
CHAPTER 10 

The New Likelihoods and 
the N eyman-Scott Problems 

10.1. Introduction. The traditional method of using the likelihood to 
make inference about the parameter of interest is to use the so-called profile 
likelihood, which is the likelihood maximized with respect to the nuisance 
parameters. It has been known for a long time that this is a wrong thing to do 
if there are many nuisance parameters. The Neyman-Scott examples provide 
a dramatic example of this. In one of them, maximizing the profile likelihood, 
which is the same thing as using the mle, provides an inconsistent estimate 
of the parameter of interest. 

Two modifications of profile likelihood have been proposed recently. Condi­
tional likelihood, owing to Cox and Reid (1987) and adjusted likelihood, due 
to McCullagh and Tibshirani (1990), both try to modify the profile likelihood 
so that it may be expected to behave more like an honest likelihood. Both 
have been tried on the two Neyman-Scott examples we discuss here. 

In Section 10.2 we introduce and briefly study these new likelihoods by 
methods of higher order asymptotics. In Section 10.3 we introduce two 
Neyman--8cott examples, as well as a general formulation, and introduce 
estimates which are FOE in a sense appropriate for these problems. We then 
apply the new likelihoods to these examples and note that they fail to provide 
FOE estimates. We suggest that they are not the right answers to these 
problems. A modified version of the general Neyman--Scott problem is posed 
for which higher order asymptotics seems to be the right tool and the two new 
likelihoods may do better than profile likelihood. 

10.2. Conditional and adjusted likelihood. We consider e = (&1, 02 ), 

where &1 is the parameter of interest and &2 is the nuisance parameter. We 
will require &1 and &2 to be orthogonal and so, as mentioned in Chapters 8 
and 9, 81 will need to be real valued. 
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Let L(81 , 82 ) = p(X1 , X2 , ... , X,l81 , 02 ). The profile likelihood is 

(10.1) Lp( 81) = supL( 81, 8z) = L( 81, Oz( 01) ), 
112 

where Oz(01) is the mle for 02 given 81 is known. 
To introduce the conditional likelihood, introduce a statistic T (of dimen­

sion n- d 2 , where d 2 is the dimension of 02 ) such that (T, 02(81)) provides a 
one-to-one transformation of (X1, X2 , .•• , X,) for each 81. Let the density of 
(T, 02(01)) be denoted by q(t, 02(01)181, 82 ). Let the conditional density ofT 
given 02(01 ) be q(tiB2(81), 81, 82 ). Use of this tries to correct for the substitu­
tion of 02(0 1 ) for 02 in the profile likelihood. The reason for orthogonality is to 
reduce the undesirable effect of changes in the conditioning statistic 02( 81) 

with 01. 

By two applications of the magic formula (Chapter 8), Cox and Reid (1987) 
show the logarithm of conditional likelihood q(t! etc.) can be approximated by 

(10.2a) logp(X1,X2 , ... ,X,I01 ,02 (01)) + ~lognb(01 ,02 (8 1 )) =Lc(01 ), 

where 

We refer to (10.2a) as the (approximate) conditional likelihood due to Cox 
and Reid. 

McCullagh and Tibshirani (1990) also start with the profile likelihood, and 
begin by adjusting the corresponding score function 

(J 

(10.2b) 081 log Lp( 01) = U( 81) 

[see (10.1)] to a new function of 81 so as to have mean zero (as a score 
function derived from an honest likelihood function should). This is done by 
subtracting the expectation of U(81) under (81, 82 ). Finally, there is an 
adjustment for the variance also, the need for which is less clear. After these 
adjustments, we end up with 

(10.3) 

where 

(10.4) 

V ( X 1 , X 2 , ... , X, , 81 ) 

w( o,) ~ [-E( :o~ log LP( o,) 10,, &,( o,)) 

+ ~E{U( H1)IH1, Oz( &1) }] 
/)(J 1 

x [var{U( 81)181, 02 ( 81) }] - 1 . 
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The integral 

(10.5) 

is the new adjusted (log profile) likelihood of McCullagh and Tibshirani. If we 
maximize th~ profile likelihood, we get the mle 81 , and if we test H 0 : 81 = 010 

by 2{log L/81)- log L/810 )}, we get the likelihood ratio test. If we replace 
the profile likelihood by L 0 we get a maximum conditional likelihood esti­
mate 81" and a conditional likelihood ratio test. The estimate {ja and the 
adjusted likelihood ratio test are similarly defined. 

Under regularity conditions [see Mukerjee (1992) and Ghosh and Mukerjee 
(1994)], the following facts have been proved by the delta method in the cited 
references. We recall that 81 and 82 are orthogonal, as may be assumed 
without loss of generality for scalar 81. 

1. The conditional likelihood ratio test has the same power as the likelihood 
ratio test with a known nuisance parameter up to o(n 112 ) for the local 
(Pitman) alternatives of the form 0 1 = 810 + n 11281• This is not true for 
the usual (profile) likelihood ratio test. 

2. The conditional likelihood ratio test admits of Bayesian and frequentist 
Bartlett correction, and matching of probabilities as in Section 8.4 can he 
done with the conditional likelihood ratio statistic replacing the likelihood 
ratio statistic. For Example 8.2, the right invariant Haar measure still 
satisfies the resulting equation for the prior. 

3. The adjusted likelihood ratio test admits of Bartlett correction, hut, in 
general, we may not be able to define an adjusted likelihood if 81 is 
multidimensional since the differential equations arising from adjustment 
over different components of 01 will not, in general, be consistent. 

4. Adjusted likelihood and conditional likelihood are indistinguishable at the 
level of second order asymptotics. In particular, the adjusted likelihood 
ratio test has the optimum property mentioned in paragraph 1 and n( fJc -
01) --"p 0. 

5. Paragraphs 3 and 4 remain true if in the definition of adjusted likelihood 
we do not adjust for variance, that is, we do not divide by w(81) in the 
definition of V. 

10.3. Neyman-Scott problems. In the Neyman and Scott (1948) prob­
lems there is a parameter of interest, called the structural parameter, and 
many nuisance parameters. In Section 10.2, the number of nuisance parame­
ters is held fixed, but in the Neyman-Scott examples the number of nuisance 
parameters grows very fast, at the same rate as the sample size. The 
Neyman-Scott problems are the simplest examples where, because of a high 
dimensional parameter space, a classical procedure like the mle fails dramat­
ically. 
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EXAMPLE 10.1. Consider r.v.'s xi.i' i = 1, 2, 0 0 0' n, j = 1, 2, 0 0 0' k. The r.v.'s 
are independent but not identically distributed. For fixed i, X; 1, ... , X;k are 
i.i.d. N( fL;, a- 2 ). Here cr 2 is the parameter of interest and the f.L/S are 
nuisance parameters. In the asymptotics k is held fixed, n ~ oo. The maxi­
mum likelihood (and hence maximum profile likelihood) estimate of a- 2 is 

A 2 '\' '\' ( - )2 k - 1 2 
0" = L... L... xij- x, jnk ~ -k-o- a.s. 

(Here X; = k 1 l:;Xi.i.) If k = 2, cr 2 ~ a- 2/2 a.s. It is clear that the mle 
misses so badly because the profile likelihood makes no adjustment for 
replacing unknown parameters by estimates and in the process gets the 
degrees of freedom wrong. In this example the correct d.f. is n(k - 1) and the 
"right" estimate is 5 2 = LLCXi.i- xy jn(k - 1). 

If we maximize the adjusted likelihood, we have to solve 

( 2) ( 2)1 2 - 0 

) U 1r - E U( a- cr , X;, L = 1, ... , n = 0, 

where 

- nk log cr 2 1 _ 2 

logL"P(a- 2 ) = 2 - 2 a- 2 I: L:(X;1 -x). 
Hence 0"2 = if 2 , the "right" estimate. One can check that the same is true of 
Oc2 obtained by maximizing the conditional likelihood. 

EXAMPLE 10.2. Xi.i's are as in Example 10.1, but the roles of mean and 
variance are interchanged. Thus Xi.i is N( fL, a-; 2 ). It is sometimes called the 
problem of common mean. (One may compare with the Behrens-Fisher 
problem of Chapters 2 and 3, which is superficially similar, but n = 2, k -~~ oo, 

so that the asymptotics is quite different.) In this case, 

where 

2 k n n k (X.·-fL) 

log LP( fL) = -2 i~l log 8/( f.L) - i~l J~l 2;~;2( f.L) , 

A2 1 k - 2 -
a-; (fL) =- "L(X;1 -xi) +(X;- fL)2. 

k 1 

Assuming cr;'s are bounded above and bounded below_by a positive num­
ber, one can show both the mle 0 and the grand mean X= LLCX,j)/nk are 
consistent and asymptotically normal with mean 8. It is also possible to 
show, using the symmetry of the normal, that He and 8" are consistent and 
asymptotically normal with mean e. However, none of these four estimates 
are "right" in the sense that there is an estimate which is asymptotically 
normal with mean e and smaller variance. In fact, in a sense to be explained 
a little later, this last estimate is FOE in this problem and none of the two 
new likelihoods can find it. 
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We now introduce the general form of the Neyman-Scott problem and the 
natural class of estimates associated with them. 

General problem. Let XJs, i = 1, 2, ... , n, j = 1, 2, ... , k, be independent 
and for each i let X;1, Xi 2 , .•. , Xin be i.i.d. with density p(xl81, 82). Note 
that the form of the density and the value of the parameter of interest 81 

remain the same for all i, while the value of the nuisance parameters ()2 

changes with i. We assume () 2 /s lie in a compact set, as in Example 10.2. 
An estimate for () 1 is obtained by solving an equation of the form 

( 10.6) 
n 

L t/I(X;1,Xi2, ... ,X;k,(J]) = 0, 
i+ 1 

where t/J is continuously differentiable in 81 and 

(10.7) E 01 ,o2 t/I(Xil, ... , Xik> () 1 ) = 0 'r:f (e1 , 82 ). 

As in the case of the likelihood equation, or more generally, Huber's M 
estimates, one can easily show by Taylor expansion arguments that there is a 
solution 1;1, which converges in probability to 81 and T,1, is A.N. (81, a;,,:n/n), 
where 

(10.8) 

2 Aln 
a;,,,n =A' 

2n 

and t/101 = (Bj1J() 1)t/J. 
Following Amari and Kumon (1984), we call them C1 estimates. It is clear 

that an mle satisfies an equation like (10.6), but in the absence of (10. 7), will 
not be consistent in general. In fact, consistency as in Example 10.2 is an 
exception rather than the rule. The same is true of ec ea. Each satisfies an 
equation like (10.6), but (10.7) is an exception rather than the rule. 

Even when ea or ec are consistent, they are not FOE in the sense 
explained below. 

Let the distribution function of 821 , ... , 82 n be defined as 

Gn(Y) = {#82/s ::::;y}jn. 

Of course since the 82 /s are unknown, so is G2 n. Note that the asymptotic 
variance of Vn(T1,- 81) is the following functional in Gn: 

j { Ee 1 , o2 t/1 2 ( Xi1' · · ·, Xik ,81) }Gn( d8z) 
a;,,z(8l,Gn)= 2' 

[JEe1 ,o2 t/le 1(Xil, · · ·, Xik, 81)Gn(d82)] 

(10.9) 



104 HIGHER ORDER ASYMPTOTICS 

If we try to use the "Cramer-Rao" bound based on nk observations, say, 
1 11 (0 1, 821 , ••• , 8211 ), it does not work because, in general, the hound is not 
sharp globally, even asymptotically. Here [ Jii] = [ Ii) 1 . We need to develop 
a sharper hound, making use (among other things) of the fact that the 
estimates are invariant under permutation of i. 

Lindsay (1980), in a pioneering paper, has noted that we may interpret 
this functional as a variance in what is called the mixture or empirical Bayes 
setup of Robbins. 

Mixture setup. Consider the general formulation of the Neyman-Scott 
problem, but assume fJ 2 /s are i.i.d. r.v.'s taking values in a compact set 0) 2 

with common distribution function G. The object is still to estimate fJ 1 , when 
both fJ 1 and G are unknown. Using the theory of semiparametric inference, 
one can find an analogue of Fisher's information which we denote as J( fJ 1, G). 
As in Chapter 1, an estimate T, of 81 is FOE or simply efficient if Vn (1~, - 81) 

is AN. (0, (1(0 1 , G)) 1 ) uniformly on compact fJ 1-sets and uniformly in G. 
If we use an estimate Tif, in the mixture setup, the Vn (Tif, - 81 ) is still AN. 

(0, o;1}(G)), where o;1,2 (·) is the functional defined in (10.9). Hence (under 
uniformity of asymptotic normality with respect toG and 01 in compact sets), 

2 ····1 (10.10) (T.p ( fJ 1 , G) ;:::: I ( fJ 1 , G). 

Consequently, a T", for which (10.10) is an equality for all 01 , G may be 
called FOE. The "right" estimate in Example 10.1 is FOE [but does not attain 
even asymptotically the simple minded Cramer-Rao lower bound 1 11 (0 1 , 

()21• ... , 02,)]. 
Unfortunately, in Example 10.2, and generally, even this better bound is 

not attained within the class of estimates T.1,. Amari and Kumon (1984) have 
restricted attention to a subclass of the estimates T.1, and, using a covariant 
derivative, have found a lower bound to asymptotic variance which can be 
attained. While their analysis is elegant, there does not seem to be any 
compelling reason to confine attention to their subclass. Following Bickel and 
Klaassen (1986), we prefer to enlarge the class of estimates to include all 
estimates which are regular in the following sense; see Bhanja and Ghosh 
(1992). An estimate Tn is regular if the following happen: 

1. In the Neyman-Scott setup Vn(Tn- fJ 1 ) is AN. (0, cr 2 (fJ1,Gn)) uniformly 
in 02 i E @ 2 and compact fJ 1-sets. 

2. In the mixture setup Vn-(Tn - 81 ) is AN. (0, cr 2(01 , G) uniformly in G and 
compact fJ 1-sets. 

Within this class, it is still true that cr 2 ( fJ 1, G) ;:::: (I( () 1 , G)) 1 . Hence, by 
occurrence 2 one may call a regular estimate Tn FOE in the Neyman-Scott 
setup if equality is attained for all 01, G. 

The general theory of such estimates, given in Bhanja and Ghosh (1992) is 
very technical. It involves also a continuity assumption which is difficult to 
check, in general, but holds for the two examples in this chapter. We have 
already indicated an FOE estimate for Example 10.1. We will now describe 
briefly an FOE for Example 10.2. 
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In the Neyman-Scott framework of Example 10.2, pretend that 821 , •.. , 0211 

are i.i.d. ~ Gn as in the mixture setup. Then the integrated likelihood equa­
tion is 

d n A 

de;~~ log p( X11 , ••• , X 111 l81 , Gn) = 0, (10.11) 

where p(X;1, .•• , X;kl8 1, G,) = fp(X; 1, ••• , X;kl8 1, 021 )011(821 ), p(X11 , ••• , 

X1kl8, 011 ) is obtained by replacing G, with G" and Gn is a nonparametric 
mle. We believe this is not only a natural estimate, but also FOE. However, 
there are some technical difficulties in proving that it is FOE. We present, 
therefore, another estimate which is shown in Bhanja and Ghosh (1992) to be 
FOE. 

Permute the i's at random and produce two sets of n 1 and n 2 vectors X 1, 

with n 1 + n 2 = n, nJ!n 2 --"> 1 as n -'> co. Call the permuted observations Yu's. 
Note ¥;1 = X 1•1, j = 1, 2, ... , k, for some i'. Call the permuted 02 /s r,;'s. Then 
Yf; = 02i'. We write Y; = C¥;1, ... , Y;k). 

From the two sets, get consistent estimates Gn1, G,2 of G111 , G112 where 

( 10.12) 

by a one-step Newton-Raphson method. Independence of Y; and G712 in the 
first sum and Y1 and 0111 in the second sum makes (10.12) relatively easy to 
handle. 

We explain how 0; 11 , G2 , are calculated for k = 3. Let sf = L:f 1(¥;1 - YY 
and look at the empirical distribution of sf's, i = 1, 2, ... , n 1, that is, at 

F (h) __ ( 1)#{ 2.1 • 2 h} 
nl - nl S; ' ::;; ~ ::;; nl' S; ::;; ' 

which is a consistent estimate of its expectation. Call this expectation A 11 (h). 
Then A,(h) is a scale mixture of exponentials with G,1 as the mixing 
distribution. Hence the algorithm of Jewell (1982) for estimating G111 can be 
used. This is G n 1. 

Simulations show the asymptotics provides good approximation for n c= 
100. Incidentally, 

__ [(dlogp(X11 , ... ,Xlki01 G11 ))
2 

. l 
l(81,Gn)-E d 8pG11 • 

81 

To sum up, while there are FOE estimates for Example 10.2, maximizing 
the profile, conditional or adjusted likelihood will not produce an FOE. 
However, it is likely that 01, 01a and 01" are all FOE when k --"> co, as n -'> w, 

possibly at a suitable rate. In such cases, higher order asymptotics would 
help discriminate among them and would probably show the superiority of 
the new likelihoods. This is a problem that needs attention. 
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