
C H A P T E R  10 

Canonical Correlation 
Coefficients 

This final chapter is concerned with the interpretation of canonical correla- 
tion coefficients and their relationship to affine dependence and indepen- 
dence between two random vectors. After using an invariance argument to 
show that population canonical correlations are a natural measure of affine 
dependence, these population coefficients are interpreted as cosines of the 
angles between subspaces (as defined in Chapter 1). Next, the sample 
canonical correlations are defined and interpreted as cosines of angles. The 
distribution theory associated with the sample coefficients is discussed 
briefly. 

When two random vectors have a joint normal distribution, indepen- 
dence between the vectors is equivalent to the population canonical correla- 
tions all being zero. The problem of testing for independence is treated in 
the fourth section of this chapter. The relationship between the MANOVA 
testing problem and testing for independence is discussed in the fifth and 
final section of the chapter. 

10.1. POPULATION CANONICAL CORRELATION COEFFICIENTS 

There are a variety of ways to introduce canonical correlation coefficients 
and three of these are considered in this section. We begin our discussion 
with the notion of affine dependence between two random vectors. Let 
X E (V, (., .),) and Y E (W, ( a ,  .),) be two random vectors defined on the 
same probability space so the random vector Z = {X, Y) takes values in the 
vector space V @ W. It is assumed that Cov(X) = Z,, and Cov(Y) = Z,, 
both exist and are nonsingular. Therefore, Cov(Z) exists (see Proposition 
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2.15) and is given by 

Also. the mean vector of Z is 

p = GZ = {GX, G Y )  = { p , ,  p 2 ) .  

Definition 10.1. Two random vectors U and 0, in (V,  (- ,  .),) are affinely 
equivalent if U = A 0 + a for some nonsingular linear transformation A and 
some vector a E V. 

It is clear that affine equivalence is an equivalence relation among 
random vectors defined on the same probability space and taking values 
in V. 

We now consider measures of affine dependence between X and Y,  whch 
are functions of p = {GX, GY)  and Z = Cov(Z) where Z = { X ,  Y ) .  Let 
m(p ,  2 )  be some real-valued function of p and Z that is supposed to 
measure affine dependence. If instead of X we observe 2, which is affinely 
equivalent to X, then the affine dependence between X and Y should be the 
same as the affine dependence between 2 and Y. Similarly, if is affinely 
equivalent to Y, then the affine dependence between X and Y should be the 
same as the affine dependence between X and p. These remarks imply that 
m(p ,  Z )  should be invariant under affine transformations of both X and Y. 
If ( A ,  a )  is an affine transformation on V, then ( A ,  a )v  = Av + a where A 
is nonsingular on V to V. Recall that the group of all affine transformations 
on V to V is denoted by Al(V)  and the group operation is given by 

Also, let Al(W)  be the affine group for W. The product group Al(V)  x 
AI(W)  acts on the vector space V @ Win the obvious way: 

( ( A ,  a ) ,  ( B ,  b ) ) { v ,  w)  = { A v  + b,  Bw + b ) .  

The argument given above suggests that the affine dependence between X 
and Y should be the same as the affine dependence between ( A ,  a )X  and 
( B ,  b)Y for all ( A ,  a )  E Al(V)  and ( B ,  b )  E Al(W).  We now need to 
interpret this requirement as a condition on m(p ,  Z).  The random vector 

( ( A ,  a ) ,  ( B ,  b ) ) { X ,  Y )  = {AX + a,  BY + b )  
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has a mean vector given by 

( ( A ,  a ) ,  ( B ,  b ) ) { ~ l ,  ~ 2 )  = + a ,  4 2  + b )  

and a covariance given by 

Therefore, the group A I ( V )  X A I ( W )  acts on the set 

O = { ( p ,  Z)Ip E V @ W ,  Z 2 0 ,  Zii  > 0 ,  i = 1,2). 

For g =- ( ( A ,  a ) ,  ( B ,  b ) )  E A l ( V )  X AI(W) ,  the group action is given by 

( P ,  Z )  -, (8l.b g ( Z ) )  

where 

and 

Requiring the affine dependence between X and Y to be equal to the affine 
dependence between ( A ,  a ) X  and ( B ,  b ) Y  simply means that the function 
m defined on O must be invariant under the group action given above. 
Therefore, m must be a function of a maximal invariant function under the 
action of AI(V)  x A I ( W )  on O. The following proposition gives one form 
of a maximal invariant. 

Proposition 10.1. Let q = dim V,  r = dim W, and let t = min{q, r). Given 

which is positive definite on V @ W, let A ,  > . . . 2 A ,  > 0 be the t largest 
eigenvalues of 
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where Z2, = Z;,. Define a function h on O by 

Z)  = (A,, A, ,..., A,), 

where A ,  > . - .  2 A ,  are defined in terms of 2 as above. Then h is a 
maximal invariant function under the action of G = Al(V) x AI(W) on O. 

Proof. Let {v,, . . . , v,) and {w,, . . . , w,) be fixed orthonormal sets in V and 
W. For each 2 ,  define QI2(2)  by 

where A ,  2 . - . 2 A ,  are the t largest eigenvalues of A(Z). Given (p, Z) E 

O, we first claim that there exists a g E G such that gp = 0 and 

The proof of this claim follows. For g = ((A, a), (B, b)), we have 

Choose A = I?ZL' /~  and B = A2,'/2 where r E ijo(V), A E B(W), and 
2;'/2 is the inverse of the positive definite square root of Xi,, i = 1,2. For 
each r and A, 

and 

Using the singular value decomposition, write 
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where { x , , .  . ., x,) and {y , , .  . . , y,) are orthonormal sets in V and W, 
respectively. This representation follows by noting that the rank of A,,  is at 
most t and 

has the same eigenvalues as A ( Z ) ,  which are A, > . . . > A, > 0. For A and 
B  as above, it now follows that 

Choose r so that Tx, = vi and choose A so that A y, = wid Then we have 

so g ( B )  has the form claimed. With these choices for A and B, now choose 
a = -Ap I  and b = -Bp,. Then 

The proof of the claim is now complete. To finish the proof of Proposition 
10.1, first note that Proposition 1.39 implies that h  is a G-invariant function. 
For the maximality of h,  suppose that h ( p ,  2 )  = h(v ,  *). Thus 

whlch implies that there exists a g  and g such that 

and 

Therefore, 

g-Ig(v,  *) = ( p ,  2 )  

so h  is maximal invariant. 
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The form of the singular value decomposition used in the proof of 
Proposition 10.1 is slightly different than that given in Theorem 1.3. For a 
linear transformation C of rank k defined on (V, ( - , a )  ,) to (W, ( . , .),), 
Theorem 1.3 asserts that 

where p, > 0, (x,, . . . , x,), and {w,, . . . , w,) are orthonormal sets in V and 
W. With q = dim V, r = dim W, and t = min{q, r), obviously k G t. When 
k < t, it is clear that the orthonormal sets above can be extended to 
{x,,. . . , x,) and (w,,. . . , w,), which are still orthonormal sets in V and W. 
Also, setting pi = 0 for i = k + 1,. . . , t, we have 

and p: 2 . . . 2 p: are the t largest eigenvalues of both CC' and C'C. This 
form of the singular value decomposition is somewhat more convenient in 
this chapter since the rank of C is not explicitly mentioned. However, the 
rank of C is just the number of pi, which are strictly positive. The 
corresponding modification of Proposition 1.48 should now be clear. 

Returning to our original problem of describing measures of affine 
dependence, say m(p, Z), Proposition 10.1 demonstrates that m is invariant 
under affine relabelings of X and Y iff m is a function of the t largest 
eigenvalues, A,,. . . , A,, of A(Z). Since the rank of A(Z) is at most t, the 
remaining eigenvalues of A(Z), if there are any, must be zero. Before 
suggesting some particular measures m(p, Z), the canonical correlation 
coefficients are discussed. 

Definition 10.2. In the notation of Proposition 10.1, let p, = A'/*, i = 

1,. . . , t. The numbers p, 2 p, 2 . . . 2 p, 2 0 are called the population 
canonical correlation coefficients. 

Since pi is a one-to-one function of Xi, it follows that the vector 
(p,,  . . . , p,) also determines a maximal invariant function under the action 
of G on O. In particular, any measure of affine dependence should be a 
function of the canonical correlation coefficients. 

The canonical correlation coefficients have a natural interpretation as 
cosines of angles between subspaces in a vector space. Recall that Z = (X, Y) 
takes values in the vector space V $ W where (V, (., .),) and (W, (., .),) 
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are inner product spaces. The covariance of 2, with respect to the natural 
inner product, say ( a ,  a ) ,  on V @ W, is 

In the discussion that follows, it is assumed that Z is positive definite. Let 
(., -), denote the inner product on V @ W defined by 

for z , ,  z2 E V @ W. The vector space V can be thought of as a subspace of 
V @ W-namely, just identify V with V @ (0) c V @ W. Similarly, W is a 
subspace of V @ W. The next result interprets the canonical correlations as 
the cosines of angles between the subspaces V and W when the inner 
product on V @ W is (., .),. 

Proposition 10.2. Given 2, the canonical correlation coefficients p ,  >, . . . 
>, p, are the cosines of the angles between V and W as subspaces in the 
inner product space (V @ W, (., .),). 

Proof: Let PI and P, be the orthogonal projections (relative to (., .),) onto 
V @ (0) and W @ (O), respectively. In view of Proposition 1.48 and Defini- 
tion 1.28, it suffices to show that the t largest eigenvalues of P,P2P, are 
A,  = p?, i = 1,. . . , t .  We claim that 

is the orthogonal projection onto V @ (0). For (v, w) E V @ W, 

so the range of C ,  is V @ (0) and C ,  is the identity on V @ (0). That 
C: = C ,  is easily verified. Also, since 

the identity C;Z = ZC,  holds. Here C;  is the adjoint of C ,  relative to the 
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inner product (., .)-namely, 

This shows that C ,  is self-adjoint relative to the inner product (., .),. Hence 
C ,  is the orthogonal projection onto V $ (0) in (V $ W, (., .),). A similar 
argument yields 

as the orthogonal projection onto (0) $ W in (V $ W, (., -),). Therefore 
P, = C,, i = 1,2, and a bit of algebra shows that 

where A(Z) = Z,'ZI2Z;'Z2,  and 

Thus the characteristic polynomial of PI  P2 PI is given by 

where r = dim W. Since t = min(q, r )  where q = dim V, it follows that the t 
largest eigenvalues of PI P2 PI are the t largest eigenvalues of A(Z). These 
are p: 2 . . - 2 p;, so the proof is complete. 

Another interpretation of the canonical correlation coefficients can be 
given using Proposition 1.49 and the discussion following Definition 1.28. 
Using the notation adopted in the proof of Proposition 10.2, write 

where {ql,. . . , qt) is an orthonormal set in V $ (0) and (S,,. . . , 5,) is an 
orthonormal set in (0) ~3 W. Here orthonormal refers to the inner product 
( a ,  .), on V 61 W, as does the symbol in the expression for P2P1 - that is, 
for z , ,  z2 E V CB W, 
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The existence of this representation for P, PI follows from Proposition 1.48, 
as does the relationship 

for i, j = 1,. . . , t. Define the sets D I i  and D,,, i = 1 , .  . . , t ,  as in Proposition 
1.49 (with M I  = V @ (0)  and M2 = (0) @ W ) ,  SO 

for i = 1,. . . , t .  To interpret p , ,  first consider the case i = 1. A vector is in 
Dl ,  iff 

and 

1 = ( 7 ,  Z V )  = ( 0 ,  2 1 1 v ) 1  = var(v, X ) , .  

Similarly, 5 E D,, iff 

and 

However, for 71 = { v ,  0 )  E D l ,  and 5 = (0, w )  E D2,, 

This is just the ordinary correlation between ( v ,  X), and ( w ,  Y ) ,  as v and w 
have been normalized so that 1 = var(v, X )  , = var(w, Y ) , .  Since (11,  O2 
< p, for all 71 E D l ,  and 5 E D,,, it follows that for every x E V, x * 0 ,  
and y E W, y * 0 ,  the correlation between ( x ,  X ) ,  and ( y ,  Y ) ,  is no 
greater than p , .  Further, writing 71, = {v , ,O)  and 5, = (0, w,), we have 

which is the correlation between ( v , ,  X ) ,  and ( w , ,  Y ),. Therefore, P I  is the 
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maximum correlation between (x, X), and (y, Y), for all nonzero x E V 
and y E W. Further, this maximum correlation is achieved by choosing 
x = v, andy = w,. 

The second largest canonical correlation coefficient, p,, satisfies the 
equality 

A vector q is in Dl, iff 

q = {v,O), v E T/ 

and 

0 = (7, TI)= = ("9 ~ 1 1 ~ 1 ) l .  

Also, a vector [ is in D,, iff 

and 

These relationships provide the following interpretation of p,. The maxi- 
mum correlation between (x, X), and (y, Y), is p, and is 

since 1 = var(v,, X), = var(w,, Y),. Suppose we now want to find the 
maximum correlation between (x, X), and (y, Y), subject to the condition 

Clearly (i) is equivalent to 

(ii) 
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Since correlation is invariant under multiplication of the random variables 
by positive constants, to find the maximum correlation between (x, X), and 
(y, Y), subject to (ii), it suffices to maximize cov{(x, X),, (y, Y),) over 
those x 's and y 's that satisfy 

(x ,  ~ , , x ) ,  = 1, (x ,  ~ , , v , ) ,  = 0 
(iii) 

( Y ?  222~)2  = 19 (Y,  2 2 2 ~ 1 ) ~  = 0. 

However, x E V satisfies (iii) iff 7 = {x, 0) is in Dl, and y E W satisfies (iii) 
iff 5 = (0, y )  is in D,,. Further, for such x, y, q, and 5, 

Thus maximizing this covariance subject to (iii) is the same as maximizing 
(q, 5)= for 7 E Dl, and 5 E D,,. Of course, this maximum is p, and is 
achieved at 7, E Dl, and 5, E D,,. Writing 7, = {v2,0) and 5, = (0, w,), it 
is clear that v, E V and w, E W satisfy (iii) and 

Furthermore, Proposition 1.48 shows that 

which implies that 

Therefore, the problem of maximizing the correlation between (x, X), and 
(y,  Y), (subject to the condition that the correlation between (x, X), and 
(v ,, X), be zero and the correlation between (y, Y), and (w,, Y), be zero) 
has been solved. 

It should now be fairly clear how to interpret the remaining canonical 
correlation coefficients. The easiest way 'to describe the coefficients is by 
induction. The coefficient p, is the largest possible correlation between 
( x ,  X), and (y, Y), for nonzero vectors x E V and y E W. Further, there 
exist vectors v, E V and w, E W such that 

and 

1 = var(v,, X), = var(w,, Y)2. 
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These vectors came from q, and [, in the representation 

given earlier. Since qi E V €3 {0), we can write q, = {v,, 0), i = 1,. . . , t. 
Similarly, 5 ,  = (0, w,), i = 1,. . . , t. Using Proposition 1.48, it is easy to 
check that 

for j, k = 1,. . . , t. Of course, these relationships are simply a restatement of 
the properties of [,, . . . , 5, and q,, . . . , qt. For example, 

However, as argued in the case of p,, we can say more. Given p,, . . . , p, and 
the vectors v,,. . . , v,-, and w,,. . . , w,-, obtained from q,,.  . . , qi- , and 
[,,. . . , 4,- ,, consider the problem of maximizing the correlation between 
(x, X), and (y, Y), subject to the conditions that 

COV{(X, x), ,  (u,, x),) = 0, j  = 1,. . . , i - 1 

C O V { ( ~ , Y ) ~ , ( W ~ , Y ) ~ )  = 0, j =  1 ,..., i - 1. 

By simply unravelling the notation and using Proposition 1.49, this maxi- 
mum correlation is pi and is achieved for x = vi and y = w,. T h s  successive 
maximization of correlation is often a useful interpretation of the canonical 
correlation coefficients. 

The vectors v,, . . . , v, and w,, . . . , w, lead to what are called the canonical 
variates. Recall that q = dim V, r = dim W and t = min{q, r). For definite- 
ness, assume that q < r so t = q. Thus {v,,. . . , 0,) is a basis for V and 
satisfies 

for j, k = 1,. . . , q SO {v,,. . . , uq) is an orthonormal basis for V relative to 
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the inner product determined by Z ,  ,. Further, the linearly independent set 
{ w , ,  . . . , w,) satisfies 

(y ,  ' 2 2 ~ k ) ,  = ' j k  

so {w,, .  . . , w,) is an orthonormal set relative to the inner product de- 
termined by Z,,. Now, extend this set to {w, ,  . . . , w,) so that this is an 
orthonormal basis for W in the Z,, inner product. 

Definition 10.3. The real-valued random variables defined by 

and 

are called the canonical variates of X and Y ,  respectively. 

Proposition 10.3. The canonical variates satisfy the relationships 

(i) var X, = var Yk = 1. 

(ii) cov{ X, , Yk ) = p,',, . 

These relationships hold for j = 1,. . . , q and k = 1,. . . , r.  Here, P I , .  . . , P, 
are the canonical correlation coefficients. 

Proof: This is just a restatement of part of what we have established above. 

Let us briefly review what has been established thus far about the 
population canonical correlation coefficients p,,. . . , p,. These coefficients 
were defined in terms of a maximal invariant under a group action and this 
group action arose quite naturally in an attempt to define measures of affine 
dependence. Using Proposition 1.48 and Definition 1.28, it was then shown 
that p , ,  . . . , p, are cosines of angles between subspaces with respect to an 
inner product defined by Z. The statistical interpretation of the coefficients 
came from the detailed information given in Proposition 1.49 and this 
interpretation closely resembled the discussion following Definition 1.28. 
Given X in (V, (. , 0 )  ,) and Y in (W, ( . , . ),) with a nonsingular covariance 
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the existence of special bases {v,, . . . , 0,) and {w,, . . . , w,) for V and W was 
established. In terms of the canonical variates 

= (v,, x ) , ,  Y, = (w,, y),, 

the properties of these bases can be written 

1 = var Xi = var Y, 

and 

for i = 1,. . . , q and j = 1,. . . , r. Here, the convention that p, = 0 for 
i > t = min{q, r )  has been used although pi is not defined for i > t. When 
q g r, the covariance matrix of the variates X,,. . . , X,, Y,,. . . , Y, (in that 
order) is 

'4 

Z0 = [(DO). (Do))  Ir 

where D is a q x q diagonal matrix with diagonal entries p,  >, . . . >, p, and 
0 is a q x ( r  - q) block of zeroes. The reader should compare this matrix 
representation of Z to the assertion of Proposition 5.7. 

The final point of this section is to relate a prediction problem to that of 
suggesting a particular measure of affine dependence. Using the ideas 
developed in Chapter 4, a slight generalization of Proposition 2.22 is 
presented below. Again, consider X E (V, (., a ) , )  and Y E (W, ( a ,  .),) with 
&X = p,, &Y = p2, and 

It is assumed that Z,, and Z,, are both nonsingular. Consider the problem 
of predicting X by an affine function of Y-say CY + v, where C E 

C(W, V) and v, E V. Let [., .]  be any inner product on V and let 1 1  . 1 1  be 
the norm defined by [ a ,  a ] .  The following result shows how to choose C and 
v, to minimize 

&(IX - (CY + v0)1l2. 

Of course, the inner product [ . , . ] on V is related to the inner product ( . , . ) , 



for some positive definite A,. 

Proposition 10.4. For any C E C(W, V) and v ,  E V, the inequality 

holds. There is equality in this inequality iff 

and 

C = t = ZI2Z,' .  

Here, ( , .) is the natural inner product on E(V, V) inherited from (V, 
( - 9  . ) I ) .  

Proof. First, write 

x - ( C Y  + v , )  = Ul + U2 

where 

U, = X - (L'Y + 6 , )  = X - pl - Z I 2 Z $ ( y  - p 2 )  

and 

U2 = (L' - C ) Y  + 6,  - 0, .  

Clearly, Ul has mean zero. It follows from Proposition 2.17 that U, and U2 
are uncorrelated and 

C0v(U1) = Z , ,  - ZI2Z,'Z2,.  

Further, from Proposition 4.3 we have &[U,,  U2] = 0. Therefore, 
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where the last equality follows from the identity 

&U,OUl = Z , ,  - ZI2Z, 'Z2,  

established in Proposition 2.21. Thus the desired inequality holds and there 
is equality iff GllU2112 = 0. But & l l ~ ~ 1 1 ~  is zero iff U2 is zero with probability 
one. This holds iff v, = do and C = C since Cov(Y) = Z2 ,  is positive 
definite. This completes the proof. 

Now, choose A, to be 2;' in Proposition 10.4. Then the mean squared 
error due to predicting X by e~ + do, measured relative to Z;' ,  is 

Here, I (  . 1 1  is obtained from the inner product defined by 

We now claim that @ is invariant under the group of transformations 
discussed in Proposition 10.1, and thus is a possible measure of affine 
dependence between X and Y. To see this, first recall that ( . , .) is just the 
trace inner product for linear transformations. Using properties of the trace, 
we have 

@ ( Z )  = ( I ,  I  - 2,"22,22,'22,2;'/2) 

9 

= C (1 - A,) 
I= l 

where A, >, . >, A, 2 0 are the eigenvalues of 2,'/22,22,'22,2,'/2. 
However, at most t = min{q, r )  of these eigenvalues are nonzero and, by 
definition, p, = A'/2, i = 1,. . . , t ,  are the canonical correlation coefficients. 
Thus 

is a function of p,, . . . , p, and hence is an invariant measure of affine 
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dependence. Since the constant q - t is irrelevant, it is customary to use 

rather than +(Z) as a measure of affine dependence. 

10.2. SAMPLE CANONICAL CORRELATIONS 

To introduce the sample canonical correlation coefficients, again consider 
inner product spaces (V, (., .),) and (W, (., .),) and let ( V  @ W, (., .)) be 
the direct sum space with the natural inner product (., .). The observations 
consist of n random vectors Zi = {Xi, y) E V @ W, i = 1,. . . , n. It is 
assumed that these random vectors are uncorrelated with each other and 
C(Zi) = C(Z,) for all i, j. Although these assumptions are not essential in 
much of what follows, it is difficult to interpret canonical correlations 
without these assumptions. Given Z,, . . . , Zn, define the random vector Z 
by specifying that Z takes on the values Zi with probability l/n. Obviously, 
the distribution of Z is discrete in V @ W and places mass l/n at Z, for 
i = 1,. . . , n. Unless otherwise specified, when we speak of the distribution 
of Z, we mean the conditional distribution of Z given Z,, . . . , Z,, as 
described above. Since the distribution of Z is nothing but the sample 
probability measure of Z,, . . . , Z,, we can think of Z as a sample approxi- 
mation to a random vector whose distribution is C(Z,). Now, write Z = 

{X, Y) with X E V and Y E W SO X is Xi with probability l / n  and Y is 
with probability l/n. Given Z,, . . . , Z,,, the mean vector of Z is 

and the covariance of Z is 

I - 
C o v Z =  S = -  C (z,- Z)n(z, - Z) .  

,=, 

Thls last assertion follows from Proposition 2.21 by noting that 

CovZ = & ( Z  - Z ) o ( z  - Z )  

since the mean of Z is Z. When V = Rq and W = Rr are the standard 
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coordinate spaces with the usual inner products, then S is just the sample 
covariance matrix. Since S is a linear transformation on V @ W to V @ W, 
S can be written as 

It is routine to show that 

I s,, = - C (4 - X)o(x;  - X )  
; = I  

and S,, = S;, .  The reader should note that the symbol Ci appearing in the 
expressions for S, ,, S,,, and S,, has a different meaning in each of the three 
expressions-namely, the outer product depends on the inner products on 
the spaces in question. Since it is clear which vectors are in which spaces, 
this multiple use of should cause no confusion. 

Now, to define the sample canonical correlation coefficients, the results 
of Section 10.1 are applied to the random vector Z. For this reason, we 
assume that S = Cov Z is nonsingular. With q = dim V, r = dim W, and 
t = min{q, r), the canonical correlation coefficients are the square roots of 
the t largest eigenvalues of 

In the sampling situation under discussion, these roots are denoted by 
r, a . . . 2 r, a 0 and are called the sample canonical correlation coefficients. 
The justification for such nomenclature is that r f , .  . . , r: are the t largest 
eigenvalues of A(S) where S is the sample covariance based on Z,, . . . , Z,. 
Of course, all of the discussion of the previous section applies directly to the 
situation at hand. In particular, the vector (r,, . . . , r,) is a maximal invariant 
under the group action described in Proposition 10.1. Also, r,, . . . , r, are the 
cosines of the angles between the subspaces V @ (0) and (0) @ W in the 
vector space V @ W relative to the inner product determined by S. 
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Now, let {v,,. . . , 0,) and {w,, . . . , w,) be the canonical bases for V and 
W. Then we have 

for i = 1,. . ., q and j = 1,. .. , r. The convention that r, = 0 for i > t is 
being used. To interpret what t h s  means in terms of the sample Z,, . . . , Z,, 
consider r,. For nonzero x E V and y E W, the maximum correlation 
between (x, X), and (y, Y), is r, and is acheved for x = v, and y = w,. 
However, given Z,,. . . , Z,, we have 

1 " 
= (x, s,,x), = - C (x, x, - x): 

i = ,  

and, similarly, 

An analogous calculation shows that 

Thus var(x, X), is just the sample variance of the random variables 
(x, X,),, i = I,. .  ., n ,  and var(y, Y), is the sample variance of (y, x),, 
i = 1,. . . , n. Also, cov{(x, X),, (y, Y),) is the sample covariance of the 
random variables (x, X,),, (y, x),, i = 1,. . . , n.  Therefore, the correlation 
between (x, X), and (y, Y ) ,  is the ordinary sample correlation coefficient 
for the random variables (x, &),, (y, x),, i = 1,. . . , n. This observation 
implies that the maximum possible sample correlation coefficient for 
(x, 4)1, (y, x),, i = 1,. . . , n is the largest sample canonical correlation 
coefficient, r,, and this maximum is attained by choosing x = v, and 
y = w,. The interpretation of r,, . . . , r, should now be fairly obvious. Given 
i ,  2 < i G t, and given r,,. . . , r ,-,, v,,. . . , v i - , ,  and w,,. . . , w ,-,, consider 
the problem of maximizing the correlation between (x, X), and (y, Y ) ,  
subject to the conditions 
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These conditions are easily shown to be equivalent to the conditions that the 
sample correlation for 

be zero for j = 1,. . . , i - 1 with a similar statement concerning the Y's. 
Further, the correlation between (x, X), and (y, Y), is the sample correla- 
tion for (x, Xk),, (y, Yk),, k = 1,. . . , n.  The maximum sample correlation 
is r, and is attained by choosing x = vi and y = w,. Thus the sample 
interpretation of r,, . . . , r, is completely analogous to the population inter- 
pretation of the population canonical correlation coefficients. 

For the remainder of this section, it is assumed that V = R4 and W = Rr 
are the standard coordinate spaces with the usual inner products, so V CB W 
is just RP where p = q + r. Thus our sample is Z,, . . . , Zn with Zi E RP and 
we write 

with Xi E R4 and Y, E Rr, i = 1,. . . , n.  The sample covariance matrix, 
assumed to be nonsingular, is 

where 

1 " s,, = - ~ ( x , - x ) ( x ~ - x ) '  
I 

and S,, = S;,. Now, form the random matrix 2 :  n X p whose rows are 
(Zi - Z)' and partition 2 into U :  n x q and V :  n x r so that 

2 = (uv).  



The rows of U are (X, - X)' and the rows of V are (Y, - Y)', i = 1,. . . , n. 
Obviously, we have nS = 2'2, nS,, = U'U, nS,, = V'V, and nS,, = U'V. 
The sample canonical correlation coefficients r, 2 . 2 r, are the square 
roots of the t largest eigenvalues of 

However, the t largest eigenvalues of A(S) are the same as the t largest 
eigenvalues of PxPy where 

and 

Now, P, is the orthogonal projection onto the q-dimensional subspace of 
Rn, say Mx, spanned by the columns of U. Also, Py is the orthogonal 
projection onto the r-dimensional subspace of Rn, say My, spanned by the 
columns of V. It follows from Proposition 1.48 and Definition 1.28 that 
the sample canonical correlation coefficients r,, . . . , r, are the cosines of the 
angles between the two subspaces Mx and My contained in Rn. Summariz- 
ing, we have the following proposition. 

Proposition 10.5. Given random vectors 

where Xi E R4 and Y, E Rr, form the matrices U: n x q and V: n x r as 
above. Let Mx c Rn be the subspace spanned by the columns of U and let 
M y  G Rn be the subspace spanned by the columns of V. Assume that the 
sample covariance matrix 

is nonsingular. Then the sample canonical correlation coefficients are the 
cosines of the angles between Mx and My. 

The sample coefficients r,, . . . , r, have been shown to be the cosines of 
angles between subspaces in two different vector spaces. In the first case, 
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the interpretation followed from the material developed in Section 10.1 of 
this chapter: namely, r,,. . . , r, are the cosines of the angles between R4 & 
(0) c RP and (0) €0 Rr G RP when RP has the inner product determined by 
the sample covariance matrix. In the second case, described in Proposition 
10.5, r,, . . . , r, are the cosines of the angles between Mx and M y  in Rn when 
R" has the standard inner product. The subspace Mx is spanned by the 
columns of U where U has rows (Xi - X)', i = 1,. . . , n. Thus the coordi- 
nates of the j th column of U are Xi, - for i = 1,. . . , n where Xi, is the 
j th coordinate of E Rq, and is the j th coordinate of X. This is the 
reason for the subscript X on the subspace M,. Of course, similar remarks 
apply to My. 

The vector (r, , .  . . , r,) can also be interpreted as a maximal invariant 
under a group action on the sample matrix. Given 

let 2: n x q have rows X;, i = 1 , .  . . , n and let ?: n X r have rows r, 
i = 1,. . . , n. Then the data matrix of the whole sample is 

which has rows Z,', i = 1,. . . , n.  Let e E Rn be the vector of all ones. It is 
assumed that 2 E 2 G Cp,, where 2 is the set of all n x p matrices such 
that the sample covariance mapping 

has rank p. Assuming that n >, p + 1, the complement of 2 in has 
Lebesgue measure zero. To describe the group action on %, let G be the set 
of elements g = ( r ,  c, C) where 

and 

For g = ( r ,  c, C), the value of g at 2 is 

g2 = ~ Z C '  + ec'. 
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Since 

~ ( ~ 2 )  = c s ( Z ) c f .  

it follows that each g  E G  is a one-to-one onto mapping of % to %. The 
composition in G, defined so G  acts on the left of %, is 

Proposition 10.6. Under the action of G  on %, a maximal invariant is the 
vector of canonical correlation coefficients r,, . . . , r, where t = rnin(q, r) .  

ProoJ Let S; be the space of p X p positive definite matrices so the 
sample covariiance mapping s  : % + S; is onto. Given S  E S;, partition S  
as 

where S , ,  is q x q, S,, is r x r ,  and S, ,  is q X r. Define h  on 5; by letting 
h ( S )  be the vector ( A , ,  . . . , A,)' of the t  largest eigenvalues of 

Since r, = &, i = 1,. . . , t ,  the proposition will be proved if it is shown that 

is a maximal invariant function. Thls follows since h ( s ( 2 ) )  = (A , ,  . . . , A,)', 
which is a one-to-one function of ( r , ,  . . . , r,). The proof that cp is maximal 
invariant proceeds as follows. Consider the two subgroups G I  and G, of G  
defined by 

and 

G2 = {g lg  = ( I n , ( ) ,  C )  E G ) .  

Note that G, acts on the space S; in the obvious way- namely, if g, = ( I n ,  
0, C ) ,  then 

g , ( S )  = CSC', S  E 5;. 
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Further, since 

( L  c >  c )  = (r,  c ,  zp)(zn,o, c) ,  
it follows that each g E G can be written as g = g,g, where g, E Gi, 
i = 1,2. Now, we make two claims: 

(i) s : Z + S; is a maximal invariant under the action of GI on 2. 
(ii) h : S; + R' is a maximal invariant under the action of G2 on S;. 

Assuming (i) and (ii), we now show that cp(2) = h(s(2))  is maximal 
invariant. For g E G, write g = g,g, with gi E GI, i = 1,2. Since 

and 

we have 

cp(g2) = h(s(g1g22)) = h ( s (g22) )  = h ( g 2 4 2 ) )  = h ( s ( 2 ) ) .  

It follows that cp is invariant. To show that cp is maximal invariant, assume 
cp(2,) = rp(Z2). A g E G must be found so that g2, = 2,. Since h is 
maximal invariant under G,  and 

there is a g, E G2 such that 

g2(s(21)) = 4 2 2 ) .  

However, 

g , ( s (2 , ) )  = s(g221) = 4 2 2 )  

and s is maximal invariant under GI so there exists a g, such that 

This completes the proof that cp, and hence r,, . . . , r,, is a maximal invariant 
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-assuming claims (i) and (ii). The proof that s : 2 + S; is a maximal 
invariant is an easy application of Proposition 1.20 and is left to the reader. 
That h : S; + Rt is maximal invariant follows from an argument similar to 
that given in the proof of Proposition 10.1. 

The group action on 2 treated in Proposition 10.6 is suggested by the 
following considerations. Assuming that the observations Z,, . . . , 2, in RP 
are uncorrelated random vectors and C(Zi) = C(Z,) for i = 1,. . . , n ,  it 
follows that 

&Z = ep' 

and 

c o v z  = I, @ Z 

where p = &Z, and Cov Z, = 2. When 2 is transformed by g = (I?, c, C), 
we have 

&gZ = e(Cp + c)' 

and 

c o v g z  = I, @ (CZC'). 

Thus the induced action of g on (p, 2 )  is exactly the group action consid- 
ered in Proposition 10.1. The special structure of 62 and Cov 2 is reflected 
by the fact that, for g = (I?, 0, I,), we have & g ~  = 62 and ~ o v g z  = Cov 2. 

10.3. SOME DISTRIBUTION THEORY 

The distribution theory associated with the sample canonical correlation 
coefficients is, to say the least, rather complicated. Most of the results in this 
section are derived under the assumption of normality and the assumption 
that the population canonical correlations are zero. However, the distribu- 
tion of the sample multiple correlation coefficient is given in the general 
case of a nonzero population multiple correlation coefficient. 

Our first result is a generalization of Example 7.12. Let Z,, . . . , Z, be a 
random sample of vectors in RP and partition Zi as 
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Assume that Z, has a density on RP given by 

where f has been normalized so that 

Thus when the density of Z ,  is p(.Ip, Z ) ,  then 

Assuming that n > p + 1, the sample covariance matrix 

is positive definite with probability one. Here S , ,  is q x q, S,, is r x r, and 
S , ,  is q x r. Partitioning Z as S is partitioned, we have 

Thus the squared sample coefficients, rf >, - . r:, are the t largest 
eigenvalues of s,'s,,s,;'s,, and the squared population coefficients, p: > 

. 2 p;, are the t largest eigenvalues of Z,'Z12Z;1Z2,. In the present 
generality, an invariance argument is given to show that the joint distribu- 
tion of (r, , . . . , r,) depends on (p, Z) only through ( p , ,  . . . , p,). Consider the 
group G whose elements are g = (C, c) where c E RP and 

The action of G on RP is 

(C,c)z  = Cz + c 

and group composition is 



The group action on the sample is 

With the induced group action on (p, Z) given by 

where g = (C, c ) ,  it is clear that the family of distributions of (Z,, . . . , 2,) 
that are indexed by elements of 

is a G-invariant family of probability measures. 

Proposition 10.7. The joint distribution of (r,, . . . , r,) depends on (p, 2 )  
only through (p,, .  . . , p,). 

Proof: From Proposition 10.6, we know that (r,,. . . , r,) is a G-invariant 
function of (Z, ,  . . . , Z,). Thus the distribution of (r,, . . . , r,) will depend on 
the parameter 8 = (p, 2 )  only through a maximal invariant in the parame- 
ter space. However, Proposition 10.1 shows that (p,,. . . , p,) is a maximal 
invariant under the action of G on O. 

Before discussing the distribution of canonical correlation coefficients, 
even for t = 1, it is instructive to consider the bivariate correlation coeffi- 
cient. Consider pairs of random variables (Xi, y) ,  i = 1,. . . , n, and let 
X E Rn and Y E Rn have coordinates Xi and y ,  i = 1,. . . , n. With e E Rn 
being the vector of ones, Pe = eel/n and Qe = I - Pe, the sample correla- 
tion coefficient is defined by 

The next result describes the distribution of r when (K., x), i = 1 , .  . . , n, is 
a random sample from a bivariate normal distribution. 

Proposition 10.8. Suppose ( 4 ,  y )' E R ~ ,  i = 1,. . . , n, are independent 
random vectors with 
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where p  E R 2  and 
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is positive definite. Consider random variables (U,,  U2, U,) with: 

(i) (U, ,  U2) independent of U,. 
(ii) C(U,) = x ip2 .  

(iii) C(U2)= Xi-1. 
(iv) C(UIIU2) = N( {& w2, 1). 

where p = a l 2 / ( a I  is the correlation coefficient. Then we have 

Proof: The assumption of independence and normality implies that the 
matrix ( X Y )  E C2, has a distribution given by 

c ( X Y )  = N ( e p f ,  In 8 2 ) .  

It follows from Proposition 10.7 that we may assume, without loss of 
generality, that Z has the form 

When Z has this form, the conditional distribution of X  given Y  is 

e ( X I Y )  = N ( ( P ,  - ~ ~ 2 ) e  + P Y ,  (1 - p2)In)  

SO 

C ( Q , X I Y )  = N(PQ,Y,  (1 - p2)ee). 

Now, let v , ,  . . . , vn be an orthonormal basis for R n  with v ,  = e/ h and 
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Expressing Q e X  in this basis leads to 

since Qee = 0. Setting 

it is easily seen that, conditional on Y, we have that t2, . . . , t, are indepen- 
dent with 

and 

Since 

the identity 

holds. This leads to 

Setting U,  = t2, U2 = J J Q , Y ) \ ~ ,  and U, = z;(? yields the assertion of the 
proposition. 

The result of thls proposition has a couple of interesting consequences. 
When p = 0, then the statistic 
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has a Students t distribution with n - 2 degrees of freedom. In the general 
case, the distribution of W can be described by saying that: conditional on 
U,, W has a noncentral t distribution with n - 2 degrees of freedom and 
noncentrality parameter 

where C(U,) = Xt-,. Let pm(.16) denote the density function of a non- 
central t distribution with m degrees of freedom and noncentrality parame- 
ter 8.  The results in the Appendix show that pm(.16) has a monotone 
likelihood ratio. It is clear that the density of W is 

where f is the density of U, and m = n - 2. From this representation and 
the results in the Appendix, it is not difficult to show that h(.lp) has a 
monotone likelihood ratio. The details of this are left to the reader. 

In the case that the two random vectors X and Y in R n  are independent, 
the conditions under whch W has a t,-, distribution can be considerably 
weakened. 

Proposition 10.9. Suppose X and Y in R n  are independent and both IIQe XI1 
and IIQeYII are positive with probability one. Also assume that, for some 
number p, E R ,  the distribution of X - pIe is orthogonally invariant. 
Under these assumptions, the distribution of 

where 

is a tn- ,  distribution. 

Proof. The two random vectors QeX and QeY take values in the ( n  - 1)- 
dimensional subspace 

M = {xlx E R n ,  x'e = 0 ) .  
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Fix Y so the vector 

has length one. Since the distribution of X - p,e is 0, invariant, it follows 
that the distribution of QeX is invariant under the group 

G = {I'lI' E On, I'e = e), 

which acts on M. Therefore, the distribution of QeX/llQeXII is G-invariant 
on the set 

But G is compact and acts transitively on 5% so there is a unique G-invariant 
distribution for QeX/llQeXII in %. From thls uniqueness it follows that 

where C(Z) = N(0, I,) on Rn. Therefore, we have 

and for each y, the claimed result follows from the argument given to prove 
Proposition 10.8. 

We now turn to the canonical correlation coefficients in the special case 
that t = 1. Consider random vectors and YJ with X, E R' and Y, E Rr, 
i = 1,. . . , n. Let X E Rn have coordinates XI,. . . , Xn and let Y E Cr, have 
rows Y;, . . . , Y,'. Assume that QeY has rank r so 

is the orthogonal projection onto the subspace spanned by the columns of 
QeY. Since t = 1, the canonical correlation coefficient is the square root of 
the largest, and only nonzero, eigenvalue of 
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which is 
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For the case at hand, r, is commonly called the multiple correlation coeffi- 
cient. The distribution of r: is described next under the assumption of 
normality. 

Proposition 10.10. Assume that the distribution of (XY) E Cr+ ,, , is given 
by 

and partition Z as 

where a,, > 0, Z,, is 1 x r, and Z2, is r x r. Consider random variables U,, 
U2, and U, whose joint distribution is specified by: 

(i) (U,, U2) and U, are independent. 
(ii) C(U,) = xi-,- ,. 

(iii) C(U2) = Xi- ,. 
(iv) C(U,(U2) = X: (A), where A = p2(1 - p2) - '~ , .  

Here p = (Z,2Z~ 'Z2, /a , , ) ' /2  is the population multiple correlation coeffi- 
cient. Then we have 

Proof. Combining the results of Proposition 10.1 and Proposition 5.7, 
without loss of generality, Z can be assumed to have the form 

where E ,  E Rr and E ;  = (1,0,. . . , 0). When Z has this form, the conditional 
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distribution of X given Y is 

where & X  = ple and &Y = ep;. Since Q,e = 0, we have 

The subspace spanned by the columns of QeY is contained in the range of 
Q, and this implies that QeP = PQ, = P so 

Since 

it follows that 

Given Y, the conditional covariance of Q,X is (1 - P ~ ) Q ,  and, therefore, 
the identity PQ,(Q, - P )  = 0 implies that PQ,X and (Q, - P)Q,X are 
conditionally independent. It is clear that 

so we have 

since Q, - P is an orthogonal projection of rank n - r - 1. Again, condi- 
tioning on Y, 

since PQ, = P and Q,YE, is in the range of P. It follows from Proposition 
3.8 that 
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where the noncentrality parameter A is given by 

That U2 = E;YQ,YE, has a Xi- distribution is clear. Defining U, and U3 by 

uI = (1 - P * ) - ' I I P Q , X I I ~  

and 

u3 = (1 - P ~ ) - ' I I ( Q ,  - P > Q , X I I ~ ,  

the identity 

holds. That U3 is independent of (U,, U2) follows by conditioning on Y. 
Since 

where 

the conditional distribution of Ul given Y  is the same as the conditional 
distribution of U, gven U2. This completes the proof. 

When p = 0, Proposition 10.10 shows that 

2 

e(-) = el$-)  = c , n - r - 1 9  

n - r -  I 

which is the unnormalized F-distribution on (0,oo). More generally, 
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where 

is random. T h s  means that, conditioning on A = 6, 

Let !(.la) denote the density function of an F(r, n - r - 1; 6) distribution, 
and let h ( . )  be the density of a X E - l  distribution. Then the density of 
r;/(l - r;) is 

k(w1p) =/mf(wlp2(l - p2)-'u)h(u) du. 
0 

From this representation, it can be shown, using the results in the Appen- 
dix, that k(w1p) has a monotone likelihood ratio. 

The final exact distributional result of this section concerns the function 
of the sample canonical correlations given by 

when the random sample (Xi, Y,)', i = 1,. . . , n, is from a normal distri- 
bution and the population coefficients are all zero. This statistic arises in 
testing for independence, which is discussed in detail in the next section. To 
be precise, it is assumed that the random sample 

satisfies 

As usual, 4 E Rq, Y, E Rr, and the sample covariance matrix 

n 

s = C(z ,  - Z)(z, - Z)' 
1 
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is partitioned as 

CANONICAL CORRELATION COEFFICIENTS 

where S , ,  is q X q and S2, is r x r. Under the assumptions made thls far, S 
has a Wishart distribution-namely, 

Partitioning 2, we have 

and the population canonical correlation coefficients, say p ,  >, . . . >, p,, 
are all zero iff Z12 = 0. 

Proposition 10.11. Assume n - 1 >, p and let r, >, - .  . 2 r, be the sample 
canonical correlations. When Z , ,  = 0, then 

where the distribution U(n - r - 1 ,  r ,  q )  is described in Proposition 8.14. 

Proof. Since r:, . . . , r; are the t largest eigenvalues of 

and the remaining q - t eigenvalues of A ( S )  are zero, it follows that 

Since W is a function of the sample canonical correlations and Z,, = 0, 
Proposition 10.1 implies that we can take 

without loss of generality to find the distribution of W. Using properties of 
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determinants, we have 

Proposition 8.7 implies that 

and S , , . ,  and s,,s;'s,, are independent. Therefore, 

and by definition, it follows that 

C ( W )  = U(n - r - 1 ,  r ,  q ) .  

Since 

the proof of Proposition 10.11 shows that Q(W) = U(n - q - 1, q, r )  so 
U(n - q - 1,q,  r )  = U(n - r - 1, r , q )  as long as n - 1 a q + r. Using 
the ideas in the proof of Proposition 8.15, the distribution of W can be 
derived when Z,, has rank one-that is, when one population canonical 
correlation is positive and the rest are zero. The details of this are left to the 
reader. 

We close this section with a discussion that provides some qualitative 
information about the distribution of r, >, . . . > r, when the data matrices 

X E Cq, and Y E CI, are independent. As usual, let Px and P, denote the 
orthogonal projections onto the column spaces of Q,X and Q,Y. Then the 
sample canonical correlations are the t largest eigenvalues of PyP,--say 

It is assumed that Q,X has rank q and Q,Y has rank r. Since the 
distribution of (p(PyPx) is of interest, it is reasonable to investigate the 
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distributional properties of the two random projections Px and Py. Since X 
and Y are assumed to be independent, it suffices to focus our attention on 
P,. First note that Px is an orthogonal projection onto a q-dimensional 
subspace contained in 

M = (xlx E Rn, x'e = 0). 

Therefore, Px is an element of 

P is an n x n rank q orthogonal 
qq,n(e) = { P I  projection, Pe = o I 

Furthermore, the space qq,,(e) is a compact subset of R " ~  and is acted on 
by the compact group 

On(e) = { r l r  E On, r e  = e), 

with the group action given by P + I'Pr'. Since On(e) acts transitively on 
i.y,,?(e), there is a unique On(e)-invariant probability distribution on qq, .(e). 
Thls is called the uniform distribution on qq, ,,(e). 

Proposition 10.12. If C(X) = C(rX) for r E On(e), then Px has a uniform 
distribution on qq, .(e). 

Proof: It is readily verified that 

Therefore, if C(rX) = C(X), then 

which implies that the distribution C(Px) on qq, .(e) is On(e)-invariant. The 
uniqueness of the uniform distribution on qq, .(e) yields the result. 

When C(X) = N(ep;, In 8 Z,,), then C(X) = C(rX) for r E On(e), so 
Proposition 10.12 applies to this case. For any two n X n positive semidefi- 
nite matrices B, and B,, define the function (p(B,B,) to be the vector of the 
t largest eigenvalues of BIB2. In particular, (p(P,P,) is the vector of sample 
canonical correlations. 



PROPOSITION 10.13. 441 

Proposition 10.13. Assume X and Y are independent, C ( r X )  = C ( X )  for 
r E 8,(e), QeX has rank q, and QeY has rank r. Then 

where Po is any fixed rank r projection in qr, ,(e). 

ProoJ: First note that 

since the eigenvalues of PYrPxr1  are the same as the eigenvalues of 
r fPYrPx .  From Proposition 10.12, we have 

Conditioning on Y ,  the independence of X and Y implies that 

for all r E O,(e). The group Bn(e) acts transitively on qr,,(e),  so for Y 
fixed, there exists a r E 8,(e) such that r ' P y r  = Po. Therefore, the equa- 
tion 

holds for each Y since X and Y are independent. Averaging C((p(PyPx)IY) 
over Y yields t ( ( p (PyPx ) ) ,  which must then equal e((p(POPx)). This 
completes the proof. 

The preceeding result shows that C((p(PyPx))  does not depend on the 
distribution of Y as long as X and Y are independent and C ( X )  = C ( r X )  
for r E 8,(e). In this case, the distribution of (p(PyPx)  can be derived 
under the assumption that C ( X )  = N(0, I, 8 I,) and C ( Y )  = N(0, I ,  €3 I,). 
Suppose that q G r so t = q. Then C((p(P,Px)) is the distribution of 
r ,  2 . . 2 r, where A i  = ri2, i = 1,. . . , q, are the eigenvalues of 
S,'S, ,S~'S,,  and 

is the sample covariance matrix. To find the distribution of r,,. . . , r,, it 
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would obviously suffice to find the distribution of yi = 1 - Xi, i = 1,. . . , q, 
whlch are the eigenvalues of 

where 

It was shown in the proof of Proposition 10.11 that T, and T2 are 
independent and 

and 

C(T2) = w(I,, q, r ) .  

Since the matrix 

has the same eigenvalues as (TI + T,)-'T,, it suffices to find the distribu- 
tion of the eigenvalues of B. It is not too difficult to show (see the Problems 
at end of this chapter) that the density of B is 

with respect to Lebesgue measure dB restricted to the set 

Here, a(., .) is the Wishart constant defined in Example 5.1. Now, the 
ordered eigenvalues of B are a maximal invariant under the action of the 
group 0, on % given by B + TBT', r E 0,. Let A be the vector of ordered 
eigenvaluesof B soA E R4, 1 2 A,  2 . . . 2 A, 2 0. Sincep(TBr') = p(B), 
T E Oq, it follows from Proposition 7.15 that the density of A is q(A) = 

p ( D , )  where DA is a q x q diagonal matrix with diagonal entries A,, . . . , A,. 
Of course, q(-)  is the density of A with respect to the measure v(dA) 
induced by the maximal invariant mapping. More precisely, let 
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and consider the mapping g, on ?€ to % defined by q(B) = A where A is the 
vector of eigenvalues of B. For any Bore1 set C c %, v(C) is defined by 

v(C)=/ dB. 
9-' (c)  

Since q(A) has been calculated, the only step left to determine the distribu- 
tion of A is to find the measure v. However, it is rather nontrivial to find v 
and the details are not given here. We have included the above argument to 
show that the only step in obtaining C(A) that we have not solved is the 
calculation of v. This completes our discussion of distributional problems 
associated with canonical correlations. 

The measure v above is just the restriction to % of the measure v, 
discussed in Example 6.1. For one derivation of v,, see Muirhead (1982, p. 
104). 

10.4. TESTING FOR INDEPENDENCE 

In t h s  section, we consider the problem of testing for independence based 
on a random sample from a normal distribution. Again, let Z,, . . . , 2, be 
independent random vectors in RP and partition Zi as 

It is assumed that C(Z,) = N(p, Z), SO 

for i = 1,. . . , n. The problem is to test the null hypothesis H, : Z,, = 0 
against the alternative H, : Z,, * 0. As usual, let Z have rows Z,', i = 1,. . . , n 
so C(Z) = N(epf, I, 8 2) .  Assuming n >, p + 1, the set % 5 CP,. where 

has rank p is a set of probability one and % is taken as the sample space for 
Z. The group G considered in Proposition 10.6 acts on % and a maximal 
invariant is the vector of canonical correlation coefficients r,, . . . , r, where 
t = min(q, r). 
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Proposition 10.14. The problem of testing H, : Z,, = 0 versus HI : Z,, * 0 
is invariant under G. Every G-invariant test is a function of the sample 
canonical correlation coefficients r,,. . . , r,. When t = 1, the test that rejects 
for large values of r, is a uniformly most powerful invariant test. 

Proof. That the testing problem is G-invariant is easily checked. From 
Proposition 10.6, the function mapping Z into r,, . . . , r, is a maximal 
invariant so every invariant test is a function of r,, . . . , r,. When t = 1, the 
test that rejects for large values of r, is equivalent to the test that rejects for 
large values of U = r:/(l - r:). It was argued in the last section (see 
Proposition 10.10) that the density of U, say k(ulp), has a monotone 
likelihood ratio where p is the only nonzero population canonical correla- 
tion coefficient. Since the null hypothesis is that p = 0 and since every 
invariant test is a function of U, it follows that the test that rejects for large 
values of U is a uniformly most powerful invariant test. 

When t = 1, the distribution of U is specified in Proposition 10.10, and 
this can be used to construct a test of level a for H,. For example, if q = 1, 
then C(U) = F , , , - , - ,  and a constant c(a) can be found from standard 
tables of the normalized 9-distribution such that, under H,, P{U > c(a)) 
= a. 

In the case that t > 1, there is no obvious function of r,, . . . , r, that 
provides an optimum test of H, versus HI. Intuitively, if some of the ri's are 
"too big," there is reason to suspect that H, is not true. The likelihood ratio 
test provides one possible criterion for testing Z,, = 0. 

Proposition 10.15. The likelihood ratio test of H, versus H, rejects if the 
statistic 

is too small. Under H,, C(W) = U(n - r - 1, r, q), which is the distribu- 
tion described in Proposition 8.14. 

Proof. The density function of Z is 

Under both Ho and HI,  the maximum likelihood estimate of p is f i  = 

Under H,, the maximum likelihood estimate of Z is 2 = (l/n)S. Partition- 
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ing S  as Z is partitioned, we have 

where S l l  is q X q, S12 is q X r, and S2, is r X r. Under H,,, Z has the form 

When Z has this form, 

From this it is clear that, under H,,, e l l  = ( l / n ) S , ,  and e2, = ( l / n ) S 2 2 .  
Substituting these estimates into the densities under Ho and HI leads to a 
likelihood ratio of 

Rejecting H,, for small values of A ( Z )  is equivalent to rejecting for small 
values of 

The identity IS1 = ISllI IS22 - S 2 1 S ; 1 ~ 1 2 1  shows that 

where r: , .  . . , r,2 are the t largest eigenvalues of S,;'S2,S,'SI2. Thus the 
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likelihood ratio test is equivalent to the test that rejects for small values of 
W. That C(W) = U(n - r - 1, r, q )  under Ho follows from Proposition 
10.11. 

The distribution of W under HI is quite complicated to describe except in 
the case that .XI, has rank one. As mentioned in the last section, when Z,, 
has rank one, the methods used in Proposition 8.15 yields a description of 
the distribution of W. 

Rather than discuss possible alternatives to the likelihood test, in the next 
section we show that the testing problem above is a special case of the 
MANOVA testing problem considered in Chapter 9. Thus the alternatives 
to the likelihood ratio test for the MANOVA problem are also alternatives 
to the likelihood ratio test for independence. 

We now turn to a slight generalization of the problem of testing that 
Z,, = 0. Again suppose that Z E satisfies C(Z) = N(epf, I,, @ 2 )  where 
p E RP and Z are both unknown parameters and n >, p + 1. Given an 
integer k 2, let p, ,  . . . , p, be positive integers such that Zfpi = p. Parti- 
tion Z into blocks Zij of dimension pi x pj for i ,  j = 1,. . . , k. We now 
discuss the likelihood ratio test for testing Ho : Zij = 0 for all i ,  j with i * j. 
For example, when k = p and each p, = 1, then the null hypothesis is that Z 
is diagonal with unknown diagonal elements. By mimicking the proof of 
Proposition 10.15, it is not difficult to show that the likelihood ratio test for 
testing Ho versus the alternative that Z is completely unknown rejects for 
small values of 

Here, S = ( Z  - ~Z')'(Z - eZ') is partitioned into S,, : pi X p, as Z was 
partitioned. Further, for i = 1,. . . , k, define S(ii, by 

so S(ii, is (p ,  + . . . + p,) x (p, + . . + p,). Noting that S(,,, = S, we can 
write 
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Define q, i = 1,. . . , k - 1, by 

Under the null hypothesis, it follows from Proposition 10.11 that 

k k 

n - 1 - C P,, C P,, Pi 
j = i + l  j = i + l  

To derive the distribution of A under H,, we now show that W,, . . . , Wk-, 
are independent random variables under H,. From this it follows that, 
under H,, 

so A is distributed as a product of independent beta random variables. The 
independence of W,, . . . , Wk-, for a general k follows easily by induction 
once independence has been verified for k = 3. 

For k = 3, we have 

and, under H,, 

where Z has the form 

To show W, and W, are independent, Proposition 7.19 is applied. The 
sample space for S is S; -the space of p x p positive definite matrices. Fix 
Z of the above form and let Po denote the probability measure of S so Po is 
the probability measure of a W(Z, p, n - 1) distribution on S l  . Consider 
the group G whose elements are (A, B) where A E Gl,, and B E Gl(p2+,3, 
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and the group composition is 

It is easy to show that the action 

defines a left action of G on S;. If C ( S )  = W ( 2 ,  p ,  n - l), then 

C ( ( A ,  B ) [ S l )  = W ( ( A ,  B ) [ " l ,  p ,  n - 1) 

where 

This last equality follows from the special form of 2. The first thing to 
notice is that 

is invariant under the action of G on 5:. Also, because of the special form 
of 2,  the statistic 

4 s )  = ( ~ 1 1 ,  ~ ( 2 2 ) )  Sp: X $ + p 2 + p 3 )  

is a sufficient statistic for the family of distributions {gP,lg E G). This 
follows from the factorization criterion applied to the family {gP,lg E G), 
which is the Wishart family 

However, G acts transitively on $5,: x $ + , 2 + , 3 ,  in the obvious way: 

for [ S I ,  S21 E SL X S & 2 + p 3 ) .  Further, the sufficient statistic r ( S )  E 5,: X 

' & 2 + P 3 )  satisfies 

4% B ) [ S l )  = ( A ,  B ) [ ~ ( s ) I  



so r ( . )  is an equivariant function. It now follows from Proposition 7.19 that 
the invariant statistic W , ( S )  is independent of the sufficient statistic r ( S ) .  
But 

is a function of S(,,, and so is a function of r ( S )  = [ S ,  S(22)]. Thus W ,  and 
W2 are independent for each value of Z  in the null hypothesis. Summarizing, 
we have the following result. 

Proposition 10.16. Assume k = 3 and Z  has the form specified under H,. 
Then, under the action of the group G on both S; and 5,: X SL2+P3) ,  the 
invariant statistic 

and the equivariant statistic 

are independent. In particular, the statistic 

being a function of r ( S ) ,  is independent of W,. 

The application and interpretation of the previous paragraph for general 
k should be fairly clear. The details are briefly outlined. Under the null 
hypothesis that Z i j  = 0 for i ,  j = 1,. . . , k and i * j, we want to describe 
the distribution of 

It was remarked earlier that each U: is distributed as a product of indepen- 
dent beta random variables. To see that W,, . . . , W,-, are independent, 
Proposition 10.16 shows that 
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and S(,,, are independent. Since (W,, . . . , Wk- is a function of S(,,), Wl 
and (W2,. . . , Wk- ,) are independent, Next, apply Proposition 10.16 to S,,,, 
to conclude that 

and S(,,, are independent. Since (W,, . . . , Wk- ,) is a function of S(,,,, W2 
and (W3, . . . , Wk- ,) are independent. The conclusion that W,, . . . , W,-, 
are independent now follows easily. Thus the distribution of A under H, has 
been described. 

To interpret the decomposition of A into the product nf-'%, first 
consider the null hypothesis 

HA1): Z,, = 0 f o r j =  2 ,..., k. 

An application of Proposition 10.15 shows that the likel~hood ratio test of 
HA') versus the alternative that Z is unknown rejects for small values of 

Assuming H$') to be true, consider testing 

HA2): Z2j = 0 for j  = 3,  ..., k 

versus 

H{'): Z2j * 0 for somej = 3,  ..., k 

A minor variation of the proof of Proposition 10.15 yields a likelihood ratio 
test of HA2) versus H{~) (given HA1)) that rejects for small values of 

Proceeding by induction, assume null hypotheses HA'), i = 1,. . . , m - 1, to 
be true and consider testing 

versus 

Hl("):Zrnj*O f o r s o m e j = m +  1, ..., k .  
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Given the null hypotheses Hd'), i = 1,. . . , m - 1, the likelihood ratio test of 
Hdm) versus Htm) rejects for small values of 

The overall likelihood ratio test is one possible way of combining the 
likelihood ratio tests of HArn) versus Hfm), given that HAi), i = 1,. . . , m - 1, 
is true. 

10.5. MULTIVARIATE REGRESSION 

The purpose of this section is to show that testing for independence can be 
viewed as a special case of the general MANOVA testing problem treated in 
Chapter 9. In fact, the results below extend those of the previous section by 
allowing a more general mean structure for the observations. In the notation 
of the previous section, consider a data matrix Z : n x p that is partitioned 
as Z = (XY) where Xis n x q and Y is n X r sop  = q + r. It is assumed 
that 

c ( z )  = N(TB, I, B Z) 

where T is an n X k known matrix of rank k and B is a k X p matrix of 
unknown parameters. As usual, 2 is a p X p positive definite matrix. This is 
precisely the linear model discussed in Section 9.1 and clearly includes the 
model of previous sections of this chapter as a special case. 

To test that X and Y are independent, it is illuminating to first calculate 
the conditional distribution of Y given X. Partition the matrix B as 
B = (B, B,) where B, is k x q and B2 is k x r. In describing the conditional 
distribution of Y given X, say C(Y JX), the notation 

is used. Following Example 3.1, we have 

and the marginal distribution of X is 
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Let W be the n x ( q  + k )  matrix ( X T )  and let C be the ( q  + k )  x r matrix 
of parameters 

In this notation, we have 

and 

Assuming n > p + k ,  the matrix W has rank q  + k with probability one so 
the conditional model for Y is of the MANOVA type. Further, testing 
Ho : I:,, = 0 versus HI : I:,, * 0 is equivalent to testing H0 : C, = 0 versus 
H, : C, * 0. In other words, based on the model for Z, 

the null hypothesis concerns the covariance matrix. But in terms of the 
conditional model, the null hypothesis concerns the matrix of regression 
parameters. 

With the above discussion and models in mind, we now want to discuss 
various approaches to testing Ho and H0. In terms of the model 

and assuming HI,  the maximum likelihood estimators of B and I: are 

where 
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SO 

C ( S )  = W ( 2 ,  p ,  n - k ) .  

Under H,, the maximum likelihood estimator of B is still B as above and 
since 

it is readily verified that 

where 

Substituting these estimators into the density of Z under H, and HI 
demonstrates that the likelihood ratio test rejects for small values of 

Under H,, the proof of Proposition 10.11 shows that the distribution of 
A(Z) is U(n - k - r, r, q) as described in Proposition 8.14. Of course, 
symmetry in r and q implies that U(n - k - r, r, q) = U(n - k - q, q, r). 
An alternative derivation of t h s  likelihood ratio test can be given using the 
conditional distribution of Y given X and the margnal distribution of X. 
T h s  follows from two facts: (i) the density of Z is proportional to the 
conditional density of Y given X multiplied by the marginal density of X, 
and (ii) the relabeling of the parameters is one-to-one-namely, the map- 
ping from (B, 2 )  to (C, B,, Z , , ,  2,, . , )  is a one-to-one onto mapping of 
C p ,  X S; to Cr, ( ,+ , )  X C,, , x S l  X S,?. We now turn to the likelihood 
ratio test of H, versus HI based on the conditional model 

C ( Y ( X )  = N(WC, I,, €3 Z , , . , )  

where X is treated as fixed. With X fixed, testing H0 versus H,  is a special 
case of the MANOVA testing problem and the results in Chapter 9 are 
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directly applicable. To express 6 in the MANOVA testing problem form, 
let K be the q x (q + k) matrix K = (I, 0), so the null hypothesis H, is 

Recall that 

e = (w'w)- 'wY 

is the maximum likelihood estimator of C under H,. Let P, = 

W(W'W)-'W' denote the orthogonal projection onto the column space of 
W, let Q, = I,, - P,, and define V E S,? by 

As shown in Section 9.1, based on the model 

C(YIX) = N(WC, I,, 8 Z,,.,), 

the likelihood ratio test of I&,: KC = 0 versus H, : KC * 0 rejects H, for 
small values of 

For each fixed X, Proposition 9.1 shows that under H,, the distribution of 
A,(Y) is U(n - q - k, q, r), which is the distribution (unconditional) of 
A(Z) under H,. In fact, much more is true. 

Proposition 10.17. In the notation above: 

(i) V=S2,., .  
(ii) ( K ~ ) ~ ( K ( w w ) - ~ K ' ) -  l ( ~ k )  = S ~ ~ S ~ ~ ~ S ~ , .  

(iii) A,(Y) = A(Z). 

Further, under H,, the conditional (given X) and unconditional distribution 
of A,(Y) and A(Z) are the same. 

Proof: To establish (i), first write S as 



where P, = T ( T f T ) - I T '  is the orthogonal projection onto the column space 
of T.  Setting Q,  = I - P, and writing Z = ( X Y ) ,  we have 

This yields the identity 

where Po = Q T X ( X f Q T X ) - ' X ' Q ,  is the orthogonal projection onto the 
column space of Q,X. However, a bit of reflection reveals that Po = P ,  - P, 
SO 

This establishes assertion (i). For (ii), we have 

S2,S,'S,, = Y'PoY 

and 

where U = W ( W ' W ) - ' K '  and P, is the orthogonal projection onto the 
column space of U. Thus it must be shown that P, = Po or, equivalently, 
that the column space of U is the same as the column space of Q,X. Since 
W = ( X T ) ,  the relationship 

proves that the q columns of U are orthogonal to the k columns of T.  Thus 
the columns of U span a q-dimensional subspace contained in the column 
space of W and orthogonal to the column space of T. But there is only one 
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subspace with these properties. Since the column space of Q T X  also has 
these properties, it follows that P, = Po so (ii) holds. Relationshp (iii) is a 
consequence of (i), (ii), and 

The validity of the final assertion concerning the distribution of A,(Y) and 
A(Z) was established earlier. 

The results of Proposition 10.17 establish the connection between testing 
for independence and the MANOVA testing problem. Further, under H,, 
the conditional distribution of A,(Y) is U(n - q - k, q, r )  for each value 
of X, so the marginal distribution of Xis irrelevant. In other words, as long 
as the conditional model for Y given X is valid, we can test & using the 
likelihood ratio test and under Ho, the distribution of the test statistic does 
not depend on the value of X. Of course, this implies that the conditional 
(given X) distribution of A(Z) is the same as the unconditional distribution 
of A(Z) under Ho. However, under HI, the conditional and unconditional 
distributions of A(Z) are not the same. 

PROBLEMS 

1. Given positive integers t ,  q, and r with t 6 q, r, consider random 
vectors U E R', V E R4, and W E Rr where Cov(U) = I, and U, V, 
and W are uncorrelated. For A : q X t and B : r x t, construct X = 

A U +  Vand Y =  B U +  W. 

(i) With A,, = Cov(V) and A,, = Cov(W), show that 

Cov(X) = AA' + A,, 

Cov(Y) = BB' + A,, 

and the cross covariance between X and Y is AB'. Conclude that 
the number of nonzero population canonical correlations be- 
tween X and Y is at most t. 

(ii) Conversely, given 2 E R4 and E Rr with t nonzero population 
canonical correlations, construct U, V, W, A ,  and B as above so 
that X = A U + V and Y = BU + W have the same joint covari- 
ance as 2 and y. 
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2. Consider X E R4 and Y E Rr and assume that Cov(X) = Z,, and 
Cov(Y) = Z,, exist. Let Z,, be the cross covariance of X with Y. 
Recall that T,, denotes the group of n X n permutation matrices. 

(i) If gZ,,h = Z,, for all g E Tq and h E qr, show that Z,, = Se,e; 
for some S E R1 where el  (e,) is the vector of ones in R4 (Rr). 

(ii) Under the assumptions in (i), show that there is at most one 
nonzero canonical correlation and it is 16 1(e; Z ; 'e ,)'I2 
(e ;Z~ 'e , ) ' /~ .  What is a set of canonical coordinates? 

3. Consider X E RP with Cov(X) = Z > 0 (for simplicity, assume GX = 

0). This problem has to do with the approximation of X by a lower 
dimensional random vector-say Y = BX where B is a t x p matrix of 
rank t. 

(i) In the notation of Proposition 10.4, suppose A, : p X p is used to 
define the inner product [., .]  on Rn and prediction error is 
measured by GIIX - ~ ~ 1 1 ~  where 1 1  . 1 1  is defined by [., .]  and C 
is p x t. Show that the minimum prediction error (B fixed) is 

and the minimum is achieved for C = e = ZB(BZBt)- I .  

(ii) Let A = Z1/2~oZ' /2  and write A in spectral form as A = 

Zf'A,aiaj where A,  >, . . . >, A, > 0 and a, , .  . . , a, is an ortho- 
normal basis for RP. Show that S(B) = tr A(I  - Q(B)) where 
Q(B) = Z1/2~'(BZB')-1BZ1/2 is a rank t orthogonal projection. 
Using this, show that S(B) is minimized by choosing Q = Q = 

Ziaitj ,  and the minimum is Z/+ ,Ai .  What is a corresponding B 
and X = ~ B X  that gives the minimum? Show that x = ~ B X  = 
2'/2&2- '/2x. 

(iii) In the special case that A, = I,, show that 

where a,, . . . , a, are the eigenvectors of Z and Za, = Aia, with 
A, 2 . . 2 A,. (The random variables a jX are often called the 
principal components of X, i = 1,. . . , p. It is easily verified that 
cov(ajX, aJX) = SijAi.) 

4. In RP, consider a translated subspace M + a, where a, E RP-such a 
set in RP is called a flat and the dimension of the flat is the dimension 
of M. 
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(i) Given any flat M + a,, show that M + a, = M + b, for some 
unique b, E M I  . 

Consider a flat M + a,, and define the orthogonal projection onto 
M + a, by x -+ P(x - a,) + a, where P is the orthogonal projection 
onto M. Given n points x,,. . . , x, in RP, consider the problem of 
finding the "closest" k-dimensional flat M + a, to the n points. As a 
measure of distance of the n points from M + a,, we use A(M, a,) = 

Z;llx, - ij112 where 1 1  . 1 )  is the usual Euclidean norm and i ,  = P(x, - 
a,) + a, is the projection of xi onto M + a,. The problem is to find M 
and a, to minimize A(M, a,) over all k-dimensional subspaces M and 
all a,. 

(ii) First, regard a, as fixed, and set S(b) = Z;(x, - b)(x, - b)' for 
any b E RP. With Q = I - P, show that A(M, a,) = trS(a,)Q 
= trS(X)Q + .(a, - X)'Q(a, - X) where X = n-'Z;x,. 

(iii) Write S(X) = Zf'A,viv~ in spectral form where A ,  2 . . . 2 A, >, 
0 and v,, . . . , up is an orthonormal basis for RP. Using (ii), show 
that A(M, a,) >, Z,P+,Ai with equality for z ,  = 2 and for M = 

span{v,,. . ., v,). 

5. Consider a sample covariance matrix 

with S,, > 0 for i = 1,2. With t = min{dim S,,, i = 1,2), show that the 
t sample canonical correlations are the t largest solutions (in A) to the 
equation (s,,s,;'s~, - A 2 ~ , , 1  = 0, A E [0, oo). 

6. (The Eckhart-Young Theorem, 1936.) Given a matrix A : n x p (say 
n 2 p), let k Q p. The problem is to find a matrix B : n x p of rank no 
greater than k that is "closest" to A in the usual trace inner product on 
Cp, ,. Let '43, be all the n x p matrices of rank no larger than k, so the 
problem is to find 

inf I(A - B112 
~ € 5 3 ~  

where 1 1 ~ 1 1 ~  = tr MM' for M E h,,. 
(i) Show that every B E 3, can be written J,C where J,  is n x k, 

4'4 = I,, and C is k x p. Conversely, $4 E a , ,  for each such J,  
and C. 

(ii) Using the results of Example 4.4, show that, for A and J,  fixed, 

inf llA - J,C112 = IIA - J , J , ' A ~ ~ ~ .  
C ~ C . p ,  k 
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(iii) With Q = I - ++', Q is a rank n - k orthogonal projection. 
Show that, for each B E a,, 

((A - B ( ( ~  >, in f ( lAQ~(~  = inf tr QAA' = 8:+,A; 
Q Q 

where A ,  > . . A, are the singular values of A. Here Q ranges 
over all rank n - k orthogonal projections. 

(iv) Write A = ZfAiuivi as the singular value decomposition for A .  
Show that B = ZfAiuiui achieves the infimum of part (iii). 

7. In the case of a random sample from a bivariate normal distribution 
N ( p ,  Z), use Proposition 10.8 and Karlin's Lemma in the Appendix to 
show that the density of W = d x r ( l  - r2)- 'I2 ( r  is the sample 
correlation coefficient) has a monotone likelihood ratio in 8 = p(l - 
p2)- Conclude that the density of r has a monotone likelihood ratio 
in p. 

8. Let f,, , denote the density function on (0, co) of an unnormalized F,, , 
random variable. Under the assumptions of Proposition 10.10, show 
that the distribution of W = r:(l - r:)-' has a density given by 

where 

Note that h(.lp) is the probability mass function of a negative bi- 
nomial distribution, so f(w1p) is a mixture of F distributions. Show 
that f(.Ip) has a monotone likelihood ratio. 

9. (A generalization of Proposition 10.12.) Consider the space Rn and an 
integer k with 1 < k < n.  Fix an orthogonal projection P of rank k, 
and for s < n - k, let ?Js be the set of all n x n orthogonal projections 
R of rank s that satisfy RP = 0. Also, consider the group O(P) = { r l r  
E On, r P  = P r ) .  

(i) Show that the group O(P) acts transitively on ?Js under the 
action R + rRr ' .  
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(ii) Argue that there is a unique O(P) invariant probability distribu- 
tion on qS. 

(iii) Let A have a uniform distribution on 8 ( P )  and fix R ,  E $Ps. 
Show that AR,Af has the unique 8 ( P )  invariant distribution on 

7 7 .  

10. Suppose Z E C,, , has an 8,-left invariant distribution and has rank p 
with probability one. Let Q be a rank n - k orthogonal projection 
withp + k < n and form W = QZ. 

(i) Show that W has rank p with probability one. 
(ii) Show that R = W(WfW)- 'W has the uniform distribution on $Pp 

(in the notation of Problem 9 above with P = I - Q and s = p). 

11. After the proof of Proposition 10.13, it was argued that, when q g r, 
to find the distribution of r, > . . . > r,, it suffices to find the distri- 
bution of the eigenvalues of the matrix B = (T, + T , ) - ' / 2 ~ l ( ~ ,  + 
TI)-'/, where TI and T2 are independent with C(T,) = W(I,, q, n - r 
- 1) and C(T2) = W(I,, q, r). It is assumed that q g n - r - 1. Let 

f(.lm) denote the density function of the W(I,, q, m) distribution 
(m >, q) with respect to Lebesgue measure dS on S,. Thus f (S (m)  = 

o(m, q)l~l(m-q-1)/2 exp[ - tr S ]  I (S )  where 

i f S > O  
I(') = ( otherwise. 

(i) With W, = TI and W2 = TI + T,, show that the joint density of 
W, and W2 with respect to dW, dW2 is f(W,(n - r - l)f(W2 - 
W,lr). 

(ii) On the set where Wl > 0 and W2 > 0, define B = 

W; W, W; 'I2 and W2 = V. Using Proposition 5.1 1, show that 
the Jacobian of this transformation is Idet V1(Q+1)/2. Show that 
the joint density of B and V on the set where B > 0 and V > 0 is 
given by 

(iii) Now, integrate out V to show that the density of B on the set 
0 < B < I,is 
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Suppose the random orthogonal transformation r has a uniform 
distribution on 8,. Let A be the upper left-hand k x p block of r and 
assume p G k. Under the additional assumption that p G n - k, the 
following argument shows that A has a density with respect to 
Lebesgue measure on C,, ,. 

(i) Let + : n x p consist of the first p columns of I? so A : k x p has 
rows that are the first k rows of +. Show that 4 has a uniform 
distribution on %, .. Conclude that + has the same distribution 
as Z(Z'Z)-'/2 where Z :  n x p is N(0, In 8 I,). 

(ii) Now partition Z as Z = ($1 where X is k x p and Y is 

(n - k)  x p. Show that Z'Z = X'X + Y'Y and that A has the 
same distribution as X(XfX + YfY)- 'I2. 

(iii) Using (ii) and Problem 11, show that B = A'A has the density 

with respect to Lebesgue measure on the set 0 < B < I,. 

(iv) Consider a random matrix L : k x p with a density with respect 
to Lebesgue measure given by 

where for B E S,, 

and 

Show that B = L'L has the density p(B) gven in part (iii) (use 
Proposition 7.6). 

(v) Now, to conclude that A has h as its density, first prove the 
following proposition: Suppose % is acted on measurably by a 
compact group G and 7 :  % + 94 is a maximal invariant. If P, 
and P2 are both G-invariant measures on EX such that P,(T-'(C)) 
= P2(7- '(C)) for all measurable C c 94, then P, = P,. 
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(vi) Now, apply the proposition above with X = ep, !, G = a,, T(X) 
= x'x, PI the distribution of A ,  and P2 the distnbution of L as 
given in (iv). This shows that A has density h. 

13. Consider a random matrix Z : n x p with a density given by f (ZJ B, Z) 
= ~ Z I - " / ~  h(tr(Z - TB)ZP'(Z - TB)') where T :  n x k of rank k is 
known, B : k x p is a matrix of unknown parameters, and Z : p x p is 
positive definite and unknown. Assume that n > p + k, that 

sup ~ ~ l " / ~ h ( t r ( ~ ) )  < + m ,  
css; 

and that h is a nonincreasing function defined on [0, m). Partition Z 
into X: n X q and Y: n X r, q + r = p ,  so Z = (XY). Also, partition 
Z into Zij, i, j = 1,2, where Z,, is q X q, Z2, is r x r, and Z,, is 
q X r. 

(i) Show that the maximum likelihood estimator of B is B = 

(T'T)- and ~ ( Z I B ,  2 )  = 121-"/~h(tr,SZ-') where s = Z'QZ 
with Q = I - P and P = T(TfT)-IT'. 

(ii) Derive the likelihood ratio test of H, : Z,, = 0 versus HI  : Z,, z 

0. Show that the test rejects for small values of 

(iii) For U : n X q and V : n X r, establish the identity 
tr(UV)2-'(UV)' = tr(V - U2,'ZI2)Z;'.,(~ - uZ,'Z,,) 
+ tr UZG'U'. Use this identity to derive the conditional distribu- 
tion of Y given X in the above model. Using the notation of 
Section 10.5, show that the conditional density of Y given X is 

= IZ22 . ,~ -" /2h( t r (~  - WC)Z;21.1(~ - WC)' + 7)+(7)  

where 7 = tr(X - T B , ) Z i l ( x  - TB,) and (+(7))-' = 

Je,,"h(tr uu' + 7) du. 

(iv) The null hypothesis is now that C, = 0. Show that, for each fixed 
7, the likelihood ratio test (with C and Z,,., as parameters) 
based on the conditional density rejects for large values of A(Z). 
Verify (i), (ii), and (iii) of Proposition 10.17. 



NOTES AND REFERENCES 463 

(v) Now, assume that 

sup sup ~ ~ l " / ~ h ( t r  C + q)+(q)  = k z  < + co. 
7'0 c€S,+ 

Show that the likelihood ratio test for C, = 0 (with C, Z,,.,, Bl, 
and E l ,  as parameters) rejects for large values of A(Z). 

(vi) Show that, under H,, the sample canonical correlations based on 
S,,, S,,, S,, (here S = Z'QZ) have the same distribution as 
when Z is N(TB, I,, 63 Z). Conclude that under H,, A(Z) has 
the same distribution as when Z is N(TB, I, 63 Z). 

NOTES AND REFERENCES 

1. Canonical correlation analysis was first proposed in Hotelling (1935, 
1936). There are as many approaches to canonical correlation analysis 
as there are books covering the subject. For a sample of these, see 
Anderson (1958), Dempster (1969), Kshirsagar (1972), Rao (1973), 
Mardia, Kent, and Bibby (1979), Srivastava and Khatri (1979), and 
Muirhead (1 982). 

2. See Eaton and Kariya (1981) for some material related to Proposition 
10.13. 
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