
Inference for Means 
in Multivariate 
Linear Models 

Essentially, this chapter consists of a number of examples of estimation and 
testing problems for means when an observation vector has a normal 
distribution. Invariance is used throughout to describe the structure of the 
models considered and to suggest possible testing procedures. Because of 
space limitations, maximum likelihood estimators are the only type of 
estimators discussed. Further, likelihood ratio tests are calculated for most 
of the examples considered. 

Before turning to the concrete examples, it is useful to have a general 
model within which we can view the results of this chapter. Consider an 
n-dimensional inner product space (V, (., .)) and suppose that X is a 
random vector in V. To describe the type of parametric models we consider 
for X, let f be a decreasing function on [0, GO) to [0, co) such that f [(x, x)] is 
a density with respect to Lebesgue measure on (V, (. , .)). For convenience, 
it is assumed that f has been normalized so that, if Z E V has density f, 
then Cov(Z) = I. Obviously, such a Z has mean zero. Now, let M be a 
subspace of V and let y be a set of positive definite linear transformations 
on V to V such that I E y. The pair (M, y) serves as the parameter space 
for a model for X. For p E M and 2. E y, 

is a density on V. The family 
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determines a parametric model for X. It is clear that if p( . (p ,  Z) is the 
density of X, then GX = p and Cov(X) = Z. In particular, when 

then X has a normal distribution with mean p E M and covariance Z E y. 
The parametric model for X i s  in fact a linear model for X with parameter 
set (M, y). Now, assume that Z(M) = M for all Z E y. Since I E y, the 
least-squares and Gauss-Markov estimator of p are equal to PX where P is 
the orthogonal projection onto M. Further, f l  = PX is also the maximum 
likelihood estimator of p. To see this, first note that PC  = Z P  for Z E y 
since M is invariant under Z E y. With Q = I - P, we have 

( X  - p,  Z - ' (x  - p)) = ( ~ ( x  - p)  + e x ,  Z - ' ( p ( x  - 1-1) + e x ) )  

= (PX - p, 2- ' (PX - p))  + ( e x ,  2- 'QX). 

The last equality is a consequence of 

as QP = 0 and 2- 'P = P Z -  I. Therefore, for each Z E y, 

( X  - p,  2 - ' ( x  - p))  (QX, 2- 'Qx) 

with equality iff p = Px. Since the function f was assumed to be decreasing, 
it follows that P = PX is the maximum likelihood estimator of p, and P is 
unique iff is strictly decreasing. Thus under the assumptions made so far, 
fl  = PX is the maximum likelihood estimator for p. These assumptions hold 
for most of the examples considered in this chapter. To find the maximum 
likelihood estimator of 2,  it is necessary to compute 

sup I Z I - " ' ~ ~  [ ( ex ,  2 - ' ex ) ]  
~ E Y  

and find the point f: E y where the supremum is achieved, assuming it 
exists. The solution to this problem depends crucially on the set y and this is 
what generates the infinite variety of possible models, even with the assump- 
tion that Z M  = M for Z E y. The examples of this chapter are generated by 
simply choosing some y 's for which f: can be calculated explicitly. 

We end this rather lengthy introduction with a few general comments 
about testing problems. In the notation of the previous paragraph, consider 
a parameter set (M, y ) with I E y and assume Z M  = M for I: E y. Also, let 
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Mo c M be a subspace of V and assume that 2Mo = Mo for 2 E y. 
Consider the problem of testing the null hypothesis that p E Mo versus the 
alternative that p  E ( M  - M o )  Under the null hypothesis, the maximum 
likelihood estimator for p is P o  = POX where Po is the orthogonal projection 
onto Mo. Thus the likelihood ratio test rejects the null hypothesis for small 
values of 

sup 121-" /~f  [(cox, ~ - ' e o x > l  

where Qo = I - Po. Again, the set y is the major determinant with regard to 
the distribution, invariance, and other properties of A ( x ) .  The examples in 
this chapter illustrate some of the properties of y that lead to tractable 
solutions to the estimation problem for B and the testing problem described 
above. 

9.1. THE MANOVA MODEL 

The multivariate general linear model introduced in Example 4.4, also 
known as the multivariate analysis of variance model (the MANOVA 
model), is the subject of this section. The vector space under consideration 
is C,,, with the usual inner product ( . , .) and the subspace M of C,, is 

where Z is a fixed n X k matrix of rank k. Consider an observation vector 
X E C,,, and assume that 

C(X)  = N ( p ,  In €3 2 )  

where p  E M and 2 is an unknown p x p positive definite matrix. Thus the 
set of covariances for X is 

y = {I, c3 BIZ E Spt) 

and (M, y )  is the parameter set of the linear model for X. It was verified in 
Example 4.4 that M is invariant under each element of y. Also, the 
orthogonal projection onto M is P = P, 8 I, where 

Further, Q = I - P = Q, 8 I, is the orthogonal projection onto M I  where 
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Q,  = I,, - P,. Thus 

p = P X =  ( P ,  €4 I,)X = P,X 

is the maximum likelihood estimator of p E M and, from Example 7.10, 

is the maximum likelihood estimator of Z when n - k >, p, which we 
assume throughout this discussion. Thus for the MANOVA model, the 
maximum likelihood estimators have been derived. The reader should check 
that the MANOVA model is a special case of the linear model described at 
the beginning of t h s  chapter. 

We now turn to a discussion of the classical MANOVA testing problem. 
Let K be a fixed r X k matrix of rank r and consider the problem of testing 

Ho : K P  = 0 versus H ,  : KZp * 0 

where p = ZZp is the mean of X. It is not obvious that this testing problem is 
of the general type described in the introduction to t h s  chapter. However, 
before proceeding further, it is convenient to transform t h s  problem into 
what is called the canonical form of the MANOVA testing problem. The 
essence of the argument below is that it suffices to take 

K =  K O =  ( I ,  0 )  

in the above problem. In other words, a transformation of the original 
problem results in a problem where Z = Zo and K = K,. We now proceed 
with the details. The parametric model for X E C,, ,, is 

and the statistical problem is to test H, : KZp = 0 versus H, : KZp * 0. Since 
Z has rank k ,  Z = 9 U  for some linear isometry 9 : n x k and some k x k 
matrix U E G:. The k columns of 9 are the first k columns of some r E 8, 
so 

9 = r(;) = rz,. 

Setting X = r f X ,  p = UP, and K = KU-' ,  we have 
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and the testing problem is H,: KB = 0 versus HI  : KB * 0. Applying the 
same argument to K' as we did to 2, 

for some A E 0, and some r x r matrix Ul in G:. Let 

and set Y = I',X, B = Alp. Since 

it follows that 

and the testing problem is H, : K,B = 0 versus HI : K,B * 0. Thus after 
two transformations, the original problem has been transformed into a 
problem with Z = Z ,  and K = KO. Since KO = (I, O), the null hypothesis is 
that the first r rows of B are zero. Partition B into 

and partition Y into 

Because Cov(Y) = I, @ Z, Y,, Y,, and Y3 are mutually independent and it 
is clear that 
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Also, the testing problem is Ho : B,  = 0 versus H I  : B,  * 0. It is this form of 
the problem that is called the canonical MANOVA testing problem. The 
only reason for transforming from the original problem to the canonical 
problem is that certain expressions become simpler and the invariance of 
the MANOVA testing problem is more easily articulated when the problem 
is expressed in canonical form. 

We now proceed to analyze the canonical MANOVA testing problem. To 
simplify some later formulas, the notation is changed a bit. Let Y, ,  Y,, and 
Y,  be independent random matrices that satisfy 

so B ,  is r x p and B, is s x p. As usual Z is a p x p unknown positive 
definite matrix. To insure the existence of a maximum likelihood estimator 
for Z, it is assumed that m 2 p and the sample space for Y, is taken to be 
the set of all m x p real matrices of rank p. A set of Lebesgue measure zero 
has been deleted from the natural sample space C,,, of Y,. The testing 
problem is 

H o :  B,  = 0 versus H,  : B, * 0. 

Setting n = r + s + m and 

C ( Y )  = N(p, I, €3 2) where p is an element of the subspace 

In this notation, the null hypothesis is that p E Mo c M where 
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Since M and M, are both invariant under I, 8 Z for all Z > 0, the testing 
problem under consideration is of the type described in general terms 
earlier. and 

y = {I, 8 ZIZ > 0). 

When the model for Y is (M, y), the density of Y is 

p(YIB,, B,, 2 )  = (&)-"Iz(-"/~ 

In this case, the maximum likelihood estimators of Bl, B,, and Z are easily 
seen to be 

When the model for Y is (M,, y), the density of Y is p(YI0, B,, 8 )  and the 
maximum likelihood estimators of B, and Z are 

Therefore, the likelihood ratio test rejects for small values of 

Summarizing this, we have the following result. 

Proposition 9.1. For the canonical MANOVA testing problem, the likeli- 
hood ratio test rejects the null hypothesis for small values of the statistic 

Under H,, C (U) = U(m, r, p) where the distribution U(m, r, p )  is given in 
Proposition 8.15. 
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Proof. The first assertion is clear. Under H,, C(Y,) = N(0, I, @ Z) and 
C(Y3) = N(0, I, @ 2) .  Therefore, C(Y;Y,) = W(Z, p ,  r )  and C(Y;Y3) = 

W(Z, p, m). Since m >, p, Proposition 8.18 implies the result. 

Before attempting to interpret the likelihood ratio test, it is useful to see 
first what implications can be obtained from invariance considerations in 
the canonical MANOVA problem. In the notation of the previous para- 
graph, (M, y) is the parameter set for the model for Y and under the null 
hypothesis, (M,, y) is the parameter set for Y. In order that the testing 
problem be invariant under a group of transformations, both of the parame- 
ter sets (M, y) and (M,, y) must be invariant. With this in mind, consider 
the group G defined by 

G = {gig = (TI, r 2 ,  r3 ,  6, A ) ;  r, E e,, r2 E s,, 

where the group action on the sample space is given by 

The group composition, defined so that the above action is a left action on 
the sample space, is 

Further, the induced group action on the parameter set (M, y) is 

where the point 

has been represented simply by (B,, B2, 2) .  Now it is routine to check that 
when Y has a normal distribution with &Y E M(&Y E M,) and Cov(Y) E 

y, then &gY E M(&gY E M,) and Cov(gY) E y, for g E G. Thus the 
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hypothesis testing problem is G-invariant and the likelihood ratio test is a 
G-invariant function of Y. To describe the invariant tests, a maximal 
invariant under the action of G on the sample space needs to be computed. 
The following result provides one form of a maximal invariant. 

Proposition 9.2. Let t = min{r, p), and define h(Yl, Y,, 3 )  to be the 
t-dimensional vector (A,, . . . , A,)' where A ,  > . > A ,  are the t largest 
eigenvalues of Y;Y, (Y;Y3)- I. Then h is a maximal invariant under the action 
of G on the sample space of Y. 

Proof. Note that Y;Y,(Y;Y,)-' has at most t nonzero eigenvalues, and 
these t eigenvalues are nonnegative. First, consider the case when r < p so 
t = r. By Proposition 1.39, the nonzero eigenvalues of Y;Y,(Y'Y ) - I  are the 3 
same as the nonzero eigenvalues of Y,(Y;Y3)-'Y;, and these eigenvalues are 
obviously invariant under the action of g on Y. To show that h is maximal 
invariant for this case, a reduction argument similar to that in Example 7.4 
is used. Given 

we claim that there exists a go E G such that 

where D is r X r and diagonal and has diagonal elements fi ,, . . . , f i r .  For 
g = (r l ,  r2, r3,5> A), 

By Proposition 5.2, Y3 = \k3U3 where \k, E %,, and U3 E G: is p x p. 
Choose A' = U; 'A where A E aP is, as yet, unspecified. Then 

and, by the singular value decomposition theorem for matrices, there exists 



a r, E Or and a A E tIp such that 

rlYIU<'A = (DO) 

where D is an r x r diagonal matrix whose diagonal elements are the square 
roots of the eigenvalues of Y,(U,U;)-'y; = Y,(Y,Y;)-'Y;. With this choice 
for A E Or it is clear that &A' = Y3UC1A E Tp,, so there exists a r, E 0, 
such that 

Choosing r, = I,, 5 = - Y,A', and setting 

goy has the representation claimed. To show h is maximal invariant, 
suppose h(Y, ,  Y,, Y,) = h ( Z , ,  Z,, Z,). Let D be the r x r diagonal matrix, 
the squares of whose diagonal elements are the eigenvalues of Y,(Y,Y;)-'Y; 
and Z , ( Z , Z j ) -  '2;. Then there exist go and g ,  E G such that 

so Y = g;Ig,Z. Thus Y and Z are in the same orbit and h is a maximal 
invariant function. 

When r > p, basically the same argument establishes that h is a maximal 
invariant. To show h is invariant, if g = ( r , ,  r,, r , ,  5, A),  then the matrix 
Y;Y,(Y;Y,)- ' gets transformed into A Y;Y,(Y;Y,)- 'A- ' when Y is trans- 
formed to gY. By Proposition 1.39, the eigenvalues of AY;Y,(Y;Y,)- 'Ap' 
are the same as the eigenvalues of Y;Y,(Y;Y,)-I, so h is invariant. To show h 
is maximal invariant, first show that, for each Y, there exists a go E G such 
that 

where D is the p x p diagonal matrix of square roots of eigenvalues 
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(Y;Y,)(Y;Y,)-I. The argument for this is similar to that given previously and 
is left to the reader. Now, by mimicking the proof for the case r 6 p l ,  it 
follows that h is maximal invariant. 

Proposition 9.3. The distribution of the maximal invariant h (Y,, Y2, Y,) 
depends on the parameters (B,, B,, 2 )  only through the vector of the t 
largest eigenvalues of B; BIZ- I .  

Proof: Since h is a G-invariant function, the distribution of h depends on 
(B, ,  B,, Z) only through a maximal invariant parameter under the induced 
action of G on the parameter space. Thls action, given earlier, is 

However, an argument similar to that used to prove Proposition 9.2 shows 
that the vector of the t largest eigenvalues of B;B,B-' is maximal invariant 
in the parameter space. 

An alternative form of the maximal invariant is sometimes useful. 

Proposition 9.4. Let t = min{r, p )  and define h,(Y,, Y,, Y,) to be the 
t-dimensional vector (el , .  . . , 8,)' where 8, g . . . g 8, are the t smallest 
eigenvalues of Y;Y,(Y;Y, + Y;Y,)-I. Then 8, = 1/(1 + A,), i = 1,. . . , t, 
where Ai's are defined in Proposition 9.2. Further, h,(Y,, Y,, Y,) is a 
maximal invariant. 

Proof: For A E [0, a), let 8 = 1/(1 + A). If A satisfies the equation 

then a bit of algebra shows that 8 satisfies the equation 

and conversely. Thus 8, = 1/(1 + A,), i = 1,. . . , t, are the t smallest eigen- 
values of Y;Y,(Y;Y, + Y;Y,)-I. Since h,(Y,, Y,, Y,)  is a one-to-one function 
of h (Y,, Y2, Y,), it is clear that h ,(Y,, Y,, Y,)  is a maximal invariant. 

Since every G-invariant test is a function of a maximal invariant, the 
problem of choosing a reasonable invariant test boils down to studying tests 
based on a maximal invariant. When t = min{p, r )  = 1, the following result 
shows that there is only one sensible choice for an invariant test. 
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Proposition 9.5. If t = 1 in the MANOVA problem, then the test that 
rejects for large values of A, is uniformly most powerful w i t h  the class of 
G-invariant tests. Further, this test is equivalent to the likelihood ratio test. 

Proo,f: First consider the case when p = 1. Then Y{Y,(Y;Y,)-' is a non- 
negative scalar and 

Also. C(Y,)  = N(B, ,  a21,) and C ( Y , )  = N(0, a21,) where Z has been set 
equal to a2 to conform to classical notation when p = 1. By Proposition 
8.14, 

f ( A , )  = F ( r ,  m ;  6 )  

where 6 = B;B , /a2  and the null hypothesis is that 6 = 0. Since the non- 
central F distribution has a monotone likelihood ratio, it follows that the 
test that rejects for large values of A ,  is uniformly most powerful for testing 
6 = 0 versus 6 > 0. As every invariant test is a function of A,, the case for 
p = 1 follows. 

Niow, suppose r = 1. Then the only nonzero eigenvalue of Y;Y,(Y;Y,)-' 
is Y,I(Y;Y,)-'Y; by Proposition 1.39. Thus 

A ,  = y 1 ( q y 3 ) - ' y ;  

and, by Proposition 8.14, 

wher'e 6 = BIZ- 'B;  > 0. The problem is to test 6 = 0 versus 6 > 0. Again, 
the nloncentral F distribution has a monotone likelihood ratio and the test 
that rejects for large values of A ,  is uniformly most powerful among tests 
based on A,. 

The likelihood ratio test rejects H, for small values of 

If p = 1, then A = (1 + A,)-' and rejecting for small values of A is 
equivalent to rejecting for large values of A,. When r = 1 ,  then 

so again A = ( 1  + A,)-' .  
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When t > 1, the situation is not so simple. In terms of the eigenvalues 
A,, . . . , A,, the likelihood ratio criterion rejects H, for small values of 

However, there are no compelling reasons to believe that other tests based 
on A,, . . . , A,  would not be reasonable. Before discussing possible alterna- 
tives to the likelihood ratio test, it is helpful to write the maximal invariant 
statistic in terms of the original variables that led to the canonical MANOVA 
problem. In the original MANOVA problem, we had an observation vector 
X E C p , ,  such that 

c ( X )  = N ( z ~ ,  I,, 8 2 )  

and the problem was to test K/3 = 0. We know that 

and 

are the maximum likelihood estimators of f i  and 2.  

Proposition 9.6. Let t = rnin{p, r). Suppose the original MANOVA prob- 
lem is reduced to a canonical MANOVA problem. Then a maximal in- 
variant in the canonical problem expressed in terms of the orignal variables 
is the vector (A,,. . . , A,)', A,  2 . . . >, A,, of the t largest eigenvalues of 

Proof. The transformations that reduced the original problem to canonical 
form led to the three matrices Y,, Y2, and Y3 where Y, is r x p, Y2 is 
(k - r )  x p, and Y, is ( n  - k) x p. Expressing Y, and Y3 in terms of X, Z, 
and K ,  it is not too difficult (but certainly tedious) to show that 

By Proposition 9.2, the vector (A,, . . . , A,)' of the t largest eigenvalues of 



Y{Y,(Y;Y3)-' is a maximal invariant. Thus the vector of the t largest 
eigenvalues of V is maximal invariant. 

In terms of X, Z, and K, the likelihood ratio test rejects the null 
hypothesis if 

is too small. Also, the distribution of A under Ho is given in Proposition 9.1 
as U(n - k, r, p). The distribution of A when KB == 0 is quite complicated 
when t > 1 except in the case when p has rank one. In this case, the 
distribution of A is given in Proposition 8.16. 

We now turn to the question of possible alternatives to the likelihood 
ratio test. For notational convenience, the canonical form of the MANOVA 
problem is treated. However, the reader can express statistics in terms of the 
original variables by applying Proposition 9.6. Since our interest is in 
invariant tests, consider Y, and Y,, which are independent, and satisfy 

The random vector Y2 need not be considered as invariant tests do not 
involve Y2. Intuitively, the null hypothesis Ho:  B, = 0 should be rejected, 
on the basis of an invariant test, if the nonzero eigenvalues A,  > . . . 2 A,  
of Y[Y,(Y;Y,)-' are too large in some sense. Since C(Y,) = N(B,, I, @ Z), 

Also, it is not difficult to verify that (see the problems at the end of this 
chapter) 

when m - p - 1 > 0. Since Y, and Y3 are independent, 

r 
&Y;Y,(Y;Y~)-' = I +  B;B,Z-I. 

m - p - l p  m - p - 1  

Therefore, the further B, is away from zero, the larger we expect the 
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eigenvalues of B;B,Z- '  to be, and hence the larger we expect the eigen- 
values of YiY,(Y;Y,)-' to be. In particular, 

and tr B;B,Z-  ' is just the sum of the eigenvalues of B; B IZ - - ' .  The test that 
rejects for large values of the statistic 

is called the Lawley-Hotelling trace test and is one possible alternative to 
the likelihood ratio test. Also, the test that rejects for large values of 

was introduced by Pillai as a competitor to the likelihood ratio test. A thlrd 
competitor is based on the following considerations. The null hypothesis 
Ho : B ,  = 0 is equivalent to the intersection over u E Rr, llull = 1 ,  of the 
null hypotheses H,: ulB,  = 0. Combining Propositions 9.5 and 9.6, it 
follows that the test that accepts H, iff 

is a uniformly most powerful test within the class of tests that are invariant 
under the group of transformations preserving H,. Here, c is a constant. 
Under H,, 

so it seems reasonable to require that c not depend on u. Since H, is 
equivalent to n{H,lllull = 1, u E Rr>, Ho should be accepted iff all the H, 
are accepted-that is, H, should be accepted iff 

sup U ' Y , ( Y ; Y , ) - ' Y ; ~  g c. 
Ilull= 1 

However, this supremum is just the largest eigenvalue of Y,(Y;Y,)- 'y; ,  
which is A,. Thus the proposed test is to accept Ho iff A, g c or equivalently, 



to reject H, for large values of A,. Thls test is called Roy's maximum root 
test. 

Unfortunately, there is very little known about the comparative behavior 
of the tests described above. A few numerical studies have been done for 
small values of r, m, and p but no single test stands out as dominating the 
others over a substantial portion of the set of alternatives. Since very 
accurate approximations are available for the null distribution of the 
likelihood ratio test, this test is easier to apply than the above competitors. 
Further, there is an interesting decomposition of the test statistic 

whlch has some applications in practice. Let S  = Y;Y, so C ( S )  = 

W(Z,  p ,  m) and let Xi,. . . , X: denote the rows of Y,. Under H,: B, = 0, 
XI,. . . , X, are independent and C( X,) = N(0, 2) .  Further, 

where 

and 

Proposition 8.15 gives the distribution of A; under H, and shows that 
A , ,  . . . , A, are independent under H,. Let Pi,. . . , &! denote the rows of B, 
and consider the r testing problems given by the null hypotheses 

and the alternatives 

for i = 1,. . . , r. Obviously, H, = n ;Hi and the lkelihood ratio test for 
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testing Hi against rejects Hi iff Ai is too small. Thus the likelihood ratio 
test for Ho can be thought of as one possible way of combining the r 
independent test statistics into an overall test of n ;Hi .  

9.2. MANOVA PROBLEMS WITH BLOCK DIAGONAL 
COVARIANCE STRUCTURE 

The parameter set of the MANOVA model considered in the previous 
section consisted of a subspace M  = {pip = ZB, B E tp, ,) t., and a set 
of covariance matrices 

y = { I ,  8 212 E Spi). 

It was assumed that the matrix 2 was completely unknown. In this section, 
we consider estimation and testing problems when certain things are known 
about Z. For example, if 2 = 0 2 Z p  with 0 2  unknown and positive, then we 
have the linear model discussed in Section 3.1. In this case, the linear model 
with parameter set { M ,  y) is just a univariate linear model in the sense that 
I, 8 2 = 021n 8 Zp and In @ I, is the identity linear transformation on the 
vector space ep, .. This model is just the linear model of Section 9.1 when 
p = 1 and np plays the role of n. Of course, when 2 = a2ZP, the subspace M 
need not have the structure above in order for Proposition 4.6 to hold. 

In what follows, we consider another assumption concerning Z and treat 
certain estimation and testing problems. For the models treated, it is shown 
that these models are actually "products" of the MANOVA models dis- 
cussed in Section 9.1. 

Suppose Y E tp, ,  is a random vector with GY E M  where 

and Z is a known n x k matrix of rank k. Write p = p, + p,, pi > 1, for 
i = 1.2. The covariance of Y is assumed to be an element of 

Thus the rows of Y, say Y;,. . . , YL, are uncorrelated. Further, if is 
partitioned into E RP1 and K .I.:E RPz, = (x, r), then X, and K are 
also uncorrelated, since 
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Thus the interpretation of the assumed structure of yo is that the rows of Y 
are uncorrelated and within each row, the first p, coordinates are uncorre- 
lated with the last p, coordinates. This suggests that we decompose Y into 
X E epl ,  , and W E ep2, , where 

Obviously, the rows of X(W) are Xi,. . . , XL(W;,. . . , W,'). Also, partition 
B E C p ,  , into B, E C p l ,  and B, E ep2, ,. It is clear that 

and 

Further, 

Cov(X) E Y, ' { I ,  '3 ~ l l l ~ l l  E Sp:) 

and 

COV(W) E y2 { I ,  '3 Z2,1Z2, E 5;). 

Since X and W are uncorrelated, if Y has a normal distribution, then X and 
W are independent and normal and we have a MANOVA model of Section 
9.1 for both X and W (with parameter sets (MI,  y,) and (M,, y,)). In 
summary, when Y has a normal distribution, Y can be partitioned into X 
and W, which are independent. Therefore, the density of Y is 

where f ,  f, ,  and f, are normal densities on the appropriate spaces. Since we 
have MANOVA models for both X and W, the maximum likelihood 
estimators of p,, p ,, 2, ,, and E2, follow from the result of the first section. 
For testing the null hypothesis Ho : KB = 0, K: r X k of rank r, a similar 
decomposition occurs. As B = (BIB2), Ho : KB = 0 is equivalent to the two 
null hypotheses H; : KB, = 0 and H: : KB, = 0. 

Proposition 9.7. Assume that n - k 2 max{ p,, p,). For testing Ho : KB = 

0, the likelihood ratio test rejects for small values of A = A, A, where 
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and 
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Here, Q, = I - P, where P, = Z(Z'Z)-'z' and 

Pro06 We need to calculate 

where bX is the set of (p, Z) such that p E M and I,, 8 Z E yo. As noted 
earlier. 

Also, (p, Z) E Ho iff (p,,  Z,,) E Hd and (p,, Z2,) E H i .  Further, (p, Z) E 

iff (pi,  xi i )  E Eml where ?Xi is the set of (pi, Xii) such that pl E Ml and 
I,, 8 Zii E y, for i = 1,2. From these remarks, it follows that 

where 

and 

However, *,(X) is simply the likelihood ratio statistic for testing Hd in the 



MANOVA model for X. The results of Propositions 9.6 and 9.1 show that 
\k,(X) = (A,)"12. Similarly, $(W) = (A2)"12. Thus \k(Y) = (A,A2)n/2 
so the test that rejects for small values of A = A,A, is equivalent to the 
likelihood ratio test. 

Since X and W are independent, the statistics A, and A, are indepen- 
dent. The distribution of hi when Hi is true is U(n - pi, r, pi) for i = 1,2. 
Therefore, when Ho is true, RIA2 is distributed as a product of independent 
beta random variables and the results in Anderson (1958) provide an 
approximation to the null distribution of A, A ,. 

We now turn to a discussion of the invariance aspects of testing H, : KB 
= 0 on the basis of the observation vector Y. The argument used to reduce 
the MANOVA model of Section 9.1 to canonical form is valid here, and this 
leads to a group of transformations GI, whch preserve the testing problem 
H: for the MANOVA model for X. Similarly, there is a group G, that 
preserves the testing problem H; for the MANOVA model for W. Since 
Y = (X, W), we can define the product group GI x G, acting on Y by 

and the testing problem Ho is clearly invariant under this group action. A 
maximal invariant is derived as follows. Let ti = rnin{r, p,) for i = 1,2, and 
in the notation of Proposition 9.7, let 

and 

Letv, 2 . . .  2 vt, be the t, largest eigenvalues of V, and 8, 2 . . . 2 Ot2 be 
the t, largest eigenvalues of V,. 

Proposition 9.8. A maximal invariant under the action of GI x G, on Y is 
the (t, + t,)-dimensional vector (v,,. . . , qt,; e l , .  . . , Bf2) = h(Y) = 
(h,(X); h,(W)). Here, h,(X) = (771,. - - 9 vt,) and h,(W) = (81,. . . , Ot2). 

ProoJ: By Proposition 9.6, h,(X)(h,(W)) is maximal invariant under the 
action of G,(G,) on X( W). Thus h is G-invariant. If h(Y,) = h (Y,) where 
Y, = (XI, W,) and Y, = (X,, W,), then h,(X,) = h,(X2) and h,(W,) = 

h2(W2). Thus there exists g, E G,(g2 E G,) such that g,X, = X2(g2W, = 
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W2). Therefore, 

so h is maximal invariant. 

As a function of h(Y), the likelihood ratio test rejects Ho if 

is too small. Since t, + t 2  > 1, the maximal invariant h(Y) is always of 
dimension greater than one. Thus the situation described in Proposition 9.5 
cannot arise in the present context. In no case will there exist a uniformly 
most powerful invariant test of Ho:  KB = 0 even if K has rank 1. This 
completes our discussion of the present linear model. 

It should be clear by now that the results described above can be easily 
extended to the case when Z has the form 

where the off-diagonal blocks of Z are zero. Here Z E 5; and Zii E 5;' 
Zsp, = p. In this case, the set of covariances for Y E C p , ,  is the set $, 
which consists of all I, @ Z where Z has the above form and each Z,, is 
unknown. The mean space for Y is M as before. For this model, Y can be 
decomposed into s independent pieces and we have a MANOVA model in 
Cp8,  for each piece. Also, the matrix B(&Y = ZB) decomposes into B,,. . . , 
B,, B, E Cp, ,  , and a null hypothesis Ho : KB = 0 is equivalent to the 
intersection of the s null hypotheses Hi : KB, = 0, i = 1,. . . , s. The likeli- 
hood ratio test of Ho is now based on a product of s independent statistics, 
say A = n;Ai,  where C(Ai) = U(n - pi, r, p,) and thus A is distributed as 
a product of independent beta random variables when Ho is true. Further, 
invariance considerations lead to an s-fold product group that preserves the 
testing problem and a maximal invariant is of dimension t ,  + . . + t, 
where ti = min{r, pi), i = 1,. . . , s. The details of all this, whlch are mainly 
notational, are left to the reader. 

In this section, it has been shown that the linear model with a block 
diagonal covariance matrix can be decomposed into independent compo- 
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nent models, each of which is a MANOVA model of the type treated in 
Section 9.1. This decomposition technique also appears in the next two 
sections in which we treat linear models with different types of covariance 
structure. 

9.3. INTRACLASS COVARIANCE STRUCTURE 

In some instances, it is natural to assume that the covariance matrix of a 
random vector possesses certain symmetry properties that are suggested by 
the sampling situation. For example, if n measurements are taken under the 
same experimental conditions, it may be reasonable to suppose that the 
order in which the observations are taken is immaterial. In other words, if 
XI,. . . , Xp denote the observations and X' = (X,, . . . , Xp) is the observation 
vector, then X and any permutation of X have the same distribution. 
Symbolically, this means that C(X) = C(gX) where g is a permutation 
matrix. If Z = Cov(X) exists, this implies that Z = gZg' for g E qP where 
qP denotes the group of p X p permutation matrices. Our first task is to 
characterize those covariance matrices that are invariant under qP-that is, 
those covariance matrices that satisfy Z = gZg' for all g E qP. Let e E Rp 
be the vector of ones and set Pe = (l/p)ee' so Pe is the orthogonal 
projection onto span{e). Also, let Qe = I, - P,. 

Proposition 9.9. Let Z be a positive definite p x p matrix. The following 
are equivalent: 

(i) Z = gZg' for g E qP. 
(ii) Z = a P e + / 3 Q e f o r a > O a n d / 3 > 0 .  

(iii) Z = U ~ A ( ~ )  where u2 > 0, - l / (p  - 1) < p < 1, and A(p) is a 
p x p matrix with elements a,, = 1, i = 1,. . . , p, and aij(p) = p 
for i * j. 

Pro06 Since 

A ( ~ )  = (1 - p)Ip + pee' = (1 - p)IP + P P P ~  

the equivalence of (ii) and (iii) follows by talung a = a2(1 + (p  - 1)p) and 
/3 = u2(1 - p). Since ge = e for g E YP, gPe = Peg. Thus if (ii) holds, then 
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so (i) holds. To show (i) implies (ii), let X E RP be a random vector with 
Cov(X) = 2. Then (i) implies that Cov(X) = Cov(gX) for g E qP. There- 
fore, 

and 

COV(&, X,) = COV(&, X,,); i * j ,  if * J'. 

Let y  = var(X,) and 6 = cov(X,, X,). Then 

Z = See' + ( y  - S)Ip = pSP, + ( y  - S)(P, + Q,) 

where a = y + ( p  - 1)6 and f l  = y - 6. The positivity of a and f l  follows 
from the assumption that Z is positive definite. 

A covariance matrix Z that satisfies one of the conditions of Proposition 
9.9 is called an intraclass covariance matrix and is said to have intraclass 
covariance structure. Now that intraclass covariance matrices have been 
described, suppose that X E Cp, , has a normal distribution with p = & X  E 

M and Cov(X) E y where M is a linear subspace of Cp, , and 

The covariance structure assumed for X means that the rows of X are 
independent and each row of X has the same intraclass covariance structure. 
In terms of invariance, if r 8 g E On @ qP, and In 8 Z E y, it is clear that 

since 

Conversely, if T is a positive definite linear transformation on C,,, that 
satisfies 

( r s g ) ~ ( I ' s g ) ' = T  f o r ~ @ g ~ 8 , @ ~ ~ ,  

it is not difficult to show that T E y. The proof of this is left to the reader. 
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Since the identity linear transformation is an element of y, in order that the 
least-squares estimator of p E M be the maximum likelihood estimator, it is 
sufficient that 

Our next task is to describe a class of linear subspaces M that satisfy the 
above condition. 

Proposition 9.10. Let C be an r x p real matrix of rank r with rows 
c;,. . . , ci. If u,,. . . , u, is any basis for N = span{c,,. . . , c,) and U is an 
r X p matrix with rows u;, . . . , u:, then there exists an r x r nonsingular 
matrix A such that A U = C. 

Proof. Since u,, . . . , u, is a basis for N, 

for some real numbers a,,. Setting A = {a,,), AU = C follows. As the basis 
{u,,. . . , u,) is mapped onto the basis {c,,. . . , c,) by the linear transforma- 
tion defined by A, the matrix A is nonsingular. 

Given positive integers n and p, let k and r be positive integers that 
satisfy k < n and r < p. Define a subspace M G eP, , by 

where Z, is n x k of rank k, Z, is r x p of rank r ,  and assume that e E RP 
is an element of the subspace spanned by rows of Z,, say e E N = 

span{z,,. . . , z,) and the rows of Z, are z;,. . . , z:. At this point, it is 
convenient to relabel thngs a bit. Let u, = e/ \l;T, u,,. . . , u,, be an 
orthonormal basis for N and let U :  r X p have rows u;, . . . , ui. By Proposi- 
tion 9.10, Z, = AU for some r X r nonsingular matrix A so 

Summarizing, X E eP,, is assumed to have a normal distribution with 
GX E M and Cov(X) E y where M and y are given above. To decompose 
this model for X into the product of two simple univariate linear models, let 
r E tlp have u;,. . . , ui as its first r rows. With Y = (I, @ r )X,  
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and 

COV(Y) = (I, 8 r ) cov(x ) ( I ,  8 r ) '  

However, 

urp = ( I ~  0) E eP+ 

and 

r Q e r f  = I, - E,E; 

where E; = (1,0,. . . , 0). Therefore, the matrix D = arPerf + p r Q e r '  is 
diagonal with diagonal elements d l , .  . . , dp given by d l  = a and d, = . . - 
= d, = p. Let Y , , .  . . , Y, be the columns of Y and let b,,. . . , br be the 
columns of B. Then it is clear that Y,, . . . , Y, are independent, 

C ( y )  = N(Zlbi,  PI,), i = 2 , .  . . , r ,  

and 

To piece things back together, set m = n ( p  - 1) and let V E Rm be given 
by V' = (Y;, Y;,. . . , q). Then 

where S E R('-')P, 6' = (b;,. . . , b:), and 

rn x (( r  - 
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Thus X has been decomposed into the two independent random vectors Y, 
and V and the linear models for Y, and V are given by the parameter sets 
(MI, Y,) and (M2, Y,) where 

and 

Both of these linear models are univariate in the sense that y, and y2 consist 
of a constant times an identity matrix. 

It is obvious that the general theory developed in Section 9.1 for the 
MANOVA model applies directly to the above two linear models individu- 
ally. In particular, the maximum likelihood estimators of b,, a,  6, and P can 
simply be written down. Also, linear hypotheses about b, or 6 can be tested 
separately, and uniformly most powerful invariant tests will exist for such 
testing problems when the two linear models are treated separately. How- 
ever, an interesting phenomenon occurs when we test a joint hypothesis 
about b, and 6. For example, suppose the null hypothesis Ho is that b, = 0 
and 6 = 0 and the alternative is that b, * 0 or 6 * 0. This null hypothesis is 
equivalent to the hypothesis that B = 0 in the original model for X. By 
simply writing down the densities of Y, and V and substituting in the 
maximum likelihood estimators of the parameters, the likelihood ratio test 
for Ho rejects if 

is too small. Here, 11 . ( 1  denotes the standard norm on the coordinate 
Euclidean space under consideration. Let 

and 
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so W, and W, are independent and each has a beta distribution. When 
p  > 3, then m = n ( p  - 1 )  > n  and it follows that A*/" = w,w;"/" is not in 
general distributed as a product of independent beta random variables. This 
is in contrast to the situation treated in Section 9.2 of this chapter. 

We end this section with a brief description of what might be called 
multivariate intraclass covariance matrices. If X E RP and Cov(X) = 2 ,  
then 2 is an intraclass covariance matrix iff Cov(gX) = Cov(X) for all 
g E qp. When the random vector X is replaced by the random matrix 
Y: p  x q, then the expression gY = (g €3 Iq)Y still makes sense for g E qP7 
and it is natural to seek a characterization of Cov(Y) when Cov(Y) = 

Cov((g 8 I,)Y) for all g E 9,. For g E qp, the linear transformation g €3 I, 
just permutes the rows of Y and, to characterize T = Cov(Y), we must 
describe how permutations of the rows of Y affect T. The condition that 
Cov(Y) = Cov((g 8 I,)Y) is equivalent to the condition 

For A and B in S:, consider 

Then To is a self-adjoint and positive definite linear transformation on C,,, 
to C,,,. It is readily verified that 

That To is a possible generalization of an intraclass covariance matrix is 
fairly clear-the positive scalars a and P of Proposition 9.9 have become the 
positive definite matrices A and B. The following result shows that if T is 
(qP €3 Iq)-invariant-that is, if T satisfies T = (g  €3 Iq)T(g €3 I,)'-then T 
must be a To for some positive definite A and B. 

Proposition 9.11. If T is positive definite and (qP €3 I,)-invariant, then 
there exist q x q positive definite matrices A and B such that 

Proot The proof of this is left to the reader. 

Unfortunately, space limitations prevent a detailed description of linear 
models that have covariances of the form I,, 8 T where T is given in 
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Proposition 9.11. However, the analysis of these models proceeds along the 
lines of that given for intraclass covariance models and, as usual, these 
models can be decomposed into independent pieces, each of which is a 
MANOVA model. 

9.4. SYMMETRY MODELS: AN EXAMPLE 

The covariance structures studied thus far in this chapter are special cases of 
a class of covariance models called symmetry models. To describe these, let 
(V, (., .)) be an inner product space and let G be a compact subgroup of 
O(V). Define the class of positive definite transformations y, by 

y, = {ZIZ E C(V, V), Z > 0, gZgf = Z for all g E G). 

Thus y, is the set of positive definite covariances that are invariant under G 
in the sense that Z = gZgf for g E G. To justify the term symmetry model 
for y,, first observe that the notion of "symmetry" is most often expressed 
in terms of a group acting on a set. Further, if X is a random vector in V 
with Cov(X) = 2,  then Cov(gX) = gZgf. Thus the condition that Z = gZgf 
is precisely the condition that X and gX have the same covariance-hence, 
the term symmetry model. 

Most of the covariance sets considered in this book have been symmetry 
models for a particular choice of (V, ( a ,  .)) and G. For example, if 
G = O(V), then 

as Proposition 2.13 shows. Hence 8(V) generates the weakly spherical 
symmetry model. The result of Proposition 2.19 establishes that when 
(V,(., = (C,,., ( . , . ) I  and 

then 

Of course, this symmetry model has occurred throughout this book. Using 
techniques similar to that in Proposition 2.19, the covariance models consid- 
ered in Section 9.2 are easily shown to be symmetry models for an 
appropriate group. Moreover, Propositions 9.9 and 9.11 describe sets of 
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covariances (the intraclass covariances and their multivariate extensions) in 
exactly the manner in which the set y, was defined. Thus symmetry models 
are not unfamiliar objects. 

Now, given a closed group G G 6 ( V ) ,  how can we explicitly describe the 
model y,? Unfortunately, there is no one method or approach that is 
appropriate for all groups G. For example, the results of Proposition 2.19 
and Proposition 9.9 were proved by quite different means. However, there is 
a general structure theory known for the models y, (see Andersson, 1975), 
but we do not discuss that here. The general theory tells us what y, should 
look like, but does not tell us how to derive the particular form of y,. 

The remainder of this section is devoted to an example where the 
methods are a bit different from those encountered thus far. To motivate the 
considerations below, consider observations XI,. . . , Xp, which are taken at p 
equally spaced points on a circle and are numbered sequentially around the 
circle. For example, the observations might be temperatures at a fixed cross 
section on a cylindrical rod when a heat source is present at the center of the 
rod. Impurities in the rod and the interaction of adjacent measuring devices 
may make an exchangeability assumption concerning the joint distribution 
of X,, . . . , X, unreasonable. However, it may be quite reasonable to assume 
that the covariance between Xj and X, depends only on how far apart X, 
and X, are on the circle-that is, C O V ( ~ ,  X,,,) does not depend on j,  
j = 1,. . . , p, where XP+, = XI; cov(X,, X,,,) does not depend on j, j = 

1,. . . , p, where Xp +, = X2, and so on. Assuming that cov(X,, X,) does not 
depend on j,  these assumptions can be succinctly expressed as follows. Let 
X E RP have coordinates XI,. . . , X, and let C be a p x p matrix with 

and the remaining elements of C zero. A bit of reflection will convince the 
reader that the conditions assumed on the covariances is equivalent to the 
condition that Cov(CX) = Cov(X). The matrix C is called a cyclic permu- 
tation matrix since, if x E RP has coordinates x,, . . . , x,, then Cx has 
coordinates x,, x,,. . . , x,, x,. In the case that p = 5, a direct calculation 
shows that 

I: = Cov(X) = Cov(CX) = CZC' 

iff I: has the form 



SYMMETRY MODELS: AN EXAMPLE 363 

where a2 > 0. The conditions on p ,  and p, so that Z is positive definite are 
given later. Covariances that satisfy the condition Z = CZC' are called 
cyclic covariances. Some further motivation for the study of cyclic covari- 
ances can be found in Olkin and Press (1969). 

To begin the formal treatment of cyclic covariances, first observe that 
CP = Ip SO the group generated by C is 

Since C generates Go, it is clear that CZC' = Z iff gZg' = Z for all g E Go. 
In what follows, only the case of p = 29 + 1, q >, 1, is treated. When p is 
even, slightly different expressions are obtained but the analyses are similar. 
Rather than characterize the covariance set yGo directly, it is useful and 
instructive to first describe the set 

Recall that aP is the complex vector space of p-dimensional coordinate 
complex vectors and ep is the set of all p x p complex matrices. Consider 
the complex number r = exp[2mi/p] and define complex column vectors 
wk E QP with jth coordinate given by 

for k = 1,. . . , p. A direct calculation shows that 

so w,, . . . , wp is an orthonormal basis for QP. For future reference note that 

where p = 29 + 1, q >, 1. Here, the bar over wk denotes complex conjugate, 
and e is the vector of ones in CP. The basic relation 

shows that 
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As usual, * denotes conjugate transpose. Obviously, 1, r, . . . , rP-  ' are 
eigenvalues of C with corresponding eigenvectors w,, . . . , wp. Let Do E ep be 
diagonal with dkk = rk-I,  k = I , . .  . , p  and let U E eP have columns 
w,, . . . , w,. The relation (9.1) can be written C = UDoU*. Since UU* = I,, 
U is a unitary complex matrix. 

Proposition 9.12. The set &Go consists of those B E C?, that have the form 

where p,, . . . , Pp are arbitrary complex numbers. 

Proof. If B has the form (9.2), the identity BC = CB follows easily from 
(9.1). Conversely, suppose BC = CB. Then 

since U*U = I,. In other words, U*BU commutes with Do. But Do is a 
diagonal matrix with distinct nonzero diagonal elements. This implies that 
U* BU must be diagonal, say D, with diagonal elements PI , .  . . , P,. Thus 
U*BU = D so B = UDU*. Then B has the form (9.2). 

The next step is to identify those elements of &Go that are real and 
symmetric. Consider B E @Go so 

Now, suppose that B is real and symmetric. Then the eigenvalues of B, 
namely PI, .  . . , Pp, are real. Since PI , .  . . , PP are real and B is real, we have 

The relationship Wk = wp- ,+ ,, k = 2,. . . , q + 1, implies that P k  = Pp-k+2, 
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k = 2, ..., q + 1, so 

But any B given by (9.3) is real, symmetric, and commutes with C and 
conversely. We now show that (9.3) yields a spectral form for the real 
symmetric elements of (EGO. Write w, = x, + iy, with x,, y, E RP, and 
define u, E RP by 

The two identities 

and the reality of w, yield the identities 

Thus u,, . . . , up is an orthonormal basis for RP. Hence any B of the form 
(9.3) can be written 

and this is a spectral form for B. Such a B is positive definite iff P, > 0 for 
k = 1,. . . , q + 1. This discussion yields the following. 

Proposition 9.13. The symmetry model yGo consists of those covariances 2 
that have the form 

wherea, > 0 fo rk  = 1, ..., q + 1 .  
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Let r have rows u;, . . . , ui. Then r is a p x p symmetric orthogonal 
matrix with elements 

for j, k = 1,. . . , p. Further, any Z given by (9.4) will be diagonalized by r 
-that is, r Z r  is diagonal, say D, with diagonal elements 

Since r simultaneously diagonalizes all the elements of yGo, I7 can sometimes 
be used to simplify the analysis of certain models with covariances in yGo. 
This is done in the following example. 

As an application of the foregoing analysis, suppose Y,,. . . , Yn are 
independent with Y, E RP, p = 29 + 1, and C(Y,) = N(p, Z), j = 1,. . . , n. 
It is assumed that Z is a cyclic covariance so Z E yGo. In what follows, we 
derive the likelihood ratio test for testing H,, the null hypothesis that the 
coordinates of p are all equal, versus H I ,  the alternative that p is completely 
unknown. As usual, form the matrix Y : n x p with rows Y;, j = 1,. . . , n, so 

where p E RP and Z E yGo. Consider the new random vector Z = ( In  @ r ) Y  
where r is defined in the previous paragraph. Setting v = rp,  we have 

C(Z)  = N(evf, I,, 8 D) 

where D = D r .  As noted earlier, D is diagonal with diagonal elements 

Since Z was assumed to be a completely unknown element of yGo, the 
diagonal elements of D are unknown parameters subject only to the 
restriction that ot, > 0, j = 1,. . . , q + 1. In terms of v = rp ,  the null 
hypothesis is H,, : v, = . = vp = 0. Because of the structure of D, it is 
convenient to relabel things once more. Denote the columns of Z by 
Z,, . . . , Zp and consider W,, . . . , W,, , defined by 

Thus W, E Rn and W, E C2,. for j = 2,. . . , q + 1. Define vectors 5, E R' 



Now, it is clear that W , ,  . . . , W,, , are independent and 

Further, the null hypothesis is Ho : 6, = 0,  j = 2,. . . , q + 1 ,  and the alterna- 
tive is that tJ t 0 for some j = 2,. . . , q + 1. With the model written in ths  
form, a derivation of the likelihood ratio test is routine. Let Pe = ee'/n and 
let 1 1  . 1 1  denote the usual norm on C,, .. Then the likelihood ratio test rejects 
Ho for small values of 

Of course, the likelihood ratio test of H$j) : 6, = 0 versus H f j )  : 6, * 0 
rejects for small values of 

The random variables A,, . . . , A,+ , are independent, and under HA]), 

C(A,) = 9 ( n  - 1, l ) .  

Thus under Ho, A is distributed as a product of the independent beta 
random variables, each with parameters n - 1 and 1. 

We end this section with a discussion that leads to a new type of 
structured covariance-namely, the complex covariance structure that is 
discussed more fully in the next section. This covariance structure arises 
when we search for an analog of Proposition 9.1 1 for the cyclic group Go. 
To keep things simple, assume p = 3 (i.e., q = 1 )  so Go has three elements 
and is a subgroup of the permutation group g3, which has six elements. 
Since p = 3, Propositions 9.9 and 9.13 yield that yq, = yGo and these 
symmetry models consist of those covariances of the form 

where Pe = )eef and Qe = I ,  - P,. 
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Now, consider the two groups T3 7, Zr and Go @ I ,  acting on C,,, by 

Proposition 9.1 1 states that a covariance T on C,,, is 9, @ I ,  invariant iff 

for some r X r positive definite A and B. We now claim that for r > 1 ,  there 
are covariances on C,,, that cannot be written in the form (9 .9 ,  but that are 
Go @ I ,  invariant. 

To establish the above claim, recall that the vectors u, ,  u,, and u3 defined 
earlier are an orthonormal basis for R3 and 

These vectors were defined from the vectors w, = x ,  + iy,, k = 1,2,3, by 
u,  = x ,  + y,, k = 1,2,3. Define the matrix J by 

By Proposition 9.12, J commutes with C. Consider vectors v ,  and v ,  given 
by 

so {v, ,  v , )  is an orthonormal basis for span {u,, u,). Since w3 = 6, we have 
u3 = x ,  - y,, which implies that 0, = a x ,  and v3 = ay2. This readily 
implies that 

so J is skew-symmetric, nonzero, and Ju, = 0. Now, consider the linear 
transformation To on C,,, to C,,, given by 

where A and B are r X r and positive definite and F is skew-symmetric. It is 
now a routine matter to show that ( C  @ Zr)To = To(C @ I,) since CP, = PeC, 
CQ, = QeC, and JC = CJ. Thus To commutes with each element of Go @ I ,  
and To is symmetric as both J and Fa re  skew-symmetric. We now make two 
claims: first, that a nonzero F exists such that To is positive definite, and 



second, that such a To cannot be written in the form (9.5). Since P, @ A  + 
Q ,  @ B  is positive definite, it follows that for all skew-symmetric F ' s  that 
are sufficiently small, 

is positive definite. Thus there exists a nonzero skew-symmetric F  so that To 
is positive definite. To establish the second claim, we have the following. 

Proposition 9.14. Suppose that 

P , @ A , + Q , @ B , + J @ F , = P , @ A , + Q , @ B , + J @ F ,  

where Aj and B,, j = 1,2, are symmetric and F, ,  j = 1,2, is skew-symmetric. 
This implies that A ,  = A,,  B ,  = B,, and F, = F,. 

ProoJ: Recall that { u , ,  v , ,  v , )  is an orthonormal basis for R ~ .  The relation 
Q,u,  = Ju, = 0 implies that for x  E Rr 

for j = 1,2 so u I O ( A l x )  = u,O(A,x ) .  With ( - , . ) denoting the natural 
inner product on Cr, ,, we have 

for all x  E Rr. The symmetry of A ,  and A ,  yield A ,  = A, .  Since Pev2 = 0, 
Qev2 = v 2 ,  and Jv ,  = - v , ,  we have 

= V , U ( B , X )  - v 3 0 ( F 2 x )  

for all x  E Rr. Thus 

which implies that B ,  = B,. Further, 

- y rF ,x  = ( u , O y ,  V , O ( B , X )  - v , O F , x )  = -ytF2x 

for all x,  y  E Rr. Thus F, = F,. 
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In summary, we have produced a covariance 

that is (Go @ I,)-invariant but is not (q3 @ I,)-invariant when r > 1. Of 
course, when r = 1, the two symmetry models y,3 and yGo are the same. At 
this point, it is instructive to write out the matrix of To in a special ordered 
basis for C,,,. Let E , ,  . . . , E ,  be the standard basis for Rr so 

is an orthonormal basis for (t,,,, ( . , .)). A straightforward calculation 
shows that the matrix of To in this basis is 

Since [To] is symmetric and positive definite, the 2r  x 2r  matrix 

has these properties also. In other words, for each positive definite B, there 
is a nonzero skew-symmetric F (in fact, there exist infinitely many such 
skew-symmetric F 's) such that Z is positive definite. This special type of 
structured covariance has not arisen heretofore. However, it arises again in a 
very natural way in the next section where we discuss the complex normal 
distribution. It is not proved here, but the symmetry model of Go @ I, when 
p = 3 consists of all covariances of the form 

where A and B are positive definite and F is skew-symmetric. 

9.5. COMPLEX COVARIANCE STRUCTURES 

T h s  section contains an introduction to complex covariance structures. One 
situation where this type of covariance structure arises was described at the 
end of the last section. To provide further motivation for the study of such 
models, we begin this section with a brief discussion of the complex normal 
distribution. The complex normal distribution arises in a variety of contexts 
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and it seems appropriate to include the definition and the elementary 
properties of this distribution. 

The notation introduced in Section 1.6 is used here. In particular, (C is the 
field of complex numbers, @ is the n-dimensional complex vector space of 
n-tuples (columns) of complex numbers, and en is the set of all n x n 
complex matrices. For x, y E Cn,  the inner product between x and y is 

n 

(x ,  y )  ' C xjyj = x*y. 
j= 1 

where x* denotes the conjugate transpose of x. Each x E (Cn has the unique 
representation x = u + iv with u, v E Rn. Of course, u is the real part of x, 
v is the imaginary part of x, and i = is the imaginary unit. This 
representation of x defines a real vector space isomorphism between (Cn and 
R ~ " .  More precisely, for x E (Cn, let 

where x = u + iv. Then [ax + by] = a[x] + b [ y ]  for x, y E (Cn, a, b E R, 
and obviously, [ . ]  is a one-to-one onto function. In particular, this shows 
that (Cn is a 2n-dimensional real vector space. If C E en ,  then C = A + iB 
where A and B are n X n real matrices. Thus for x = u + iv E a n ,  

Cx = (A + iB)(u + iv) = Au - Bv + i(Av + Bu) 

Au - Bv -B u 
[ c x ] = ( A V + B u ) =  ( A B  A ) (v ) .  

This suggests that we let {C) be the (2n) X (2n) partitioned matrix given by 

With this definition, [Cx] = {C)[x]. The whole point is that the matrix 
C E en applied to x E Cn can be represented by applying the real matrix 
(C) to the real vector [x] E R2". 

A complex matrix C E en is called Hermitian if C = C*. Writing C = A 
+ iB with A and B both real, C is Hermitian iff 



372 INFERENCE FOR MEANS IN MULTIVARIATE LINEAR MODELS 

which is equivalent to the two conditions 

Thus C is Hermitian iff (C) is a symmetric real matrix. A Hermitian matrix 
C is positive definite if x*Cx > 0 for all x E (Cn, x t 0. However, for 
Hermitian C, 

so C is positive definite iff (C) is a positive definite real matrix. Of course, a 
Hermitian matrix C is positive semidefinite if x*Cx > 0 for x E (Cn and C is 
positive semidefinite iff (C) is positive semidefinite. 

Now consider a random variable X with values in (C. Then X = U + iV 
where U and V are real random variables. It is clear that the mean value of 
X must be defined by 

assuming &U and &V both exist. The variance of X, assuming it exists, is 
defined by 

where the bar denotes complex conjugate. Since X is a complex random 
variable, the complex conjugate is necessary if we want the variance of X to 
be a nonnegative real number. In terms of U and V, 

It also follows that 

for a, b E (C. For two random variables XI and X2 in (C, define the 
covariance between XI and X2 (in that order) to be 

assuming the expectations in question exist. With this definition it is clear 
that cov(Xl, XI) = var(Xl), cov(X2, XI) = cov( X, , X,), and 
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Further. 

cov{alX, + b,, a2X2 + b,) = a,H2cov{Xl, X2) 

for a , ,  a,, b,, b2 E a. 
We now turn to the problem of defining a normal distribution on an. 

Basically, the procedure is the same as defining a normal distribution on Rn. 
Step one is to define a normal distribution with mean zero and variance one 
on $, then define an arbitrary normal distribution on $ by an affine 
transformation of the distribution defined in step one, and finally we say 
that Z E Cn has a complex normal distribution if (a, Z )  = a*Z has a 
normal distribution in $ for each a E $". However it is not entirely obvious 
how to carry out step one. Consider X E $ and let CN(0,l) denote the 
distribution, yet to be defined, called the complex normal distribution with 
mean zero and variance one. Writing X = U + iV, we have 

so the distribution of X on $ determines the joint distribution of U and V 
on R~ and, conversely, as [ . ]  is one-to-one and onto. If C(X) = $N(O, I), 
then the following two conditions should hold: 

(i) C(aX)= $N(O,l)fora E $withaH= 1. 
(ii) [XI has a bivariate normal distribution on R2. 

When aH = 1 and X has mean zero and variance one, then a x  has mean 
zero and variance one so condition (i) simply says that a scalar multiple of a 
complex normal is again complex normal. Condition (ii) is the requirement 
that a normal distribution on $ be transformed into a normal distribution 
on R2 under the real linear mapping [ - I .  It can now be shown that 
conditions (i) and (ii) uniquely define the distribution of [XI and hence 
provide us with the definition of a $N(O, 1) distribution. Since & X = 0, we 
have &[XI = 0. Condition (i) implies that 

However, writing a = a + ip, 
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where r is a 2 x 2 orthogonal matrix with determinant equal to one since 
aa = a2 + P 2  = 1. Therefore, 

for all such orthogonal matrices. Using this together with the fact that 
1 = var(X) = var(U) + var(V) implies that 

Hence 

so the real and imaginary parts of X are independent normals with mean 
zero and variance one half. 

Definition 9.1. A random variable X = U + iV E C has a complex normal 
distribution with mean zero and variance one, written C(X) = cN(0, l), if 

With this definition, it is clear that when C(X) = CN(0, l), the density of X 
on a with respect to two-dimensional Lebesgue measure on C is 

Given p E CJ and a2, u > 0, a random variable XI E a has a complex 
normal distribution with mean p and variance u2 if C(X,) = C(aX + p) 
where C(X) = aN(0,l). In such a case, we write C(Xl) = QN(p, u2). It is 
clear that XI = Ul + iVl has a CN(p, a 2 )  distribution iff Ul and Vl are 
independent and normal with variance f u 2  and means &Ul = p ,, & V, = p2, 
where p = p, + ip2. AS in the real case, a basic result is the following. 

Proposition 9.15. Suppose XI,. . . , Xm are independent random variables in 
with C(X,.) = @N(pj, a;), j = 1,. . . , m. Then 
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Proof, This is proved by considering the real and imaginary parts of each 
X,. The details are left to the reader. 

Suppose Y is a random vector in 6 "  with coordinates Y,, . . . , Y, and that 
var(Y,) < + co for j = 1,. . . , n. Define a complex matrix H with elements 
hjk given by 

- 
Since h,, = hkj, H is a Hermitian matrix. For a, b E a n ,  a bit of algebra 
shows that 

cov{a*Y, b*Y) = a*Hb = (a ,  ~ b ) .  

As in the real case, H is the covariance matrix of Y and is denoted by 
Cov(Y) = H. Since a*Ha = var(a*Y) 2 0, H is positive semidefinite. If 
H = Cov(Y) and A E en, it is readily verified that Cov(AY) = AHA*. 

We now turn to the definition of a complex normal distribution on the 
n-dimensional complex vector space 6".  

Definition 9.2. A random vector X E 6 "  has a complex normal distribu- 
tion if, for each a E Qn, (a, X) = a* X has a complex normal distribution 
on 6 .  

If X E an has a complex normal distribution and if A E en, it is clear that 
AX also has a complex normal distribution since (a,  AX) = ( A*a, X). In 
order to describe all the complex normal distributions on Cn, we proceed as 
in the real case. Let XI,. . . , X, be independent with C(X,) = a'N(0, 1) on 6 
and let X E an have coordinates XI,. . . , X,. Since 

Proposition 9.15 shows that C(a*X) = 6N(O, Zqa,). Thus X has a com- 
plex normal distribution. Further, &X = 0 and 

so Cov(X) = I. For A E C?, and p E Cn, it follows that Y = AX + p has a 
complex normal distribution and 
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Since every nonnegative definite Hermitian matrix can be written as AA* 
for some A E en,  we have produced a complex normal distribution on @n 
with an arbitrary mean vector p € an and an arbitrary nonnegative definite 
Hermitian covariance matrix. However, it still must be shown that, if X and 
2 in Cn are complex normal with GX = 6 2  and Cov(X) = C O V ( ~ ) ,  then 
C(X) = C(2) .  The proof of this assertion is left to the reader. Given this 
fact, it makes sense to speak of the complex normal distribution on an with 
mean vector p and covariance matrix H as this specifies a unique probabil- 
ity distribution. If X has such a distribution, the notation 

is used. Writing X = U + iV, it is useful to describe the joint distribution of 
U and V when C(X) = @N(p, H) on Cn. First, consider 2 = 0 + i p  where 
C ( 2 )  = CN(p, I). Then the coordinates of 2 are independent and it 
follows that 

where p = p, + ip2. For a general nonnegative definite Hermitian matrix 
H, write H = AA* with A E (2,. Then 

Since 

and 

where A = B + iC, it follows that 

But H = Z + iF  where Z is positive semidefinite, F is skew-symmetric, and 
the real matrix 



is positive semidefinite. Since H = AA*, {H) = {A){A)', and therefore, 

In summary, we have the following result. 

Proposition 9.16. Suppose C(X) = CN( y, H )  and write X = U + iV, p = 

y,  + ip2, and H = 2 + iF.Then 

Conversely, with U and V jointly distributed as above, set X = U + iV, 
y = p, + iy2, and H = 2 + iF. ThenC(X) = m ( p ,  H). 

The above proposition establishes a one-to-one correspondence between 
n-dimensional complex normal distributions, say O ( y ,  H), and 2n-dimen- 
sional real normal distributions with a special covariance structure given by 

where H = Z + iF. Given a sample of independent complex normal ran- 
dom vectors, the above correspondence provides us with the option of either 
analyzing the sample in the complex domain or representing everything in 
the real domain and performing the analysis there. Of course, the advantage 
of the real domain analysis is that we have developed a large body of theory 
that can be applied to this problem. However, this advantage is a bit 
illusory. As it turns out, many results for the complex normal distribution 
are clumsy to prove and difficult to understand when expressed in the real 
domain. From the point of view of understanding, the proper approach is 
simply to develop a theory of the complex normal distribution that parallels 
the development already given for the real normal distribution. Because of 
space limitations, this theory is not given in detail. Rather, we provide a 
brief list of results for the complex normal with the hope that the reader can 
see the parallel development. The proofs of many of these results are minor 
modifications of the corresponding real results. 

Consider X E Cp such that C(X) = CN(y, H) where H is nonsingular. 
Then the density of X with respect to Lebesgue measure on CP is 
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When H = I, then 

With this result and the spectral theorem for Hermitian matrices (see 
Halmos, 1958, Section 79), the distribution of quadratic forms, say X*AX 
for a Hermitian, can be described in terms of linear combinations of 
independent noncentral chi-square random variables. 

As in the real case, independence of jointly complex normal random 
vectors is equivalent to the absense of correlation. More precisely, if 
C ( X )  = QN(p, H )  and if A : q x p and B : r x p are complex matrices, 
then AX and BX are independent iff AHB* = 0. In particular, if X is 
partitioned as 

and H is partitioned similarly as 

where Hjk isp, X pk ,  then XI and X2 are independent iff H12 = 0. When H2, 
is nonsingular, this implies that XI  - H 1 , H ~ ' X ,  and X2 are independent. 
This result yields the conditional distribution of XI  given X,, namely, 

where H ,,., = H I ,  - H,,H;'H,, and p, = G X , ,  j = 1,2. 
The complex Wishart distribution arises in a natural way, just as the real 

Wishart distribution did. 

Definition 9.3. A p x p random Hermitian matrix S has a complex Wishart 
distribution with parameters H ,  p,  and n if 

where XI,. . . , X,, E Cp are independent with 

C ( 5 )  = CN(0, H ) .  
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In such a case, we write 

c ( S )  = Cw(H,  P, n). 

In t h s  definition, p is the dimension, n is the degrees of freedom and H is a 
p x p nonnegative definite Hermitian matrix. It is clear that S is always 
nonnegative definite and, as in the real case, S is positive definite with 
probability one iff H is positive definite and n 2 p. Whenp = 1 and H = 1, 
it is clear that 

Further, complex analogues of Proposition 8.8, 8.9, and 8.13 show that if 
C(S) = W(H, p, n) with n >, p and H positive definite, and if C(X) = 

N(0, H )  with X and S independent, then 

We now turn to a brief discussion of one special case of the complex 
MANOVA problem. Suppose XI,. . . , X, E QP are independent with 

and assume that H > 0-that is, H is positive definite. The joint density of 
XI,. . . , X, with respect to 2np-dimensional Lebesgue measure is 

= ~ - ~ p ~ H ~ e x p  - (X, - p ) * ~ ( q  - Y ) ]  [ j = 1  

where X = n-'ZT and tr denote the trace. Here, X is the np-dimensional 
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vector in QnP consisting of X I ,  X,, . . . , Xn. Setting 

n 

s = c ( x ,  - x)(x, - x ) * ,  
j= 1 

we have 

It follows that ( x ,  S )  is a sufficient statistic for this parametric family and 
f i  = x i s  the maximum likelihood estimator of p. Thus 

A minor modification of the argument given in Example 7.10 shows that 
when S > 0 ,  p(X(fi,  H )  is maximized uniquely, over all positive definite H, 
at H = n-IS. When n >, p + 1, then S is positive definite with probability 
one so in this case, the maximum likelihood estimator of H is H = n-IS. If 
p = 0, then 

where 

Obviously, p (  XIO, H) is maximized at H = n- '3. Thus the likelihood ratio 
test for testing p = 0 versus p * 0 rejects for small values of 

As in the real case, X and S are independent, 

and 



ADDITIONAL EXAMPLES OF LINEAR MODELS 

Setting Y = fix, 

so the likelihood ratio test rejects for large values of Y*S-'Y = T2. Argu- 
ments paralleling those in the real case can be used to show that 

where 6 = np*H-Ip is the noncentrality parameter in the F distribution. 
Further, the monotone likelihood ratio property of the F- distribution can 
be used to show that the likelihood ratio test is uniformly most powerful 
among tests that are invariant under the group of complex linear transfor- 
mations that preserve the above testing problem. 

In the preceeding discussion, we have outlined one possible analysis of 
the one-sample problem for the complex normal distribution. A theory for 
the complex MANOVA problem similar to that given in Section 9.1 for the 
real MANOVA problem would require complex analogues of many results 
given in the first eight chapters of this book. Of course, it is possible to 
represent everything in terms of real random vectors. This representation 
consists of an n X 2 p  random matrix Y E C,,, , where 

As usual, Z is n x r of rank r and B : r X 2 p  is a real matrix of unknown 
parameters. The distinguishing feature of the model is that 9 is assumed to 
have the form 

where Z : p  x p is positive definite and F: p  x p  is skew-symmetric. For 
reasons that should be obvious by now, 'k's of the above form are said to 
have complex covariance structure. This model can now be analyzed using 
the results developed for the real normal linear model. However, as stated 
earlier, certain results are clumsy to prove and more difficult to understand 
when expressed in the real domain rather than the complex domain. 
Although not at all obvious, these models are not equivalent to a product of 
real MANOVA models of the type discussed in Section 9.1. 

9.6. ADDITIONAL EXAMPLES OF LINEAR MODELS 

The examples of this section have been chosen to illustrate how condition- 
ing can sometimes be helpful in finding maximum likelihood estimators and 
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also to further illustrate the use of invariance in analyzing linear models. 
The linear models considered now are not products of MANOVA models 
and the regression subspaces are not invariant under the covariance trans- 
formations of the model. Thus finding the maximum likelihood estimator of 
mean vector is not just a matter of computing the orthogonal projection 
onto the regression subspace. For the models below, we derive maximum 
likelihood estimators and likelihood ratio tests and then discuss the problem 
of finding a good invariant test. 

The first model we consider consists of a variation on the one-sample 
problem. Suppose XI,. . . , Xn are independent with C(4) = N(p, Z) where 
Xi E RP, i = 1,. . . , n. As usual, form the n x p matrix X whose rows are 
XIf, i = 1,. . . , n.  Then 

C(X) = ~ ( e p ' ,  In 8 Z) 

where e E Rn is the vector of ones. When p and Z are unknown, the linear 
model for X is a MANOVA model and the results in Section 9.1 apply 
directly. To transform this model to canonical form, let r be an n X n 
orthogonal matrix with first row e'/ fi. Setting Y = r X  and P = G p ' ,  

where el is the first unit vector in Rn and P E Cp, ,. Partition Y as 

where Yl E ep,l ,  Y2 E Cp, ,, and m = n - 1. Then 

and 

For testing H,: p = 0, the results of Section 9.1 show that the test that 
rejects for large values of Y,(Y;Y,)-lY; (assuming m > p) is equivalent to 
the likelihood ratio test and this test is most powerful within the class of 
invariant tests. 

We now turn to a testing problem to whlch the MANOVA results do not 
apply. With the above discussion in mind, consider U E Cp, , and Z E eP,, 
where U and Z are independent with 
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and 

C ( Z )  = N(0,  I,  @ 2) .  

Here, f l  E CP:, and E  > 0 is a completely unknown p X p covariance 
matrix. Partition p into /3, and p ,  where 

Consider the problem of testing the null hypothesis H,: P I  = 0  versus 
H I  : P I  .+ 0 where p, and E  are unknown. Under H,, the regression sub- 
space of the random matrix 

and the set of covariances is 

It is easy to verify that Mo is not invariant under all the elements of y so the 
maximum likelihood estimator of /3, under Ho cannot be found by least- 
squares (ignoring 2) .  To calculate the likelihood ratio test for Ho versus HI, 
it is convenient to partition U  and Z  as 

U  = (U , ,  U2) ,  . E C P  i = 1 , 2  

and then condition on U, and Z , .  Since U  and Z  are independent, the joint 
distribution of U and Z is specified by the two conditional distributions, 
C (U2 IU, ) and C ( Z ,  I Z ,  ), together with the two marginal distributions, C (U, )  
and C ( Z , ) .  Our results for the normal distribution show that these distribu- 
tions are 

C(U2IUl) = N(P2 + ( U ,  - P1)El11~12, ~ 2 2 . 1 )  
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where Z is partitioned as 

withZ,, beingp, Xp,, i ,  j =  1,2. As usual, Z,,., = Z,, - Z2,Z,'Z12. By 
Proposition 5.8, the reparameterization defined by q,, = Z,,,  \k,, = Zfi1ZI2, 
and \k,, = Z,,,, is one-to-one and onto. To calculate the likelihood ratio 
test for Ho versus HI, we need to find the maximum likelihood estimators 
under Ho and H I .  

Proposition 9.17. The likelihood ratio test of Ho : PI = 0 versus H I  : PI t 0 
rejects Ho if the statistic 

is too large. Here, S = Z'Z and 

where S,, is pi X p,. 

Proof: Let fl(UIIPl, q l l )  be the density of C(U,), let f2(U21Ul, PI, P2, 
PI,,  \k,,) be the conditional density of C(U21Ul), let f,(Z,l\k,,) be the 
density of C(Z,), and let f,(Z,IZ,, 'PI,, *22) be the density of C(Z21Z,). 
Under H,, PI = 0 and the unique value of p2 that maximizes 
f2(U21UI, 0, P2, q12, *22) is 

for \El, fixed. It is clear that 

where the symbol iu means "is proportional to." We now maximize with 
respect to *,,. With P2 = b2, \kI2 occurs only in the density of Z2 given Z,. 
Since C(Z21Z,) = N(Z,\E12, I, 8 it follows from our treatment of the 
MANOVA problem that 
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and 

f 4 ( ~ 2 1 ~ 1 , @ 1 2 ,  *22) Ci 1*221-~/~ex~[-4 tr~22.1*22'1. 

Since PI = 0, it is now clear that 

1 1 
$11 = [ z i z ,  + u;ull = --[S,, m + l  + u;ul] 

and 

Substituting these values into the product of the four densities shows that 
the maximum under H, is proportional to 

Under the alternative HI ,  we again maximize the likelihood function by 
first noting that 

a = U2 - <U, - PI)*,, 

maximizes the density of U2 given U,. Also, 

With this choice of p2, PI occurs only in the density of U, so p, = U, 
maximizes the density of Ul and 

It now follows easily that the maximum likelihood estimators of \kI2, q , , ,  
and \k,, are 
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Substituting these into the product of the four densities shows that the 
maximum under HI is proportional to 

Hence the likelihood ratio test will reject Ho for small values of 

Thus the likelihood ratio test rejects for large values of 

and the proof is complete. 

We now want to show that the test derived above is a uniformly most 
powerful invariant test under a suitable group of affine transformations. 
Recall that U and Z are independent and 

The problem is to test Ho:  P I  = 0  where /3 = ( P I ,  P 2 )  with P, E C P , , , ,  
i = 1,2. Consider the group G with elements g = ( r ,  A ,  (0, a)) where 

and 

where A,, is pi X p, and A,,  is nonsingular for i = 1,2. The action of 
g = ( T ,  A , ( ( ) ,  a))  is 

The group operation, defined so G acts on the left of the sample space, is 

It is routine to verify that the testing problem is invariant under G. Further, 
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it is clear that the induced action of G on the parameter space is 

(r ,  A, (0, a ) ) (P ,  Z )  = (PA' + (0, a ) ,  AZA'). 

To characterize the invariant tests for the testing problem, a maximal 
invariant under the action of G on the sample space is needed. 

Proposition 9.18. In the notation of Proposition 9.17, a maximal invariant 
is 

ProoJ: As usual, the proof consists of showing that A = UIS,'U; is an 
orbit index. Since m 2 p, we deal with those Z's that have rank p, a set of 
probability one. The first claim is that for a given U E eP,, and Z E C P , ,  of 
rank p,  there exists a g E G such that 

where E ;  = (1,0,. . . , 0) E f p ,  and 

Write Z = q V  where \k E q, , and V is a p x p upper triangular matrix so 
S = Z'Z = V'V. Then consider 

where ti E O p t ,  i = 1,2, and note that A is of the form 

since (Vf)- ' is lower triangular. The values of t i ,  i = 1,2, are specified in a 
moment. With this choice of A, 
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which is in %, , for any choice of 5 ,  E 8pz, i = 1,2. Hence there is a r E 0, 
such that 

TZA' = Z,.  

Since V is upper triangular, write 

with V i j  being pi x pj. Then 

As S = V'V and V E G:, it follows that S,' = V1'(V")' so the vector 
U,V" has squared length A = u,v"(v")'U; = U,S,  'u;. Thus there exists 
5;  E OPl such that 

u , v " [ ;  = A ' l 2 ~ ;  

where Ei = (1 ,0 , .  . . , 0 )  E CPI, ,. Now choose a E Cpz, , to be 

a = U,V125; - U 2 ~ 2 2 ( ;  

UA' + ( 0 ,  a )  = 

The above choices for A, 5 , ,  r, and a yield g = (I', A, (0,  a ) ) ,  which satisfies 

and this establishes the claim. To show that 

is maximal invariant, first notice that A is invariant. Further, if 
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both yield the same value of A, then there exists gi E G such that 

Therefore, 

and A is maximal invariant. 
To show that a uniformly most powerful G-invariant test exists, the 

distribution of A = U,S;'U; is needed. However, 

and U, and S , ,  are independent. From Proposition 8.14, we see that 

where 8 = P I X ;  'Pi and the null hypothesis is H, : 8 = 0. Since the non- 
central F distribution has a monotone likelihood ratio, the test that rejects 
for large values of A is uniformly most powerful within the class of tests 
based on A. Since all G-invariant tests are functions of A, we conclude that 
the likelihood ratio test is uniformly most powerful invariant. 

The final problem to be considered in this chapter is a variation of the 
problem just solved. Again, the testing problem of interest is Ho : P I  = 0 
versus H I  : P I  * 0, but it is assumed that the value of j3, is known to be zero 
under both Ho and H,. Thus our model for U and Z is that U and Z are 
independent with 

where U E C,,,, /?, E C,,, ,, Z E ep, m, and m > p. In what follows, the 
likelihood ratio test of Ho versus H,  is derived and an invariance argument 
shows that there is no uniformly most powerful invariant test under a 
natural group that leaves the problem invariant. As usual, we partition U 
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into U, and U2, E f?p , , l ,  and Z is partitioned into Zl $,,,, and 

2 2  tp*,, SO 

Also 

and S , , . ,  = S, ,  - SI2S,;'S2,. 

Proposition 9.19. The likelihood ratio test of Ho versus HI rejects for large 
values of the statistic 

Proofi Under Ho, 

so the maximum likelihood estimator of 2 is 

1 e = -  1 m + l  (Z'Z + U'U) = -(s m + l  + U'U) 

The value of the maximized likelihood function is proportional to 

A ,  l e l - ( m +  1)/2. 

Under HI, the situation is a bit more complicated and it is helpful to 
consider conditional distributions. Under HI, 
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and 

The reparameterization defined by \k,, = Z, , . , ,  \k,, = z&~z,,, and \k,, = 

ZZ2 is one-to-one and onto. Let f,(U,IU2, PI ,  q2,, 'P,,), f2(U21'k,,), 
f3(Z1 1Z2, \k2,, \kl ,), and f4(Z2l\k,,) be the density functions with respect to 
Lebesgue measure dU, dU2 dZ, dZ2 of the four distributions above. It is 
clear that 

maximizesf,(U,IU2, P,,  andfl(UlIU2, PI ,  %,, \El,) ff Iql,1-'/2. With 
B2 substituted into f , ,  the parameter \k,, only occurs in the density 
f,(Z,IZZ, $1, '+I,). Since 

our results for the MANOVA model show that 

maximizes f3(Z,IZ2, \k2,, q , , )  for each value of \k, ,. When $2, is substituted 
into f,, an inspection of the resulting four density functions shows that the 
maximum likelihood estimators of \k,, and \k,, are 

and 

Under HI,  this yields a maximized likellhood function proportional to 

Therefore the likellhood ratio test rejects H,, for small values of 
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However, 

IS22 + W 2 l  = 1 s 2 2 1 ( 1  + u2s2;'u;) 

and 

Thus 

Now, the identity 

us-'u' = (u, - u ~ s ~ ; ~ s ~ ~ ) s ~ ! ~ ( u ~  - u2s2;'s2,)' + U2SG1U; 

follows from the problems in Chapter 5. Hence rejecting for small values of 

where A is given in the statement of ths  proposition, is equivalent to 
rejecting for large values of A. 

The above testing problem is now analyzed via invariance. The group G 
consists of elements g = (I?, A )  where r E Om and 

The group action is 

and group composition is 

( I - , ?  Al)(r2> A21 = (r Ir2 ,AlA2) .  

The action of the group on the parameter space is 

( r ,  A ) (P l ,  2 )  = (P ,A{ , ,  AZA'). 

It is clear that the testing problem is invariant under the group G. 
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Proposition 9.20. Under the action of G on the sample space, a maximal 
invariant is the pair (W,, W,) where 

and 

w2 = u2s~lu;. 

A maximal invariant in the parameter space is 

Proof. As usual, the method of proof is a reduction argument that provides 
a convenient index for thc orbits in the sample space. Since m > p, a set of 
measure zero can be deleted from the sample space so that Z has rank p on 
the complement of this set. Let 

and set u, = E; E Cp, and u, = (0,. . . , 0,1,0,. . . , 0) E CP,, where the one 
occurs in the (p ,  + 1) coordinate of u,. Now, given U and 2, we claim that 
there exists a g = (r, A )  E G such that 

where 

x: = (u1 - ~2s1;'s21)sl1.2(~1 - u2sG1s21Y 
and 

x,' = u2s,-,'u;. 

To establish thls claim, write Z = \kT where \k E $, , and T E Gf is a 
p x p lower triangular matrix. A modification of the proof of Proposition 
5.2 establishes this representation for Z. Consider 
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where& E Op,, i = 1,2, SO[ E Op and 

Thus for any such 5 and r E O,, ( r ,  A)  E G. Also, r can be chosen so that 

rZA' = Z ,  E Gp, , . 

Now, 

where Ti' is pi X pj and 

Since 
S = Z'Z = T'T, 

a bit of algebra shows that 

( u , T I I  + u , T ~ ~ ) ( u , T ~ ~  + u,T,I)' 

= (u, - u,s;,'s,,)s,!,(u, - u2s;,ls2,)' = x: 
and 

( U , T ~ ~ ) ( U , T ~ ~ ) '  = u2s-$u; = x2& 

Let 2, = (1,0,. . . , 0) E C p , , ,  and 2, = (1,0,. . . , 0) E Cp,,,. Since the vectors 
X,Z, and U,T" + U2T2' have the same length, there exists E Op,  such 
that 

(u,T" + u , T ~ ~ ) ( ;  = X1EI. 

For similar reasons, there exists a 6;  E Op2 such that 

U2T2,5; = X2Z2. 

With these choices for 5 ,  and t , ,  
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Thus there is a g = (r, A )  E G such that 

Thls establishes the claim. It is now routine to show that (XI, X,) = 

( X , ( U ,  Z ) ,  X,(U, 2 ) )  is an invariant function. To show that ( X I ,  X,) is 
maximal invariant, suppose (U ,  2 )  and (0, 2 )  yield the same ( X , ,  X,) 
values. Then there exist g and g in G such that 

This shows that ( X , ,  X,) is maximal invariant. Since the pair (W, ,  W,) is a 
one-to-one function of ( X I ,  X,), it follows that ( W , ,  W,) is maximal in- 
variant. The proof that 6 is a maximal invariant in the parameter space is 
similar and is left to the reader. 

In order to suggest an invariant test for Ho : P I  = 0 based on (W,, W,), 
the distribution of ( W , ,  W,) is needed. Since 

and 

with S and U independent, 

Therefore, W ,  is an ancillary statistic as its distribution does not depend on 
any parameters under Ho or H I .  We now compute the conditional distri- 
bution of W, given W,. Proposition 8.7 shows that 
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and 

C(S22) = W(Z22, P,, m )  

where S,,. ,  is independent of (S,,, S,,). Thus 

and conditional on (S,,, U,), 

Further, U, and U, S,;'S,, are conditionally independent-given (S,, , U, ). 
Therefore, 

Since S,, . , is independent of all other variables under consideration, and 
since 

it follows from Proposition 8.14 that 

where 6 = P,Z;!,P;. However, the conditional distribution of W, given 
(S,,, U,) depends on (S,,, U,) only through the function W, = u,s,;'u;. 
Thus 

and 

C(W2) = F p 2 , m - p 2 + ~ .  
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Further, the null hypothesis is H, : 6 = 0 versus the alternative H,  : 6 > 0. 
Under H,, it is clear that W ,  and W2 are independent. The likelihood ratio 
test rejects H, for large values of W, and ignores W,. Of course, the level of 
this test is computed from a standard F-table, but the power of the test 
involves the marginal distribution of W ,  when 6 > 0. This marginal distri- 
bution, obtained by averaging the conditional distribution C(W,IW,) with 
respect to the distribution of W2,  is rather complicated. 

To show that a uniformly most powerful test of H, versus H,  does not 
exist, consider a particular alternative 6 = 6, > 0. Let fl(wIIw2, 6 )  denote 
the conditional density function of W ,  given W2 and let f,(w,) denote the 
density of W2. For testing H,: 6  = 0 versus HI : 6 = 6,, the Neyman- 
Pearson Lemma asserts that the most powerful test of level a is to reject if 

where ~ ( a )  is chosen to make the test have level a. However, the rejection 
region for this test depends on the particular alternative 6, so a uniformly 
most powerful test cannot exist. Since W2 is ancillary, we can argue that the 
test of H, should be carried out conditional on W,, that is, the level and the 
power of tests should be compared only for the conditional distribution of 
W ,  given W,. In this case, for w2 fixed, the ratio 

is an increasing function of w, so rejecting for large values of the ratio (w, 
fixed) is equivalent to rejecting for W ,  > k. If k is chosen to make the test 
have level a ,  this argument leads to the level a likelihood ratio test. 

PROBLEMS 

1. Consider independent random vectors X,, with C(X,,) = N(p , ,  8 )  for 
J = 1,. . . , n ,  and i = 1,. . . , k. For scalars a, , .  . . , ak consider testing 
H,: Za,p, = 0 versus H, : Za,p, * 0. With T~ = 8a?n;' ,  let bl = 

~ - ' a , ,  set x = n;'Z,X,, and let S, = Z,(X,, - X ) ( X , ,  - x) .  Write 
this problem in the canonical form of Section 9.1 and prove that the 
test that rejects for large values of A = ( Z , b , x ) ' ~ - ' ( Z , b , x )  is UMP 
invariant. Here S = XIS,. What is the distribution of A under H,? 

2. Given Y E C and X E C k ,  of rank k ,  the least-squares estimate 
f ' n  B = ( X I X ) -  X'Y of B can be characterized as the B that rnini- 



398 INFERENCE FOR MEANS IN MULTIVARIATE LINEAR MODEL 

rnizes tr(Y - XB)'(Y - XB) over all k X p matrices. 

(i) Show that for any k x p matrix B, 

(ii) A real-valued function + defined for p X p nonnegative definite 
matrices is nondecreasing if +(S,) < +(S, + S2) for any S, and 
S2 (s,'> 0, i = 1,2). Using (i), show that, if + is nondecreasing, 
then +((Y - XB)'(Y - XB)) is minimized by B = B. 

(iii) For A that is p x p and nonnegative definite, show that +(S) = 

tr AS is nondecreasing. Also, show that +(S) = det(A + S )  is 
nondecreasing. 

(iv) Suppose +(S) = + ( r S r f )  for S 2 0 and r E 8, so +(S) can be 
written as +(S) = #(h(S)) where X(S) is the vector of ordered 
characteristic roots of S. Show that, if # is nondecreasing in each 
argument, then + is nondecreasing. 

3. (The MANOVA model under non-normality.) Let E be a random 
n x p matrix that satisfies C(TE4') = C(E) for all r E 8, and # E 6,. 
Assume that Cov(E) = In @ I, and consider a linear model for Y E 

C,, generated by Y = ZB + EA' where Z is a fixed n x k matrix of 
rank k, B is a k x p matrix of unknown parameters, and A is an 
element of GI,. 

(i) Show that the distribution of Y depends on (B, A) only through 
(B, AA'). 

(ii) Let M = (pip = ZB, B E Cp,k) and y = ( In  @ 212 > 0, Z is p 
x p). Show that (M, y )  serves as a parameter space for the linear 
model (the distribution of E is assumed fixed). 

(iii) Consider the problem of testing H, : RB = 0 where R is r X k of 
rank r. Show that the reduction to canonical form given in 
Section 9.1 can be used here to give a model of the form 

where p, is r x p ,  p2 is (k - r )  x p ,  p3 is (n - k) x p ,  B,  is 
r X p, B, is (k - r)  X p, B is n X p ,  and A is as in the original 
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model. Further, E and B have the same distribution and the null 
hypothesis is H,: B, = 0. 

(iv) Now, assume the form of the model in (9.6) and drop the tildas. 
Using the invariance argument given in Section 9.1, the testing 
problem is invariant and any invariant test is a function of the t 
largest eigenvalues of Y, (Y;Y,)- 'Y; where t = min{r, p). Assume 
n - k > p and partition E as Y is partitioned. Under H,, show 
that 

(v) Using Proposition 7.3 show that W has the same distribution no 
matter what the distribution of E as long as C ( r E )  = C(E) for 
all r E On and E, has rank p with probability one. T h s  distri- 
bution of W is the distribution obtained by assuming the ele- 
ments of E are i.i.d. N(0,l). In particular, any invariant test of 
H, has the same distribution under H, as when E is N(0, In 8 I,). 

4. When Y, is N(B,, I, 8 2 )  and Y, is N(0, I, 8 2 )  with m 2 p + 2, 
verify the claim that 

r 
GY;Y,(Y;Y~)-~ = I +  B;B,L-l. 

m - p - l p  m - p - 1  

5. Consider a data matrix Y: n X 2 and assume C(Y) = N(ZB, I, 8 8 )  
where Z is n x 2 of rank two so B is 2 x 2. In some situations, it is 
reasonable to assume that a, ,  = a,,-that is, the diagonal elements of 
8 are the same. Under this assumption, use the results of Section 9.2 to 
derive the likelihood ratio test for H, : b,, = b,,, b,, = b,, versus 
H, : b,,  * b,, or b,, * b,,. Is this test UMP invariant? 

6. Consider a "two-way layout" situation with observations qj, i = 

1,. . . , m and j = 1,. . . , r. Assume qj  = p + a i  + P, + eij where p, ai, 
and p, are constants that satisfy 8 a i  = Z/3, = 0. The eij are random 
errors with mean zero (but not necessarily uncorrelated). Let Y be the 
m X n matrix of Ti's, u, be the vector of ones in Rm, u, be the vector 
of ones in Rn, a E Rm be the vector with coordinates a,, and p E Rn 
be the vector with coordinates b,. Let E be the matrix of eij's. 

(i) Show the model is Y = pu,u; + au; + u,P' + E in the vector 
space en,,. Here, a E Rm with a'u, = 0 and /3 E Rn with P'u, 
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= 0. Let 

Also, let ( . , . ) be the usual inner product on C,, ,. 

(ii) Show MI 1 M2 I M, I M I  in (C,, ,, ( - , .)). 
Now, assume Cov(E) = I, @ A where A = yP + SQ with P = 

n-'u2u;, Q = I - P, and y > 0 and S > 0 are unknown parameters. 

(iii) Show the regression subspace M = M I  @ M2 @ M, is invariant 
under each I, @ A.  Find the Gauss-Markov estimates for p, a,  
and /?. 

(iv) Now, assume E is N(0, I, €4 A). Use an invariance argument to 
show that for testing Ho : a = 0 versus HI : a * 0, the test that 
rejects for large values of W = 1 1  PM,Y112/11QMY(12 is a UMP 
invariant test. Here, Q, = I - P,. What is the distribution 
of W? 

The regression subspace for the MANOVA model was described as 
M = {pip = ZB, B E C,,,) G Cp,, where Z is n X k of rank k. The 
subspace of M associated with the null hypothesis Ho:  RB = 0 (R is 
r X r of rank r )  is o = {pip = ZB, B E Cp, k ,  RB = 0). We know that 
P, = P, 8 I, where P, = Z(ZfZ)-'z' (P, is the orthogonal projec- 
tion onto M in (C,, ,, ( - , . ))). This problem gives one form for P,. Let 
W = Z(ZfZ)-'R . 
(i) Show that W has rank r. 

Let P, = W(WfW)- I W' so P, @ I, is an orthogonal projection. 

(ii) Show that %(P, @ I,) c M - o where M - o = M n oL . 
Also, show dim(%(P, @ I,)) = rp. 

(iii) Show that dim o = ( k  - r)p.  
(iv) Now, show that P, 8 I, is the orthogonal projection onto 

M - o so P, 8 I, - P, 8 I, is the orthogonal projection on- 
to o. 

8. Assume XI,. . . , X, are i.i.d. from a five-dimensional N(0, 2 )  where Z 
is a cyclic covariance matrix ( 2  is written out explicitly at the 
beginning of Section 9.4). Find the maximum likelihood estimators of 
u2> P I ,  P2. 
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9. Suppose XI,. . . , X,, are i.i.d. N(0, \k) of dimension 2p and assume \E 
has the complex form 

Let S = Z;X,q and partition S as \k is partitioned. show that 
3 = (2n)-'(s,, + S,,) and $ = (2n)-'(S,, - S,,) are the maximum 
likelihood estimates of Z and F. 

10. Let XI,. . . , X, be i.i.d. N(p, Z)p-dimensional random vectors where p 
and Z are unknown, Z > 0. Suppose R is r x p of rank r and consider 
testing H, : Rp = 0 versus HI : Rp * 0. Let = (l/n)ZyX, and S = 

C;(X, - X)(4 - X)'. Show that the test that rejects for large values 
of T = (R~)'(RSR')- '(RX) is equivalent to the likelihood ratio test. 
Also, show this test is UMP invariant under a suitable group of 
transformations. Apply this to the problem of testing p, = p, = . . . 
= pp where p,,. . . , pp are the coordinates of p. 

11. Consider a linear model of the form Y = ZB + E with Z :  n X k of 
rank k, B  : k X p unknown, and E a matrix of errors. Assume the first 
column of Z  is the vector e of ones (the regression equation has the 
constant term in it). Assume Cov(E) = A(p) 8 Z where A(p) has ones 
on the diagonal and p off the diagonal (-  l / ( n  - 1) < p < 1). 

(i) Show that the GM and least-squares estimates of B  are the same. 

(ii) When C(E) = N(0,  A(p) 8 Z) with Z and p unknown, argue via 
invariance to construct tests for hypotheses of the form RB = 0 
where R is r x k - 1 of rank r and B : ( k  - 1) x p consists of 
the last k - 1 rows of B. 

NOTES AND REFERENCES 

1. The material in Section 9.1 is fairly standard and can be found in many 
texts on multivariate analysis although the treatment and emphasis may 
be different than here. The likelihood ratio test in the MANOVA setting 
was originally proposed by Wilks (1932). Various competitors to the 
likelihood ratio test were proposed in Lawley (1938), Hotelling (1947), 
Roy (1953), and Pillai (1955). 

2. Arnold (1973) applied the theory of products of problems (which he had 
developed in his Ph.D. dissertation at Stanford) to situations involving 
patterned covariance matrices. This notion appears in both this chapter 
and Chapter 10. 
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3. Given the covariance structure assumed in Section 9.2, the regression 
subspaces considered there are not the most general for which the 
Gauss-Markov and least-squares estimators are the same. See Eaton 
(1970) for a discussion. 

4. Andersson (1975) provides a complete description of all symmetry 
models. 

5. Cyclic covariance models were first studied systematically in Olkin and 
Press (1969). 

6. For early papers on the complex normal distribution, see Goodman 
(1963) and Giri (1965a). Also, see Andersson (1975). 

7. Some of the material in Section 9.6 comes from Giri (1964, 1965b). 

8. In Proposition 9.5, when r = 1, the statistic A ,  is commonly known as 
Hotelling's T2 (see Hotelling (193 1)). 
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