in Proposition
10.5, ry,..., r, are the cosines of the angles between M, and My in R” when
R" has the standard inner product. The subspace M, is spanned by the
columns of U where U has rows (X, — XY, i=1,..., n. Thus the coordi-
nates of the jth column of U are X, — X, for i = 1,..., n where X, is the
Jjth coordinate of X; € R? and X is the jth coordinate of X. This is the
reason for the subscript X on the subspace M. Of course, similar remarks
apply to M.

The vector (ry,...,r,) can also be interpreted as a maximal invariant
under a group action on the sample matrix. Given

Z = X € R? =1
i~y S i=1,...,n,

i

let X:n X q have rows X/, i =1,..., n and let Y: n X r have rows Y/,
i = 1,..., n. Then the data matrix of the whole sample is

Z=(XY):nxp,

which has rows Z, i = 1,..., n. Let e € R” be the vector of all ones. It is

assumed that Z € & C £, » where Z is the set of all n X p matrices such

that the sample covariance mapping
s(Z)=(Z - eZ)(Z - eZ))
has rank p. Assuming that n > p + 1, the complement of Z in £, has
Lebesgue measure zero. To describe the group action on Z, let G be the set
of elements g = (T, ¢, C) where
reg(e)=(rreo,,Te=e}, ce€R?

and

4 0
c=(0 B), A€Gl, Bedl,.

For g = (T, ¢, C), the value of g at Z is

gZ =TZC' + ec'.
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Since
s(gZ) = Cs(Z)C'.

it follows that each g € G is a one-to-one onto mapping of £ to Z. The
composition in G, defined so G acts on the left of Z, is

(Ty, ¢, C))(Ty, €5, Gy) = (I, ¢, + Ciep, C,G).

Proposition 10.6. Under the action of G on £, a maximal invariant is the
vector of canonical correlation coefficients r,,.. ., r, where ¢ = min{qg, r}.

Proof. Let &) be the space of p X p positive definite matrices so the
sample covariance mapping s: £ — & is onto. Given § € &, partition §

as
NTEE
S = ( 11 12)
Sn Sp

where S,,is ¢ X g, S), isr X r, and S, is g X r. Define h on S;' by letting
h(S) be the vector (A,,..., A,) of the ¢ largest eigenvalues of

A(S) = $11'S185'Sy:-
Since r; = \/A—, ,i=1,..., t, the proposition will be proved if it is shown that

?(2) = h(s(2))

is a maximal invariant function. This follows since 4(s(Z)) = (A,,..., A,),
which is a one-to-one function of (r,,..., r,). The proof that ¢ is maximal
invariant proceeds as follows. Consider the two subgroups G, and G, of G
defined by

Gl = {glg = (I" c, Ip) € G}
and

GZ = {glg = (In,O,C) € G)

Note that G, acts on the space S; in the obvious way— namely, if g, = (7,,,
0, C), then

g(S)=CSC’, Ses’.
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Further, since

(T,e,C)=(T,¢, 1,)(1,,0,C),

it follows that each g € G can be written as g = g,g, where g, € G,,
i = 1,2. Now, we make two claims:

i) s:Z2- 8; is a maximal invariant under the action of G, on Z.
(i) h:§, — R'is a maximal invariant under the action of G, on S, -

Assuming (i) and (ii), we now show that ¢(Z)= h(s(Z)) is maximal
invariant. For g € G, write g = g,g8, with g, € G,, i = 1,2. Since

s(g,Z)=s(Z), 8 €6,
and
5(8:.2) = 8:(s(2)),  2€6G,,
we have
9(82) = h(s(£:8.2)) = h(s(8:2)) = h(8:5(2)) = h(s(2)).
It follows that ¢ is invariant. To show that ¢ is maximal invariant, assume

q)(Zl)= q)(Zz). A g € G must be found so that gZ, = Zz. Since A is
maximal invariant under G, and

h(s(2))) = h(s(2,)),
there is a g, € G, such that
8:(5(2)) = ().
However,
8:(5(2))) = s(8,2)) = 5(2,)
and s is maximal invariant under G, so there exists a g, such that
88,2, = Z,.

This completes the proof that ¢, and hence r,,.. ., 7, is a maximal invariant
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—assuming claims (i) and (ii). The proof that s: £ - &' is a maximal
invariant is an easy application of Proposition 1.20 and is left to the reader.
That 4 : S+ — R’ is maximal 1nvar1ant follows from an argument similar to

that glven in the proof of Proposition 10.1] a
The group action on Z treated in is suggested by the

following considerations. Assuming that the observations Z,,..., Z, in R?
are uncorrelated random vectors and £(Z;) = £(Z,) for i = 1,...,n, it
follows that

6Z = ey
and
CovZ=1,®3

where p = 6Z, and Cov Z; = 3. When Z is transformed byg=({T,¢cC),
we have

&gZ = e(Cp + c)

and
CovgZ =1I,® (C2C’).

Thus the 1nduced actlon of g on (p, X) is exactly the group action consid-
ered in [Proposition 10.1] The special structure of &Z and Cov Z is reflected
by the fact that, for g = (F 0, I,), we have & gZ = &Z and CovgZ = Cov Z.

10.3. SOME DISTRIBUTION THEORY

The distribution theory associated with the sample canonical correlation
coefficients is, to say the least, rather complicated. Most of the results in this
section are derived under the assumption of normality and the assumption
that the population canonical correlations are zero. However, the distribu-
tion of the sample multiple correlation coefficient is given in the general
case of a nonzero population multiple correlation coefficient.

Our first result is a generalization of Example 7.12. Let Z,,..., Z, be a
random sample of vectors in R? and partition Z; as

Xi
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Assume that Z, has a density on R” given by

p(zlp, 2) = 127V ((z = p)="'(z - 1))

where f has been normalized so that

fzz’f(z’z) dz =1,
Thus when the density of Z, is p(-|p, 2), then
bZ,=p, CovZ =23Z.

Assuming that n > p + 1, the sample covariance matrix

S=i(zi' Z)(z-Z) - (S” Slz)

S21 S22

is positive definite with probability one. Here S,, is ¢ X g, S,, is r X r, and
S|, is g X r. Partitioning = as S is partitioned, we have

2y 212)
3= .
(221 2p

Thus the squared sample coefficients, r? > --- > r?, are the ¢ largest
eigenvalues of S;;'S,,55,"S,, and the squared population coefficients, p? >

- > p?, are the ¢ largest eigenvalues of =;'=,,25,'S,,. In the present
generality, an invariance argument is given to show that the joint distribu-
tion of (r,,..., r,) depends on (u, Z) only through (p,,..., p,). Consider the
group G whose elements are g = (C, ¢) where ¢ € R? and

_(4 o
C‘(o B), A€Gl, BeG,.

The action of G on R? is
(C,c)z=Cz+¢

and group composition is

(C1, )Gy, 65) = (C\G,, Crey + ¢y).
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The group action on the sample is
g(Z,....2,) = (82,,..., 82,).
With the induced group action on (g, 2) given by

g(p, Z) = (gu, C2C)

where g = (C, ¢), it is clear that the family of distributions of (Z,,..., Z,)
that are indexed by elements of

_ +
0= ((u3)er,3es)
is a G-invariant family of probability measures.

Proposition 10.7. The joint distribution of (r,,..., r,) depends on (p, Z)
only through (p,,..., p,)-

Proof. From [Proposition 10.6] we know that (ry,..., ) is a G-invariant
function of (Z,,..., Z,). Thus the distribution of (7,,..., ,) will depend on

the parameter ¢ = (p, 2) only through a maximal invariant in the parame-
ter space. However, Proposition 10.1| shows that (p,,..., p,) is a maximal

invariant under the action of G on ©. O

Before discussing the distribution of canonical correlation coefficients,
even for ¢ = 1, it is instructive to consider the bivariate correlation coeffi-
cient. Consider pairs of random variables (X;,Y;), i = 1,..., n, and let
X € R" and Y € R" have coordinates X; and Y, i = 1,..., n. With e € R"
being the vector of ones, P, = ee’/n and Q, = I — P,, the sample correla-
tion coefficient is defined by

_( 0.Y ) 0.X
"= \lexn ) e.xi

The next result describes the distribution of » when (X, Y;), i = 1,..., n, is
a random sample from a bivariate normal distribution.

Proposition 10.8. Suppose (X,, Y)Y € R?, i =1,..., n, are independent
random vectors with

X; .
B(Y)—N(H,E), i=1,...,n
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where p € R? and
_ (%1 %12
z= (021 "22)
is positive definite. Consider random variables (U,, U, U;) with:

@@ (U,,4,) independent of U;.
i) L) = x5
(i) £(0)=xi-1-
) EUIU) = N(—E2— 1372, 1).
1 — p?
where p = 0,,/(0,,05,)'/? is the correlation coefficient. Then we have

() -elags)

Proof. The assumption of independence and normality implies that the
matrix (XY) € £, , has a distribution given by

L(XY)=N(ep',I,®Z).

It follows from |Proposition 10.7| that we may assume, without loss of
generality, that 3 has the form

When Z has this form, the conditional distribution of X given Y is

B(XIY) = N((w, — ppy)e + pY, (1 - p*)1,)
SO
£(Q.XIY) = N(pQ.Y,(1 - ¢*)Q.).
Now, let v,,..., v, be an orthonormal basis for R” with v, = e/ Vn and

Q.Y
Uy, = .
2ole.YI
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Expressing Q, X in this basis leads to

QeX = Z(U;QeX)Di
2
since Qe = 0. Setting

_ b X

\/l—pz’

it is easily seen that, conditional on Y, we have that §,,..., §, are indepen-
dent with

;

E(&1Y) = N(p(1 - p?)" 210, Y], 1)
and
E(&IY) = N(0,1), i=3,..,n.

Since
10. X112 = X (v0.X)* = (1 — p*) L &2,
2 2

the identity
£,

%2
Vé + 2587

holds. This leads to

r__ &
Vi-r2 s

Setting U, = §,, U, = ||Q,Y||% and U; = =7¢? yields the assertion of the
proposition. O

The result of this proposition has a couple of interesting consequences.
When p = 0, then the statistic

— 5 ___r — U,
W=vyn-2 2—n 2U3'/2
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has a Students ¢ distribution with n — 2 degrees of freedom. In the general
case, the distribution of W can be described by saying that: conditional on
U,, W has a noncentral ¢ distribution with n — 2 degrees of freedom and
noncentrality parameter

where £(U,) = x%_,. Let p,(-|8) denote the density function of a non-
central ¢ distribution with m degrees of freedom and noncentrality parame-
ter 8. The results in the Appendix show that p,(-|8) has a monotone
likelihood ratio. It is clear that the density of W is

h(wlp) =f0°°pm(W|(p(1 - 0?) "YU ) f(u) du

where f is the density of U, and m = n — 2. From this representation and
the results in the Appendix, it is not difficult to show that i(:|p) has a
monotone likelihood ratio. The details of this are left to the reader.

In the case that the two random vectors X and Y in R” are independent,
the conditions under which W has a ¢,_, distribution can be considerably
weakened.

Proposition 10.9. Suppose X and Y in R” are independent and both ||Q, X||
and ||Q,Y|| are positive with probability one. Also assume that, for some
number p, € R, the distribution of X — p,e is orthogonally invariant.
Under these assumptions, the distribution of

W=yn—-2 ——
V1-—r?

where

_( 0¥ ) 0.X
"~ \llexn) e.xi

is a t,_, distribution.

Proof. The two random vectors Q, X and Q,Y take values in the (n — 1)-
dimensional subspace

M = {x|x € R", x'e = 0}.
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Fix Y so the vector

.Y
Q.Y

EM

has length one. Since the distribution of X — p,e is 0, invariant, it follows
that the distribution of Q, X is invariant under the group

G=(I're@,,Te=e},

which acts on M. Therefore, the distribution of Q,X/||Q, X|| is G-invariant
on the set

X ={x|x € M, ||x|| = 1}.

But G is compact and acts transitively on %X so there is a unique G-invariant
distribution for Q,X/||Q, X|| in X. From this uniqueness it follows that

() (%)

9. Xl 1Q.Z]

where £(Z) = N(0, I,) on R". Therefore, we have

Z
(=57

and for each y, the claimed result follows from the argument given to prove
:

We now turn to the canonical correlation coefficients in the special case
that ¢ = 1. Consider random vectors X, and Y, with X; € R! and Y, € R’,
i=1,...,n Let X € R" have coordinates X,..., X, and let Y € £, have
rows Y],..., Y,. Assume that Q,Y has rank r so

P=0Y[(0.Y)0. Y] '(Q.Y)

is the orthogonal projection onto the subspace spanned by the columns of
Q.Y. Since ¢ = 1, the canonical correlation coefficient is the square root of
the largest, and only nonzero, eigenvalue of

(QX)Q.X) ,
Q. XI1?

b
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which is

L (QXYP(Q.X) _|1PQXI
1 = - .
2. X112 e. X1
For the case at hand, r, is commonly called the multiple correlation coeffi-

cient. The distribution of r? is described next under the assumption of
normality.

Proposition 10.10. Assume that the distribution of (XY) € £, | , is given
by

L(XY)=N(ep',I,® 2)

and partition X as

2
2=(‘711 12

(r+ 1) x(r+1
s, 3, (r+ 1) x(r+1)

where o), > 0,2,,is 1 X r, and 2,, is r X r. Consider random variables U,
U,, and U; whose joint distribution is specified by:

1 (U, U,) and U; are independent.
i) LU=, 1
Qi) £(U) = x3-+.
iv) L(UU,) = x? (A), where A = p*(1 — p*) ',

Here p = (£,,25,'2,,/0,,)"/? is the population multiple correlation coeffi-
cient. Then we have
r2 U,
R
) e[

Proof. Combining the results of Proposition 10.1] and Proposition 5.7,
without loss of generality, 3 can be assumed to have the form

1 pg
> (o 7

where ¢, € R” and & = (1,0,..., 0). When 2 has this form, the conditional
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distribution of X given Y is
B(XIY) = N((s, — ppser)e + pYe,, (1 — p*)1,)
where &X = p,e and 6Y = ep),. Since Qe = 0, we have
£(Q.X|Y) = N(pQ,Ye,, (1 — p*)Q,).

The subspace spanned by the columns of Q,Y is contained in the range of
Q. and this implies that 0, P = PQ, = P so

Q. XII” = I(Q. — P)XII* + IIPX|I* = (Q. — P)Q.X|* + | PQ.X|*.

Since
. _ IIPQ.X|?
Lo
it follows that
i IPQ.X|?

L=rf Q.= P)Q.XI*
Given Y, the conditional covariance of Q,X is (1 — p*)Q, and, therefore,

the identity PQ,(Q, — P) = 0 implies that PQ,X and (Q, — P)Q,X are
conditionally independent. It is clear that

2((Q. - P)Q.X|Y) = N(0,(1 - p*)(Q, — P)),
so we have
L((Q. = P)QXIPY) = (1 - p*)x2,_

since Q, — P is an orthogonal projection of rank n — r — 1. Again, condi-
tioning on Y,

£(PQ,X|Y) = N(pQ,Ye,, (1 — ¢2) P)

since PQ, = P and Q,Y¢, is in the range of P. It follows from Proposition
3.8 that

E(IPQXIPIY) = (1 - p?)x2(A)
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where the noncentrality parameter A is given by

o2
A= eY'Q,Ye,.
1-p?

That U, = &YQ,Ye, has a x2_, distribution is clear. Defining U, and U, by
-1
U= (1-0°) 1IPQX|?
and
-1
Uy =(1-9") I(Q. — P)Q.XI,
the identity

2
n _U

l—rlz_Us

holds. That U; is independent of (U,, U,) follows by conditioning on Y.
Since

LUY) = x,(4)
where
2 2

p p
A= gY'Q,Ye, = ——U,,
l_pzl Qe 1 1—p2 2

the conditional distribution of U, given Y is the same as the conditional
distribution of U, given U,. This completes the proof. O

When p = 0, IProposition 10.10|shows that

ri x?
Eel

1 —r Xn-r—1

=F

r,n—r—1»

which is the unnormalized F-distribution on (0, o0). More generally,

o
1—r

=F(r,n—r—1;4)
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where

2
p
A= 1 — p2x3x—l

is random. This means that, conditioning on A = §,

of 1
1-r?

Let f(-|0) denote the density function of an F(r, n — r — 1; §) distribution,
and let h(-) be the density of a x2_, distribution. Then the density of

ri/(1 —rd)is

8|=F(r,n—r-1;9).

k(wlp) = ["7(wle(1 = ¢) "u)h(u) du.

From this representation, it can be shown, using the results in the Appen-
dix, that k(w|p) has a monotone likelihood ratio.

The final exact distributional result of this section concerns the function
of the sample canonical correlations given by

w=TI1(1-7)

i=1

when the random sample (X,,Y;), i = 1,..., n, is from a normal distri-
bution and the population coefficients are all zero. This statistic arises in
testing for independence, which is discussed in detail in the next section. To
be precise, it is assumed that the random sample

Z = Xi € R? j =1
=y , i=1,...,n

1

satisfies

e(’é):w(u,z).

As usual, X; € RY, Y; € R’, and the sample covariance matrix

s=Y(z-Z)(z-Z)
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is partitioned as
S — Sll S 12
SZ] S22

where S, is ¢ X g and S, is r X r. Under the assumptions made this far, S
has a Wishart distribution—namely,

£(S)=W(Z, p,n—1).

Partitioning 2, we have

h h
S = ( 11 12)
E21 E22
and the population canonical correlation coefficients, say p, > --- > p,,
are all zero iff 2, = 0.
Proposition 10.11. Assumen — 1 > p andletr, > --- > r, be the sample

canonical correlations. When X, = 0, then

B(f[(l - r,-z)) =Un-r—1,r,q)

1
where the distribution U(n — r — 1, r, q) is described in Proposition 8.14.
Proof. Since r?,..., r}? are the t largest eigenvalues of

A(S) = Sl_llSIZSZ_ZISN

and the remaining g — ¢ eigenvalues of A(S) are zero, it follows that

t
w=]] (1 -k ) ~ 80181252,

i—1

Since W is a function of the sample canonical correlations and =, = 0
Proposition 10.] implies that we can take

I, 0
_ e
== (¢ )

without loss of generality to find the distribution of W. Using properties of
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determinants, we have

S11-2
‘SH'Z + S12S2_21S21|

W =IS5"1S1 — 812528, =

Proposition 8.7 implies that
R(S)..)=W(I,,qg,n—r—1)
R(85'%8,1S,) = N(0,1, ® I,)
and S,,., and S,,55,'S,, are independent. Therefore,
B(Slzsilszl) = W(Iq’ q,r)
and by definition, it follows that
EC(W)Y=Un-r—1,r,q). O

Since

_ 15,1
1S5 + 8$18711'S

the proof of [Proposition 10.11] shows that £(W) = Un-q—-1,q,r) so
Un—-q—1,q,r)y=Umn—-r—1,r,q) as long as n — 1 > g + r. Using
the ideas in the proof of Proposition 8.15, the distribution of W can be
derived when 2,, has rank one—that is, when one population canonical
correlation is positive and the rest are zero. The details of this are left to the
reader.

We close this section with a discussion that provides some qualitative
information about the distribution of r, > - -+ > r, when the data matrices
Xef, ,andY € £, areindependent. As usual let P, and Py denote the
orthogonal prOJectlons onto the column spaces of @, X and Q, Y Then the
sample canonical correlations are the ¢ largest eigenvalues of P, Py—say

n
q)(PYPx)E . ER"

n

It is assumed that Q,X has rank g and Q,Y has rank r. Since the
distribution of ¢(PyPy) is of interest, it is reasonable to investigate the
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distributional properties of the two random projections Py and Py. Since X
and Y are assumed to be independent, it suffices to focus our attention on
Py. First note that P, is an orthogonal projection onto a g-dimensional
subspace contained in

M = {x|x € R", x’e = 0}.

Therefore, Py is an element of

9, .(¢) - {P

Pis an n X nrank g orthogonal
projection, Pe = 0

Furthermore, the space ?Pq, »(e) is a compact subset of R"™ and is acted on
by the compact group

0,(e) ={(Tr €0,,Te = e},

with the group action given by P — I'PI". Since O,(e) acts transitively on
9, .(e), there is a unique 0, (e)-invariant probability distribution on D, ().
This is called the uniform distribution on ¥, (e).

Proposition 10.12. If £(X) = £(T'X) for ' € O,(e), then Py has a uniform
distribution on ¥, , (e).

Proof. 1t is readily verified that
Pry=TP,’, T e€0,(e).
Therefore, if £(TX) = £(X), then
L(Py) = E(TPxIY),

which implies that the distribution £(Py) on ¥, ,(e) is 0,(e)-invariant. The
uniqueness of the uniform distribution on @q, »(e) yields the result. O

When £(X) = N(ep}, I, ® Z,,), then £(X) = £(T'X) for ' € O,(e), so
Proposition 10.12 applies to this case. For any two n X n positive semidefi-
nite matrices B, and B,, define the function ¢(B,B,) to be the vector of the
t largest eigenvalues of B, B,. In particular, p( Py Py) is the vector of sample
canonical correlations.
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Proposition 10.13. Assume X and Y are independent, £(I'X) = £(X) for
I' € O,(e), Q.X has rank ¢, and Q,Y has rank r. Then

£(p(PyPy)) = £((PyPy))
where P, is any fixed rank r projection in ¥, , (e).

Proof. First note that

‘P(PYFPXIV) = ‘P(FIPYFPX)

since the eigenvalues of P,I'P,I'" are the same as the eigenvalues of
I'"P,T'Py. From [Proposition 10.12] we have

L(Py) = R(TP,I), reo,(e).
Conditioning on Y, the independence of X and Y implies that
B((p(PYPX)|Y) = B(‘P(PYFPXF'NY) = B(‘P(FIPYFPXNY)

for all T € O,(e). The group O,(e) acts transitively on @,,n(e), so for Y
fixed, there exists a I' € O,(e) such that I'"P,T" = P,. Therefore, the equa-
tion

B("P(Px»'PJ\’NY) = B((p(POPX)lY) = B((P(POPX))

holds for each Y since X and Y are independent. Averaging £ (p(PyPy)|Y)
over Y yields £(p(PyPy)), which must then equal £(@(P,Py)). This
completes the proof. O

The preceeding result shows that £(¢(PyPy)) does not depend on the
distribution of Y as long as X and Y are independent and £(X) = £(T'X)
for T € 0,(e). In this case, the distribution of p(PyPy) can be derived
under the assumption that £(X) = N(0, I, ® I,) and £(Y) = N(0, I, ® 1,).
Suppose that g <r so t=gq. Then £(@(PyPy)) is the distribution of
rp> - >r, where A\, =r? i=1,..,q, are the eigenvalues of
511'S1255'S,, and

s (S 52

S21 S22

is the sample covariance matrix. To find the distribution of Fisenvs Ty it
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would obviously suffice to find the distributionof y,=1—-A,,i=1,..., ¢,
which are the eigenvalues of

Iq - Sl_llslzsz_zlszl = (Tl + T2)_1Tl
where

T, =8 — 81285'S; T, = $,5,'S,,.

It was shown in the proof of Proposition 10.11] that T, and T, are
independent and

(1) =Ww(I,,q,n—r—1)
and
R(T,) = W(I,,q,r).
Since the matrix
B=(T,+ T,) "’1(T, + T,)"*

has the same eigenvalues as (7, + T,)” 'T}, it suffices to find the distribu-
tion of the eigenvalues of B. It is not too difficult to show (see the
at end of this chapter) that the density of B is

p(B) — w(n —r- 1! q)w(r’ q) |B|(n—r—q—2)/2‘1 _ B'(rvq—l)/Z
win—-1,q) q

with respect to Lebesgue measure dB restricted to the set
= + o7
X=(BIB€S;,I,-BES]).

Here, w(-, -) is the Wishart constant defined in Example 5.1. Now, the
ordered eigenvalues of B are a maximal invariant under the action of the
group O, on X given by B - I'BI", T € 0. Let A be the vector of ordered
eigenvaluesof BsoA € R%,1 > A, > -+ > A, > 0.Since p(I'BI") = p(B),
I'eg, it follows from Proposition 7.15 that the density of A is g(A) =
p(D,) where D, is a ¢ X g diagonal matrix with diagonal entries A,,..., A .
Of course, g(-) is the density of A with respect to the measure v(dA)
induced by the maximal invariant mapping. More precisely, let

Z={AMAERLI=N > - 27, >0}
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and consider the mapping ¢ on X to £ defined by ¢(B) = A where A is the
vector of eigenvalues of B. For any Borel set C C Z, v(C) is defined by

»(C) =f dB.

o '(O)

Since g(A) has been calculated, the only step left to determine the distribu-
tion of A is to find the measure ». However, it is rather nontrivial to find »
and the details are not given here. We have included the above argument to
show that the only step in obtaining £(A) that we have not solved is the
calculation of ». This completes our discussion of distributional problems
associated with canonical correlations.

The measure » above is just the restriction to £ of the measure »,
discussed in Example 6.1. For one derivation of »,, see Muirhead (1982, p.
104).

104. TESTING FOR INDEPENDENCE

In this section, we consider the problem of testing for independence based
on a random sample from a normal distribution. Again, let Z,,..., Z, be
independent random vectors in R” and partition Z; as

X
Z, = vl X, € RY, Y, € R".

1

It is assumed that £(Z,) = N(p, 2), so

5.3 X,
Cov(z)=3=|" 12)=Cov( ')
(z) (22, %

for i = 1,..., n. The problem is to test the null hypothesis H,: =,, = 0
against the alternative H, : 2, = 0. As usual, let Zhaverows Z,i = 1,..., n
so £(Z)= N(ep/, I, ® Z). Assuming n > p + 1, the set £ C £, , where

=7 7 S“ Slz)
S=(Z—-eZ')(Z —eZ') =
(Z - ZY(Z - ) (Sﬂ o

has rank p is a set of probability one and Z is taken as the sample space for
Z. The group G considered in proposition 10.6 hets on € and a maximal
invariant is the vector of canonical correlation coefficients ry,..., r, where
t = min{q, r}.
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Proposition 10.14. The problem of testing H,: Z,, = O versus H;: =, = 0
1s invariant under G. Every G-invariant test is a function of the sample
canonical correlation coefficients ..., r,. When 7 = 1, the test that rejects
for large values of r, is a uniformly most powerful invariant test.

Proof. That the testing problem is G-invariant is easily checked. From
Proposition 10.6] the function mapping Z into r,,...,r, is a maximal
invariant so every invariant test is a function of r,,..., r,, When ¢ = 1, the
test that rejects for large values of r, is equivalent to the test that rejects for
large values of U= r?/(1 — r?). It was argued in the last section (see
Proposition 10.10) that the density of U, say k(u|p), has a monotone
likelihood ratio where p is the only nonzero population canonical correla-
tion coefficient. Since the null hypothesis is that p = 0 and since every
invariant test is a function of U, it follows that the test that rejects for large
values of U is a uniformly most powerful invariant test.

When ¢ = 1, the distribution of U is specified in [Proposition 10.10| and
this can be used to construct a test of level a for H,. For example, if ¢ = 1,
then R(U)=F, ,_,_, and a constant c(a) can be found from standard
tables of the normalized %-distribution such that, under H,, P{U > c(a)}
= Q.

In the case that ¢ > 1, there is no obvious function of r,,..., 7, that
provides an optimum test of H,, versus H,. Intuitively, if some of the r,’s are
“too big,” there is reason to suspect that H, is not true. The likelihood ratio
test provides one possible criterion for testing ,, = 0.

Proposition 10.15. The likelihood ratio test of H, versus H, rejects if the
statistic

: S|
w=T1(1-r?)=<—
E( ?) 111182

is too small. Under H, £(W) = U(n — r — 1, r, q), which is the distribu-
tion described in Proposition 8.14.

Proof. The density function of Z is
p(ZIp, 2) = (V27 ) |27 exp[ - $ tr(Z — ew')(Z — ep)=7'].

Under both H, and H,, the maximum likelihood estimate of p is fi = Z.
Under H,, the maximum likelihood estimate of = is 2 = (1/#n)S. Partition-
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ing S as Z is partitioned, we have

S S
S = ( 1 12
Sn o Sy

where S,,is ¢ X g, S}, is ¢ X r, and S, is r X r. Under H, 2 has the form

SO
. =0
0 =3

p(ZIf, Z) = (V27 ) "P|Z 1722 )" exp[ — $ tr SZ 1]

When 2 has this form,

= (V27) 12" Pexp - § 18, 21|25
X exp[—1 r$,25'].
From this it is clear that, under H,, £,, = (1/n)S,, and £,, = (1/n)S,,.

Substituting these estimates into the densities under H, and H, leads to a
likelihood ratio of

1S1111S5,] | "2
A(Z)=( lfSln) '

Rejecting Hy, for small values of A(Z) is equivalent to rejecting for small
values of

_ 2m _ _|S|
W= (@) = s sal

The identity |S| = |S},11S5; — $2:51;'S},| shows that

1Sy, — $5,877'Syl _ _ !
=2 |SZl| H=2E = |1 - 858,80 Sl = TT(1 - 72)
22 i=1

w

where rZ,..., r? are the t largest eigenvalues of S;;'S,,S77'S,,. Thus the
1 ' 8 22 921911 P12
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likelihood ratio test is equivalent to the test that rejects for small values of

W. That B(W)= U(n —r — 1, r,q) under H, follows from Proposition
10.11. O

The distribution of W under H, is quite complicated to describe except in
the case that 2, has rank one. As mentioned in the last section, when =,
has rank one, the methods used in Proposition 8.15 yields a description of
the distribution of W.

Rather than discuss possible alternatives to the likelihood test, in the next
section we show that the testing problem above is a special case of the
MANOVA testing problem considered in Chapter 9. Thus the alternatives
to the likelihood ratio test for the MANOVA problem are also alternatives
to the likelihood ratio test for independence.

We now turn to a slight generalization of the problem of testing that
2,, = 0. Again suppose that Z € Z satisfies £(Z) = N(ep’, I, ® Z) where
K € R? and 2 are both unknown parameters and n > p + 1. Given an
integer k > 2, let p,,..., p, be positive integers such that =¥p, = p. Parti-
tion 2 into blocks Z;; of dimension p; X p; for i, j = 1,..., k. We now
discuss the likelihood ratio test for testing H,,: 2, = 0 for all i, j withi = j.
For example, when k = p and each p; = 1, then the null hypothesis is that =
is diagonal with unknown diagonal elements. By mimicking the proof of
Proposition 10.15] it is not difficult to show that the likelihood ratio test for
testing H,, versus the alternative that = is completely unknown rejects for
small values of

S|

_
A=— .
[T1S.l
i=1
Here, S = (Z — eZ'Y(Z — eZ') is partitioned into S;;: p, X p; as = was
partitioned. Further, for i = 1,..., k, define S;;) by
Sii Si(i+l) o Sik
Sy = :
Sk
SO .S(ii) is(p;+ -+ p)X(p; + -+ + py). Noting that §;;) = S, we can
write
|S] g 1Sein

A = = .
k ,=l_ll |Siil|S(i+1,i+l)|
1S
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Define W,,i=1,..., k — 1, by

_ |S(ii)|
! ISii”S(H-l,i+l)l )

Under the null hypothesis, it follows from Proposition 10.11]that

e(W)=U

1

k k
n—1- Z pjs Z Pj’pi)'

J=it1l " j=i+l

To derive the distribution of A under H,, we now show that W,,..., W, _,
are independent random variables under H,. From this it follows that,
under H,,

k—1 k k
B(A)=:EIIU(”"1_ E pjs E pj’Pi)

j=itl  j=i+1

so A is distributed as a product of independent beta random variables. The
independence of W,,..., W, _, for a general k follows easily by induction
once independence has been verified for k = 3.

For k = 3, we have

|S| S22

A=wWw,=
T 1S0l1S@) | 1,185

and, under H,,
B(S) = W(E,P’n - 1)

where 2 has the form

b 0 0
11 2” 0
2=0 %, o= 5 |
@2

To show W, and W, are independent, Proposition 7.19 is applied. The
sample space for S is 5; —the space of p X p positive definite matrices. Fix
2 of the above form and let P, denote the probability measure of S so P, is
the probability measure of a W(Z, p, n — 1) distribution on S; . Consider

the group G whose elements are (A, B) where 4 € Gl, and BE Gl ,,
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and the group composition is
(Al’ Bl)(AZ’ B,) = (AIAZ’ B\B,).

It is easy to show that the action
_(4 0 A O0Y
defines a left action of G on 8;. If £(S)= W(Z, p,n — 1), then
£((4, B)[S]) = w((4, B)[Z], p,n - 1)
where

(4 0 A 0Y_ A3 A, 0

This last equality follows from the special form of =. The first thing to
notice is that
S|

W, =WI(S)=——"—7
= (S) = 5 isa

is invariant under the action of G on S; . Also, because of the special form

of X, the statistic

7(S) = (Sm S(zz)) € 5;. X S(;ﬁp:)

is a sufficient statistic for the family of distributions {gPy|g € G). This
follows from the factorization criterion applied to the family {gPy|g € G},
which is the Wishart family

Y 0
{W(E, p,n—1)= = ( (l)l 'Yzz)’ Tn € 5;,, Y2 € g(;2+p3)}‘

., . + + . . .
However, G acts transitively on 5, X §;, .., in the obvious way:

(4, B)[S,, S,] = (45,4, BS,B’)

+ + . . . . +
foi [S, Sz]_E_gpI X &(p,+py- Further, the sufficient statistic 7(S) € §, X
O(p,+py Satisfies

7((4, B)[S]) = (4, B)[7(S)]
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so 7(-) is an equivariant function. It now follows from Proposition 7.19 that
the invariant statistic W;(S) is independent of the sufficient statistic 7(S).
But

1Szl

Wy(S)=<—3o—
2(5) = 5,185

is a function of S,,, and so is a function of 7(S) = [S),, S, ]. Thus W, and

W, are independent for each value of = in the null hypothesis. Summarizing,

we have the following result.

Proposition 10.16. Assume k = 3 and = has the form specified under H,.
Then, under the action of the group G on both 5, and 5 X &, ., ,, the
invariant statistic

S|

W(S)=——"—
\(S) |Sn||S(22)|

and the equivariant statistic
7(S) = [Sna S(zz)]
are independent. In particular, the statistic

S|
Wy(S) = 2,
2(8) = 15lisu

being a function of 7(S), is independent of W,.

The application and interpretation of the previous paragraph for general
k should be fairly clear. The details are briefly outlined. Under the null
hypothesis that 2‘.,.]. =0 fori, j=1,..., k and i = j, we want to describe
the distribution of

k—1 IS¢ | k=1
A=l iege——=T1Ww.

i=1 |Sii”S(i+l,i+l)l i=1

It was remarked earlier that each W, is distributed as a product of indepen-
dent beta random variables. To see that W,,..., W,_, are independent,
Hroposition 10.16 hows that

S|
W, =
L ISulISey|
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and S, are independent. Since (W,,..., W,_,) is a function of S,,, W,

and (W,,..., W,_,) are independent. Next, apply Proposition 10.16|to S
to conclude that

S,
W, = | (22)|
1S5,] |S(33) |

and S5 are independent. Since (W;,..., W,_,) is a function of S;;), W,
and (W;,..., W,_,) are independent. The conclusion that W,,..., W, _,
are independent now follows easily. Thus the distribution of A under H|, has
been described.

To interpret the decomposition of A into the product IT¢~'W,, first
consider the null hypothesis

H5‘>:EU=O forj=2,...,k.

An application of IProposition 10.15| shows that the likelihood ratio test of
H{Y versus the alternative that = is unknown rejects for small values of

S|
W =———.
: |Su||S(22)|

Assuming H{" to be true, consider testing
HP:Z2,,=0 forj=3,...,k
versus

HP®:2,; =0 forsomej=3,..., k.

A minor variation of the proof of Proposition 10.15|yields a likelihood ratio
test of H{® versus H{® (given H{") that rejects for small values of

S,
w, — el
1S22]1S 3|

Proceeding by induction, assume null hypotheses H§”, i = 1,..., m — 1, to
be true and consider testing

H{™:Z2,,=0, j=m+1,..,k
Versus

H(™:Z, . =0 forsomej=m+1,...,k.



MULTIVARIATE REGRESSION 451

Given the null hypotheses H§", i = 1,..., m — 1, the likelihood ratio test of
H§™ versus H{™ rejects for small values of

W = IS(mm)I
" |Smm“S(m+l,m+l)|

The overall likelihood ratio test is one possible way of combining the
likelihood ratio tests of H{™ versus H{™, given that H{",i=1,...,m — 1,
is true.

10.5. MULTIVARIATE REGRESSION

The purpose of this section is to show that testing for independence can be
viewed as a special case of the general MANOVA testing problem treated in
Chapter 9. In fact, the results below extend those of the previous section by
allowing a more general mean structure for the observations. In the notation
of the previous section, consider a data matrix Z: n X p that is partitioned
as Z = (XY) where Xisn X gand Yisn X rso p = q + r. It is assumed
that

£(Z)=N(TB,I,® )

where T is an n X k known matrix of rank k and B is a k X p matrix of
unknown parameters. As usual, = is a p X p positive definite matrix. This is
precisely the linear model discussed in Section 9.1 and clearly includes the
model of previous sections of this chapter as a special case.

To test that X and Y are independent, it is illuminating to first calculate
the conditional distribution of Y given X. Partition the matrix B as
B = (B,B,) where B, is k X q and B, is k X r. In describing the conditional
distribution of Y given X, say £(Y|X), the notation

Zpa =2y 23202,
is used. Following Example 3.1, we have
R(Y1X)=N(TB, + (I, ® 2,3 )(X - TB)), I, ® =,,.,)
= N(T(Bz - Blzﬁlzxz) +X2,'2,, 1, ® 222-1)
and the marginal distribution of X is
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Let Wbe the n X (¢ + k) matrix (XT') and let C be the (¢ + k) X r matrix
of parameters

C= (Cl) = 21_—11212
G B, - B\Z},'Z
SO
-1 -1 Cl
XZ5'Z, + T(B, - BZi'2),) = (XT) c,| = "¢

In this notation, we have
L(Y|X)=N(WC,I,® =,,.))
and

2(X)=N(TB,, 1,® ).
Assuming n > p + k, the matrix W has rank ¢ + k with probability one so
the conditional model for Y is of the MANOVA type. Further, testing
H,:Z,, = 0 versus H,: 2}, = 0 is equivalent to testing H,: C, = 0 versus
H,: C, = 0. In other words, based on the model for Z,

£(Z)=N(TB,I,® =),

the null hypothesis concerns the covariance matrix. But in terms of the
conditional model, the null hypothesis concerns the matrix of regression
parameters.

With the above discussion and models in mind, we now want to discuss
various approaches to testing H, and Hj. In terms of the model

£(Z)=N(TB,I,® X)
and assuming H,, the maximum likelihood estimators of B and X are

B=(rT)'rz, 32=-5

S |-

where

S =(Z - TB)Y(Z - TB),
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SO

L(S)=W(Z, p,n— k).

Under H,, the maximum likelihood estimator of B is still B as above and

since
pX 0
s =[N ,
it is readily verified that
S.= 13,.,., i=1,2
n
where
NTEEN
S = ( 11 12 )
Sn Sn

Substituting these estimators into the density of Z under H, and H,
demonstrates that the likelihood ratio test rejects for small values of

|S]

ANZ)= 7.
(2) 15111182

Under H,,, the proof of [Proposition 10.11] shows that the distribution of
A(Z) is U(n—k — r,r,q) as described in Proposition 8.14. Of course,
symmetry in r and q implies that U(n — k —r,r,q)= U(n — k — q,q, r).
An alternative derivation of this likelihood ratio test can be given using the
conditional distribution of Y given X and the marginal distribution of X.
This follows from two facts: (i) the density of Z is proportional to the
conditional density of Y given X multiplied by the marginal density of X,
and (ii) the relabeling of the parameters is one-to-one—namely, the map-
ping from (B, Z) to (C, B, Z,;, 2,,.,) is a one-to-one onto mapping of
Cou X8 to £ XL X& X&' We now turn to the likelihood
ratio test of H,, versus H, based on the conditional model

L(Y|X)=NWC,1,® 2.,

where X is treated as fixed. With X fixed, testing H,, versus H, is a special
case of the MANOVA testing problem and the results in Chapter 9 are
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directly applicable. To express H, in the MANOVA testing problem form,
let K be the ¢ X (¢ + k) matrix K = (I 4 0), so the null hypothesis fIO is

H,: KC=0.
Recall that
C=(ww) 'wy
is the maximum likelihood estimator of C under H, Let P, =
W(W'W)~'W’ denote the orthogonal projection onto the column space of
W,let Q, = I, — Py, and define V € § by
V=YQ,Y=(Y-wC)y(y - wcl).
As shown in Section 9.1, based on the model
R(Y|X)=N(WC, 1,8 2,,,),

the likelihood ratio test of H,: KC = 0 versus H,: KC = 0 rejects H,, for
small values of

V]
v+ (KCY(K(ww) k)T (k€)

A(Y)=

For each fixed X, Proposition 9.1 shows that under H,,, the distribution of
A(Y) is U(n — q — k, g, r), which is the distribution (unconditional) of
A(Z) under H,,. In fact, much more is true.

Proposition 10.17. In the notation above:
(1) V '—: SZZ'I' A
(i) (KCY(K(W'W) 'K)™'(KC) = $,57'S1z.
(i) A(Y)= A(2).

Further, under H,, the conditional (given X)) and unconditional distribution
of A,(Y) and A(Z) are the same.

Proof. To establish (i), first write S as

S=(Z-TB)Y(Z-TB)=2(I- P;)Z
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where P, = T(T'T)™'T’ is the orthogonal projection onto the column space
of T. Setting Q = I — P, and writing Z = (XY), we have

S=20,7= (ﬁ)QT(XY) _ (X'QTX X'QTY) _ (Sn SIZ).

Y/QTX Y,QTY B S2l S22

This yields the identity
Sy =YQrY — YO, X( X,QTX)_leQTY =Y(I - P;)Y - Y'PY
where Py = Q- X(X'Q;X) 'X'Q, is the orthogonal projection onto the
column space of O X. However, a bit of reflection reveals that P, = Py, — Pr.
SO
Sy =Y —-Pr)Y—-Y(Py—P)Y=Y(I-P,)Y=YQ,Y=V.
This establishes assertion (i). For (ii), we have
and
A -1 -1 a
(KCY(k(ww)™'Kk’)” KC
= yw(ww) 'k(k(ww) 'ww(ww) k)"
XK(WW)™'wy
= Yyu(Uu)~'UY = YP,Y
where U= W(W'W) 'K’ and P, is the orthogonal projection onto the
column space of U. Thus it must be shown that P, = P, or, equivalently,

that the column space of U is the same as the column space of Q,X. Since
W = (XT), the relationship

- I
WU=WwwWww) 'K =K = (04)

proves that the g columns of U are orthogonal to the k columns of T. Thus
the columns of U span a g-dimensional subspace contained in the column
space of W and orthogonal to the column space of T. But there is only one
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subspace with these properties. Since the column space of QX also has

these properties, it follows that P, = P, so (ii) holds. Relationship (iii) is a
consequence of (i), (ii), and

IS1_ _ 15221

A(Z) = = :
(2) ISullSal |8y, + S80S,

The validity of the final assertion concerning the distribution of A,(Y) and
A(Z) was established earlier. O

The results of [Proposition 10.17]establish the connection between testing
for independence and the MANOVA testing problem. Further, under H,,
the conditional distribution of A,(Y) is U(n — q — k, g, r) for each value
of X, so the marginal distribution of X is irrelevant. In other words, as long
as the conditional model for Y given X is valid, we can test A, using the
likelihood ratio test and under H,, the distribution of the test statistic does
not depend on the value of X. Of course, this implies that the conditional
(given X) distribution of A(Z) is the same as the unconditional distribution
of A(Z) under H,. However, under H,, the conditional and unconditional
distributions of A(Z) are not the same.

PROBLEMS

1. Given positive integers ¢, g, and r with ¢ < g, r, consider random
vectors U € R', V € R9, and W € R" where Cov(U) =1, and U, V,
and W are uncorrelated. For A: g X ¢t and B: r X ¢, construct X =
AU+ Vand Y=BU + W.

(1) With A, = Cov(V') and A,, = Cov(W), show that
Cov(X) =44+ A
Cov(Y)=BB' + A,

and the cross covariance between X and Y is AB’. Conclude that
the number of nonzero population canonical correlations be-
tween X and Y is at most ¢.

(i) Conversely, given X € R? and ¥ € R” with ¢ nonzero population
canonical correlations, construct U, V, W, A, and B as above so
that X = AU + Vand Y = BU + W have the same joint covari-
ance as X and Y.
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2. Consider X € R? and Y € R" and assume that Cov(X) = 3,, and
Cov(Y) = Z,, exist. Let 3,, be the cross covariance of X with Y.
Recall that &, denotes the group of n X n permutation matrices.

() IfgZ,h=2%,forallge P and h € F, show that Z,, = Se e;
for some 8 € R! where e, (e2) is the vector of ones in Rq (R").

(ii)) Under the assumptions in (i), show that there is at most one
nonzero canonical correlation and it is |8|(ei=y'e;)!/?
(€525,'e,)!/%. What is a set of canonical coordinates?

3. Consider X € R? with Cov(X) = = > 0 (for simplicity, assume &X =
0). This problem has to do with the approximation of X by a lower
dimensional random vector—say Y = BX where B is a ¢t X p matrix of
rank ¢.

(1) In the notation of Proposition 10.4] suppose 4,: p X p is used to
define the inner product [-, -] on R” and prediction error is

measured by &|| X — CY||? where || - || is defined by [, -] and C
is p X t. Show that the minimum prediction error (B fixed) is

8(B) = tr4,(= - =B'(B=B’) " 'B3)

and the minimum is achieved for C = ¢ = SB(BZB’)™".

(i) Let A = 2/24,31/2 and write A4 in spectral form as 4 =
2f\a;a; where Ay > --- >\, >0 and a,,..., a, is an ortho-
normal basis for R?. Show that 6(B) = tr A(I — Q(B)) where
Q(B) = Z'/2B"(BZB’)"'BZ!/? is a rank t orthogonal projection.
Usmg this, show that 8(B) is minimized by choosing Q = Q =

1a;a;, and the minimum is 27, ,A,. What is a corresponding B
and X = CBX that gives the minimum? Show that X = CBX =
21 /2Q2 1/2 X.
(iii) In the special case that 4, = I,, show that

t
= Z (ax{X)ai
i=1

where a,,..., a, are the eigenvectors of = and Za, = A,a; with
Ay > --- > A,. (The random variables a; X are often called the
principal components of X, i = 1,..., p. It is easily verified that

cov(a; X, a;X) = §;;A;.)

4. In R”, consider a translated subspace M + a, where a, € R?—such a

set in R? is called a flar and the dimension of the flat is the dimension
of M.
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(1) Given any flat M + a,, show that M + a, = M + b, for some
unique by € M+ .
Consider a flat M + a,, and define the orthogonal projection onto
M + a, by x = P(x — a,) + a, where P is the orthogonal projection
onto M. Given n points x,,..., x,, in R?, consider the problem of
finding the “closest” k-dimensional flat M + a, to the n points. As a
measure of distance of the » points from M + a,, we use A(M, a,) =
=7||x; — £,]|*> where || - || is the usual Euclidean norm and %, = P(x; —
a,) + a, is the projection of x; onto M + a,. The problem is to find M
and a,, to minimize A(M, a,) over all k-dimensional subspaces M and
all a,.
(ii) First, regard a as fixed, and set S(b) = Z7(x; — b)(x; — b) for
any b € R?. With Q = I — P, show that A(M, a,) = trS(a,)Q
=trS(x)Q + n(ay, — X)Q(a, — x) where X = n~ '=0x,.

(i) Write S(X) = ZfA,v,v] in spectral form where A; > --- > A, >
0 and v,,..., v, is an orthonormal basis for R”. Using (ii), show
that A(M, a,) > Zf |A; with equality for z, = X and for M =
span{v,,..., Uy ).

Consider a sample covariance matrix

S SIZ)
S =
(SZI S

with S;; > 0 for i = 1,2. With ¢t = min{dim S;;, i = 1,2}, show that the
t sample canonical correlations are the ¢ largest solutions (in A) to the
equation |S;,55'S,; — A%S},| = 0, A € [0, ).

(The Eckhart-Young Theorem, 1936.) Given a matrix 4: n X p (say
n = p), let k < p. The problem is to find a matrix B: n X p of rank no
greater than k that is “closest” to 4 in the usual trace inner product on
£, - Let B, be all the n X p matrices of rank no larger than k, so the
problem is to find

inf |4 — BJ?
Be®,

where |M||> = tr MM’ for M € £, .

(i) Show that every B € B, can be written yC where { is n X k,
V'Y = I, and Cis k X p. Conversely, yC € B,, for each such ¢
and C.

(i) Using the results of Example 4.4, show that, for 4 and ¢ fixed,
inf |4 —y¢C|I> = |4 — Yy’ 4||°.
cef

P,k
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(iii)) With Q=1 - yy’, Q is a rank n — k orthogonal projection.
Show that, for each B € %,,
)\2

4 - B|? > manQu2 mftrQAA’— P

where A| > --- > A, are the singular values of 4. Here Q ranges
over all rank n — k orthogonal projections.

(iv) Write 4 = 2PA,u,v] as the singular value decomposition for 4.
Show that B = 2"}\ u; v achieves the infimum of part (iii).

7. In the case of a random sample from a bivariate normal distribution
N(p, 2), use [Proposition 10.8/and Karlin’s Lemma in the Appendix to
show that the density of W = vVn — 2r(1 — r2)~'/2 (r is the sample
correlation coefficient) has a monotone likelihood ratio in 8 = p(1 —
p?)~ /2. Conclude that the density of  has a monotone likelihood ratio
in p.

8. Letf, ,denote the density function on (0, ) of an unnormalized F,
random variable. Under the assumptlons of [Proposition 10.10] show
that the distribution of W = r2(1 — r?)~! has a density given by

f(W|P) = kZ fr+2k,n—r—l(w)h(k|p)
=1
where

1- )" YT ((n—1)/2 + k)

(kip) = * KIT((n - 1)/2) (/)"

k=0,1,....

Note that h(-|p) is the probability mass function of a negative bi-
nomial distribution, so f(w|p) is a mixture of F distributions. Show
that f(-|p) has a monotone likelihood ratio.

9. (A generalization of Proposition 10.12]) Consider the space R" and an
integer k with 1 < k < n. Fix an orthogonal projection P of rank k,
and for s < n — k, let @, be the set of all n X n orthogonal projections
R of rank s that satisfy RP = 0. Also, consider the group O(P) = (T'|T’
€0, TP=PT).

(i) Show that the group O(P) acts transitively on 9, under the
action R — I'RT".
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(ii) Argue that there is a unique O(P) invariant probability distribu-
tion on ..
(iii) Let A have a uniform distribution on O(P) and fix R, € 9.

Show that AR A’ has the unique O(P) invariant distribution on
P

s°

10. Suppose Z € £, , has an ,-left invariant distribution and has rank p
with probability one. Let Q be a rank n — k orthogonal projection
with p + k < n and form W = QZ.

(i) Show that W has rank p with probability one.

(i) Show that R = W(W'W)~'W has the uniform distribution on Gj’p
(in the notation of above with P = I — Q and s = p).

11. After the proof of Proposition 10.13] it was argued that, when ¢ < r,
to find the distribution of r, > --- > r,, it suffices to find the distri-
bution of the eigenvalues of the matrix B = (T, + T,)~ '/2T\(T, +
T,)~'/* where T, and T, are independent with £(T}) = W(I,,q,n —r
— 1) and £(T;) = W(l,, q,r). It is assumed that g < n —r — 1. Let
f(:|m) denote the density function of the W(I,, g, m) distribution
(m > q) with respect to Lebesgue measure dS on Sq. Thus f(S|m) =
w(m, q)|S|m~ 9=V 2%exp[— 1 tr S]I(S) where

_ (1 ifS>0
I(S)_{O otherwise

(i) With W, =T, and W, = T, + T,, show that the joint density of
W, and W, with respect to dW,dW, is f(W|n — r — 1) f(W, —
Wi|r). ‘

(ii) On the set where W, >0 and W, > 0, define B =
Wy V2w, Wy '/* and W, = V. Using Proposition 5.11, show that
the Jacobian of this transformation is |det V'|(?* D72, Show that
the joint density of B and V on the set where B > 0 and V' > 0 is
given by

f(V'2BVVn —r = 1) f(V'/2(1 — B)V'/?|r)|det V|@+ D72,

(i) Now, integrate out ¥ to show that the density of B on the set
0<B<I,is

p(p) = 2l =r oL Delnd)

X |B|(n—r—q—2)/2|1q — B|—9~ D/2,
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12. Suppose the random orthogonal transformation I' has a uniform
distribution on O,. Let A be the upper left-hand k X p block of I' and
assume p < k. Under the additional assumption that p < n — k, the
following argument shows that A has a density with respect to
Lebesgue measure on £, ,.

(1) Lety: n X p consist of the first p columns of " so A: k X p has
rows that are the first k rows of y. Show that ¢ has a uniform
distribution on ¥, . Conclude that ¢ has the same distribution
as Z(Z'Z)~'/* where Z: n X pis N0, 1, ® I,).

(ii) Now partition Z as Z = (§) where X is kK X p and Y is

(n — k) X p. Show that Z’Z = X’X + Y'Y and that A has the
same distribution as X(X'X + YY)~ /2

(iii)) Using (ii) and [Problem 11} show that B = A’A has the density

w(k, p)w(n—4k,p e ke p—
P(B) — ( P) ( )lBl(k P 1)/2|Ip _ B|( k—p—1)/2
w(n, p)

with respect to Lebesgue measure on the set 0 < B < I,,.

(iv) Consider a random matrix L: k X p with a density with respect
to Lebesgue measure given by

h(L) = c|I, — L'L|"~*=7=Y/2¢(L’L)

where for B €5,

1 if0<B<I
B) = L4
¢(B) {0 otherwise
and
w(n — ka P)

(zm) e, p)

Show that B = L’L has the density p(B) given in part (iii) (use
Proposition 7.6).

(v) Now, to conclude that A has & as its density, first prove the
following proposition: Suppose % is acted on measurably by a
compact group G and 7: % — % is a maximal invariant. If P,
and P, are both G-invariant measures on X such that P,(7~!(C))
= P,(77'(C)) for all measurable C C ¥, then P, = P,.
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(vi) Now, apply the proposition above with X = Bp, w G =0, 1(x)
= x’x, P, the distribution of A, and P, the distribution of L as
given in (iv). This shows that A has density A.

Consider a random matrix Z : n X p with a density given by f(Z|B, Z)
=|2|""?h(tr(Z — TB)=~(Z — TBY) where T: n X k of rank k is
known, B: k X p is a matrix of unknown parameters, and 2: p X p is
positive definite and unknown. Assume that n > p + k, that

sup |C|"*h(tr(C)) < + o0,
ces§,y

and that A is a nonincreasing function defined on [0, o). Partition Z
intoX:nXgqgand Y:nXr,q+ r=p,soZ=(XY). Also, partition
Zinto 2,;, 7, j= 1,2, where 2, is ¢ X g, 2, is r X r, and 2, is
gXr.

(i) Show that the maximum likelihood estimator of B is B =
(T'T)"'TZ and f(Z|B, =) = |=|""*h(tr S=~ ') where § = Z'QZ
withQ=1I—Pand P=T(T'T)"'T.

(ii)) Derive the likelihood ratio test of H,: 2, = 0 versus H;: 3, #
0. Show that the test rejects for small values of

IS|

ANZ)= <"
(2) 1S11118|

(iii) For U:n X q and V:n X r, establish the identity

t(UV)S-NUVY = t(V — US;'S)2RL(V — UZR'S),)

+tr UZ[;'U". Use this identity to derive the conditional distribu-

tion of Y given X in the above model. Using the notation of

show that the conditional density of Y given X is

H(YIC, B, 2, 254, X)
= |222-1|-"/2h(t1'(Y - WC)Z,(Y = WC) + "7)‘15("1)

where 1 = trf(X — TB))Z;,'(X — TB,) and (¢(n))"' =
Je, h(truu’ + 7) du.

(iv) The null hypothesis is now that C;, = 0. Show that, for each fixed
n, the likelihood ratio test (with C and 2,,., as parameters)
based on the conditional density rejects for large values of A(Z).
Verify (i), (ii), and (iii) of [Proposition 10.17]
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(v) Now, assume that

sup sup [C|"?h(trC + n)¢(n) =k, < + 0.
>0 Cce§’

Show that the likelihood ratio test for C;, = 0 (with C, 2, , B,
and X, as parameters) rejects for large values of A(Z).

(vi) Show that, under H,,, the sample canonical correlations based on
Si1s Siz5 Sy (here S = Z’QZ) have the same distribution as
when Z is N(TB, I, ® ). Conclude that under H,, A(Z) has
the same distribution as when Z is N(TB, I, ® ).

NOTES AND REFERENCES

1. Canonical correlation analysis was first proposed in Hotelling (1935,
1936). There are as many approaches to canonical correlation analysis
as there are books covering the subject. For a sample of these, see
Anderson (1958), Dempster (1969), Kshirsagar (1972), Rao (1973),
Mardia, Kent, and Bibby (1979), Srivastava and Khatri (1979), and
Muirhead (1982).

2. See Eaton and Kariya (1981) for some material related to
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