
CHAPTER 6 

Third Order Efficiency, 
Admissibility and Minimaxity 

6.1. Third order efficiency in the general case. We assume regular
ity conditions on p(x)l8) so that Theorem 5.1d holds, and assume the 
following three conditions on estimates: 

CONDITION 1. E{(T, - () )2 1 0} = n 1 I 1( 8) + n 2 g( 8) + o(n 2 ), uniformly 
in compact 8 sets where g(8) is a continuous function of 0. 

CONDITION 2. E{(T, - 0)18} = n 1 b(8) + O(n <1 1 "l), uniformly m com
pact 8 sets where b( 8) is continuously differentiable and 8 > 0. 

CONDITION 3. sup0 ,c[a,hJ E{(T- 8)4 18} .::; Ma,b < 00 bound intervals [a, b]. 

We assume 8 satisfies these conditions also. That expectation of 8 and 
variance of 8 have expansions in powers of n 1 follows from the regularity 
conditions assumed earlier. The expansions agree with those obtained by the 
delta method. If b0 and g 0 stand forb and g when T, is replaced by H, we do 
not need to make the additional assumption that b0 is continuously differen
tiable and g 0 is continuous. The quantities b 0 and g 0 as calculated earlier 
for curved exponentials have the same expressions in the general case. 

Fix 80 and introduce a sequence of priors 1r, ED%, concentrating on the 
interval (a,, b,) with a,= 80 - (log n)114 , b, + 80 +(log n)14 . [In fact, choose 
the prior exhibited in (5.6).] It can be shown that Theorem 5.ld continues to 
hold if 7T is replaced by 7Tn. Write B;,, corresponding to 7T,, in the form 

(6.1) B~ = e + d,( iJ)jn. 
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Let 

(6.2) 

(6.:3) 

(6.4) 
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A A 1 A ) 8* = 8- -(b0(8)- b(O) , 
n 

1 A A A ) T,; = T" + -(b 0 (0)- b(8) + dn(8), 
n 

T; ,= the natural truncation of T~. [see ( 5.21)] . 

Under the regularity conditions assumed, 

2 1 g 0(0) 
(6.5) E{(e*-8) 18}= ni(fJ) +--;;y--+o(n- 2 ). 

We sketch a proof that 

( 6.6) 

A direct argument shows 

( 6.7) 
E{(e*- 8) 2 10}- E{(B~- 0) 2 10} 

= E { ( Tn - 8) 2 1 8} - E { ( T; - 0) 2 1 0} + o ( n- 2 ). 

It is easy to check this "formally" by the delta method. To see this simply note 
that 1:; is the same perturbation of Tn as B~ is of e;:. 

Hence 

j [ E { ( 0 * - 0) 2 1 0} - E { ( B7, + 0) 2 1 0} ]1rn ( 0) d 8 
(6.8) 

= f[ E{(T11 - 0) 2 10}- E{(1',;'- 0) 2 lo}]7T11 (fJ) dO+ o(n- 2 ). 

On the other hand, by the Bayes property of B7,, 

j [ E{ ( B~ - 0) 2 10}] 7T11 ( 0) d 0 
(6.9) 

::; j[ E{(T,;'- 0) 2 1o}]7T,(O) dO+ o(n- 2 ). 

By (6.8) and (6.9), 

fb"[E{(e*- o/I8}]7T11 (o) do 
(Ln 

(6.10) 

s Jb"[ E{(T11 - 0) 2 I0}]7T11 (0) dO+ o(n- 2 ), 
a, 

that is, 

(6.11) Jb"go( 0)7T11 ( 0) dO :S Jb"g( 0)7T11 ( 0) dO+ o(n- 2 ), 

a,1 a,1 

which implies (6.6). Instead of choosing a sequence of priors as above, one can 
also fix a < 00 < b and then choose a prior 7T on (a, b) belonging to D,, 
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11 < s ::::; oo. Going through exactly the same steps as above, one would get, in 
place of (6.11), 

(6.11a) Jbg 0 (l-J)7T(0) dO::::; Jbg(8)7T(8) d8. 
a a 

Now shrinking the interval toward 80 , one gets (6.6). 
This argument first appears informally in Ghosh and Subramanyam (197 4). 

The rigorous version for squared error loss is developed in Ghosh, Sinha and 
Joshi (1982). This chapter is based on that paper, but the tedious details have 
all been omitted. Bickel, Gotze and van Zwet (1985) develop the same 
argument for vector fJ and general loss functions, but using perturbations of 
loss functions rather than perturbations of estimates. The technique of 
perturbed loss functions is interesting for its own sake and is explained in the 
next chapter. 

Another Bayesian proof for general loss functions is given in Ghosh, Sinha 
and Wieand (1980). This is much less technical (and tedious!) than Ghosh, 
Sinha and Joshi (1982), but does not extend to the multiparameter case. 

6.2. Remarks on general third order efficiency results and proofs. 
As mentioned earlier a proof for general bowl-shaped symmetric loss func
tions (not necessarily smooth) and multiparameter problems with regularity 
conditions but permitting dependence and not requiring Edgeworth expan
sions is given in Bickel, Gotze and van Zwet (1985). The argument is similar 
to that of Section 6.1 except that, instead of using perturbations of estimates, 
the loss is cleverly perturbed. Unfortunately the proof is still messy and not 
all the details are given. Except for the result mentioned in Section 6.5, this 
appears to be the most general result on third order efficiency. 

For the one parameter case, under the assumption of valid Edgeworth 
expansions (uniformly on compact 8-sets) or smooth loss functions (and some 
uniformity), a proof with complete details is given in Ghosh, Sinha and 
Wieand (1980). This seems to be the cleanest proof of a fairly general version 
of the result. The argument is Bayesian but avoids using the expansion of 
Chapter 5 by reducing the comparison of estimates to comparison of tests 
based on them, as in Rao (1963). For this reason it does not seem to extend to 
the multiparameter case. 

The fact that a general third order efficiency result holds, without the 
restriction to curved exponentials or squared error loss or Fisher consistent 
estimates, was first conjectured in Ghosh and Subramanyam (1974). They 
also outlined a heuristic argument for such a conjecture, which forms the 
basis of proof in Section 6.1 as well as Bickel, Gotze and van Zwet (1985). 

6.3. Median unbiasedness and matching bias. We first note a fact 
about Edgeworth expansions. Suppose Vnf(T- 8) = Y1 has valid Edgeworth 
expansion up to o(n 1). Let W(T'- 8) = Y 2 , where T' = T + c(T)jn and 
cO is continuously differentiable. We have seen in Chapter 2 that Y2 has a 
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valid Edgeworth expansion up to o( n 1) and the Edgeworth expansion 
associated with 

Y2 - c( &)vi/n = VnJ (T' - & - c( 0)/n) 

is identical with that of W(T- &)(1 + c'(&)/n). Since the last random 
variable is a linear transformation of Y1, we now see how the cumulants of 
Y2 can be obtained from those of Y1• In particular, recalling the ~ructure of 
cumulants of Y1, at least for Fisher consistent estimates T = H(Z) [(2.6)], it 
is clear that Y1 and Y2 have the same third and fourth cumulants up to 
o( n- 1 ). The first two cumulants of Y2 differ from those of Y1 as follows [keep 
in mind the structure given by (2.6)]: 

(6.12a) 

(6.12b) 

first cumulant of Y2 = (first cumulant of Y1 ) 

ell 
+ Vn -+- o(n-1), 

second cumulant of Y2 = (second cumulant of Y1 ) 

2c'( & ) 
+ +o(n- 1 ). 

n 

We now choose c( & ) so that 

Vn{IP0 {W(T'- &) ~ o} ---~I 
(6.13a) 

+IVnP0 {W(T'- &) .;:; o}- }I}~ o. 
It is clear that (6.13a) implies 

n{IP0 {W(T' ---e)~ o} --}I 
( 6.13b) 

+lvnP0 {W(T'- O) ~ o}- }I}-) o. 
We refer to (6.13a) and (6.13b) as median unbiasedness up to o(n 112 )and 
o( n 1 ), respectively. It is clear from the remarks made earlier about Y1 and 
Y2 , that a c(·) satisfying (6.13a) and hence (6.13b) can be found. It is clear 
from (2.21) that c(-) has to be chosen such that K3 1 = K 31 and K~ 1 = K 11 + ell 
have to satisfy a linear relation for median unbiasedness. Moreover, Y1 and 
Y2 will have the same third and fourth cumulants up to o(n · 1 ). 

Suppose now we choose d(-) such that 0' = 8 + d(f))jn matches bias (or 
equivalently expectation) of T' up to o( n 1 ). Then both VnJ (T' - 0) and 
W(O'- 0) have the same K 11 . 

It is proved in Ghosh, Sinha and Wieand (1980) that having the same K 11 

and first order efficiency of Tn entails W(T'- 0) and W(O' - 0) have the 
same K 31 . Thus VnJ ( fJ' - 0) must also be median unbiased if the bias of b' 
matches that ofT~ up to o(n -I). 

Hence, a median unbiased [up to o(n 112 ) or, equivalently, o(n 1)] rJ' is 
third order better than a median unbiased [up to o(n- 112 ) or, equivalently, 
o(n 1 )] FOE T/, [assuming valid Edgeworth expansions exist for Vn (0 -- 0) 
and Vn- (T - 0 )]. 

Third order results of Akahira and Takeuchi, and Pfanzagl are usually 
stated for median unbiased estimates. 
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6.4. First order efficiencyimplies second order efficiency. Suppose 
we are given FOE 1\, T2 , and T~, T~ are perturbations of the form T; + 
c/1~)/n, c; continuously differentiable, so that W(T!- e) have the same 
bias up to o(n 112 ) or they are unbiased up to o(n- 11 2 ) or they are median 
unbiased up to o(n 1 / 2 ). {in each case this is equivalent to matching bias up 
to o(n ·· 1 ), but this fact is not relevant here]. Then they both have the same 
K;n as that of a matching lnl({J'- e). By (2.6) and (2.21), both /ni(T!- e) 
have the same Edgeworth expansion up to o(n 112 ). This is the fact that is 
expressed by saying FOE implies second order efficiency (SOE). An excellent 
recent treatment is available in Bhattacharya and Denker (1990). 

Since FOE implies SOE, it is clear we have to go one step further to third 
order asymptotics to distinguish between FOE estimates. 

6.5. Strongest third order efficiency theorems for Fisher consis
tent, first order efficiency estimates and curved exponentials. It is 
shown in Ghosh, Sinha and Subramanyam (1979) that matching bias up to 
o(n 1 ) entails that the third and fourth cumulants for all FC, FOE estimates 
agree up to o(n- 1 ). Combining this with Theorem 3.1, part (iv), one gets 

(6.14) 

where e' matches bias of T up to o(n- 1), and l(O) = 0, l(y) > l(x) if 
y > x >- 0 or y < x ::s; 0. The function l need not be symmetric, but one either 
requires valid Edgeworth expansions for vn(T- e) and vn(e -- e) or that l 
is smooth, and so on, so that one can apply (2.10c). Because of Fisher 
consistency, uniformity is not needed. 

6.6. Uniformity to third order and third order superefficiency. Ex
cept when estimates Tare FC, we require either valid Edgeworth expansions 
for Vn (T - (;I) uniformly on compact 0-sets as in Ghosh, Sinha and Wieand 
(1980) or uniformity to third order in a different sense as in Conditions 1 to 3 
of Section 6.1 for TOE results to hold. Bickel, Gotze and van Zwet (1985) do 
not need uniformity because they state their results in terms of Le Cam's 
local minimax criterion: see Section 1.2. 

Without uniformity to third order can there be superefficiency to third 
order but not superefficiency to first order? In other words, can there exist an 
estimate T such that (i) vn(T- e) is AN. (0, 1/1(0)) uniformly on compact e 
sets (see Assumption A2 of Chapter 1), (ii) Vn(T- (;I) has valid Edgeworth 
expansion up to o(n ·l) for all (;I with K 11 = 0 [i.e., T is unbiased up to 
o(n -1 )] and (iii) under (;I = 0, T is third order better than B* of the following 
paragraph? The answer is yes. We produce such an example below, with a 
minor modification of the Hodges example of superefficiency. 

Start with TOE O* of Chapter 3, the perturbation of fj to remove bias up 
to o(n 1 ). Assume it has a valid Edgeworth expansion uniformly on compact 
{;1-sets. This requires application of a uniform version of Theorem 2.1, which is 
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available in Bhattacharya and Ghosh (1978). Now define 

T = ii* if Iii* I> (log n)!ln-

= (1 -- cjn)ii* if IO*I::;; log n/Vn, 

where c > 0. Then /ni(T- ii* )I ::;; (cjn)l/n O* I, which has probability tending 
to zero uniformly on compact 8-sets. Since Vn ( O* -- 8) satisfies Assumption 
A2 of Chapter 1, it is now clear that so does Iii- (T - 8 ). On the other hand, 
under 8 = 0, Vn-(T- 8) has the same first, third and fourth cumulant as 
/n(ii*- 8) up to o(n- 1) and K22 forT is (K22 of ii*)- c, that is, smaller 
than K22 of ii*. Also under any() =I= 0, P8{T =F ii*} = o(n- 1 ), and so by Lemma 
2.1, /n(T- 8) has the same Edgeworth expansion as /n(ii* - 8) up to 
o(n 1 ). 

A 

6.7. Third order admissibility. Third order efficiency of () may be 
interpreted as a complete class theorem in decision theory. Given a FOE Tn, 
satisfying some additional regularity conditions, there exists a countinuously 
differentiable cO such that (0 + c(iJ)jn) is better than Tn to the third or
der. In this context it is natural to ask whether the complete class is actually 
a minimal complete class, that is, whether each {j + c(e)jn is admissible to 
third order or not. In this section we completely characterize third order 
admissibility, showing in the process the class of third order admissible 
estimates ii + c(e)jn is a proper subset of the whole class and it is complete, 
so it is minimal complete. This section is based on Ghosh and Sinha (1981). In 
the following E8 = E{IIJ}. Consider ii + c(iJ)jn and ii + d(iJ)jn, where cO 
and dO are continuously differentiable: 

"' "' 2 "' " 
( 6 .15) E 8 (e+d(e);n-e) -E8 (0+c(O)/n) 

= {g 2(8) + 2g(8)b(O) + 2g'(O)jl(O)}/n 2 + o(n- 2 ) 

where (b(O))jn is the "bias" of ii + (c(ii))/n up to o(n - 1 ) and g(8) = d(e)
c(O). To prove (6.15), note 

(

A d(ii) ) 2 

Eo 8 + -n-- 8 

(( 
c(e) ) g(e) (e-e) 

=Eo B+ -n-- e + -n- +g'(e) n 

2 

+smaller order terms) 



EFFICIENCY, ADMISSIBILITY AND MINIMAXITY 

~ 2 

= E0 (e + c(el __ e) + ~ 2 (.") + 2g(fl)!!_i~ 
n n 2 n 

1 
+ 2g'(O) n2J(O) + o(n-2), 

where we have used 

( ~ c( e) ) ~ ~ 2 
E0 O+-n--0 (0-0)=E0 (0--0)(1-o(1)) 

1 
= -- + o(n- 1). 

nl(O) 
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Say e + c(O)/n is third order inadmissible (TOI) if 3 continuously differ
entiable d( 0) such that 

(6.16) {g 2 (0) + 2g(O)b(O) + 2g'(O)jl(O)} ~ 0 '<10 

with at least one strict inequality. Otherwise, e + c(e)jn is third order 
admissible (TOA). Let b0((J)jn be the bias of e up to o(n- 1 ). Assume b 0(0) 
and 1(0) are continuous, and /(0) > 0 '</ 0. 

THEOREM 6.1. (i) 0 + c(O)jn is TOA if and only ifforsome -oo < 00 < oo, 

(6.17) j"'I(O)exp{-f1b(u)I(u) du} dO= oo 
1!0 11 0 

and 

(6.18) f llo {!110 } _}(O)exp 
0 

b(u)I(u) du dO= oo. 

(ii) If e + c(O)jn is TO!, then one can find d(O) explicitly such that 
e + d(O)Jn is TOA and better than e + c(e)jn up to o(n - 2 ). 

The condition for TOA suggests that the bias term b( 0) should be negative 
as 0 ~ oo and positive as 0 ~ - oo, that is, the estimate should behave like a 
shrinker at least as far as the bias is concerned. Intuitively this seems a good 
thing. 

6.8. Berkson's example revisited. Let e denote the Rao-Blackwell
ized minimum logit x2 estimate introduced in Section 2.4. We take a = 0. 
Let the bias terms of e and e be denoted by b(·) and b0(-). Then [see Ghosh 
and Sinha (1981), page 1337] 

(6.19) I= L 17;(1 - 17;), b0 = L 17;(1 -- 17;){217; - 1)/212 , 

(6.20) b = L 17;(1 - 17;)(217; -- 1)/12 - L (217; -- 1)/21. 

Since I ~ const. exp( -I Oi) as 0 ~ ± oo, b0 I ~ ± 1/2 as 0 ~ ± oo, it follows 
from Theorem 6.1 that e is inadmissible. Similarly, since bl ~ +(k - 2)/2 
as () -~ ±co, ii is TOI (TOA) if k < 4 (k > 4). By similar analysis, one can 
show e is TOA for k = 4. 
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Berkson (1980) and Amemiya (1980) found from numerical calculations of 
the mean squares of the minimum logit X 2 estimate and fJ obtained by the 
delta method up to o(n · 2 ) that the mean square for 8 is smaller in cases 
studied. They wondered if this was true for all 8. 

Since e is better to third order than Berkson's minimum logit x 2 , one can 
ask the same question in relation to e and e. The comparison between 0 and 
8 is analytically much easier than that between the original estimate and 0. 

We have only to compare 

(6.21) 

and 

(6.22) 

Note that 

(6.23) 

and 

(6.24) 

= {L7Ti}\6 + k 2/2- 4k)/2{1 + o(1)} as 8 ~ -oo 

B(8) = {I:(7Ti- 1)}2(5/4){1 + o(1)} as 8 ~ +oo 

= {L7Ti}\5;4){1 + o(1)} as 8 -) -oo. 

This shows that if k (the number of dose levels) is greater than or equal to 8, 
there exists an interval (81, 82) such that for 8 $ (81, 82), e is better than 0, 
while fork ~ 7, e is better outside a certain interval. In paticular, the answer 
to Berkson's question is no. In this connection also see Kariya, Sinha and 
Subramanyam (1984) and Davis (1984, 1985). 

As Ghosh (1980) has indicated, it was the controversy surrounding this 
example which made him take up higher order efficiency to resolve these 
questions. What have we learnt? As in all real life stories, the lessons are 
mixed. While Berkson's belief in the global superiority of his estimate over 0 
[up to o(n- 2 )] is wrong, there is something to be said for using its 
Rao-Blackwellized version in preference to 8 because 8 is always TOI 
whereas ii is TOA for k > 4. Higher order theory also suggests how we can 
improve e always, even though this cannot be done by using Berkson's 
estimate. 

6.9. Third order minimaxity. Mter third order efficiency and admissi
bility, it is natural to think of third order minimaxity. In fact, this question 
was raised in Ghosh and Subramanyam (1974). We follow Ghosh and Muker
jee (1993c). 

Let ~ be the class of estimates of the form 

T = 8 + c( 0)/n, 
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c( ·) continuously differentiable. Then 

(6.25) 

An explicit expression for aT( e) will be provided shortly. 

DEFINITION 6.1. An estimate T0 in '?,' is third order minimax (TOM) if 

supar,/ 0) ::;: supar( e) V T E 'ti'. 
(I 0 

In general, minimaxity for all n does not imply TOM, nor does third order 
minimaxity imply minimaxity for sufficiently large n. A similar lack of 
relation between admissibility and asymptotic admissibility (in the sense of 
first order admissibility) was noted by Hajek (1972). This remains true if we 
replace first order admissibility by third order admissibility. 

A sufficient condition for a minimax estimate to be approximable [in the 
sense of(5.20)] by an estimate in?;' is that for all n > n 0 , there exists a fixed 
least favorable prior 7r which satisfies Johnson's (1970) conditions for all 8. If 
further a TOM exists and for both the TOM and the minimax estimates the 
risk expansions are uniform over (•), then both expansions coincide up to 
o( n ···l ). In location and scale problems, both estimates turn out to be equivari
ant and so uniformity holds. The assumption about a least favorable prior 
also holds. It is assumed the minimax estimate is Bayes with respect to the 
least favorable prior. 

We now compute aT explicitly. Take T = H + c(H)/n. Define A(8) by 

c(e) = A(8) --1· 2 UL001 +L11 ), 

where 

(6 .26) - .. = [(dlogp(x 118))i(d2 logp) 1(d 3 logp)k(d4logp) 1
] 

L,J,~~ Eo de dez dea d84 ' 

(6.27) 

Then 

(6.28) nE0 [(T- 8) 2 /(e)) = 1 + {I{A(8)} 2 + 2A'(e) + 1/1(8)}/n, 

where 

(6.29) 1/1( 8) =I 2L02 + r 3 {%L7l01 + L~ 1 + 5L11L001 - L001 L3 )- 1. 

The above provides an expression for aT( 8 ). 

EXAMPLE 6.1 (Location family). Let p(x118) = g(x 1 - e). Consider 

(6.30) 
T0 = {j- n- 11 2 (~Lool + Lu) 
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where c is free of e. (We assume tacitly L001 , etc. are finite.) If we have a 
symmetric density like N(e, 1) or a Cauchy with a location parameter e, then 
c = 0 and T0 = 8. We may also note that T0 is identical with the Bayes 
estimate B~ in Chapter 5 if one takes 7T to be the improper prior which is 
uniform over the whole real line. 

We assume 8 is equivariant in the sense of 

(J(xl +a, ... ,xn +a)= e(xl, ... ,xn) +a. 

Note !/f( ()) is free of () and 

(6.30a) 

for all e. 
We will show T0 is TOM. 
Given the expressions for aT and aT [see (6.29) and (6.30a)], it is enough 

() 

to show 

(6.31) sup [I {A( ())} 2 + 2 A' ( ())] ~ 0 
II 

for all continuously differentiable A. 
We introduce an auxiliary problem in which N(O, a 2 ) with a 2 = 1jl is 

p(x1 IO). Consider T1 =X, which is TOA in the auxiliary problem by Theorem 
6.1. Compare T1 with I';, = x + A(x)jn. Note 

(6.32) 

(6.33) 

If (6.31) were false, T;... would be better to third order than x, making x TOI 
in the auxiliary problem! 

EXAMPLE 6.2 (Scale Problem). Let p(xl8) = e- 1g(xl0), 0 > 0. Here I= 
2-- 4-- 3 - - 3 p/0 , L11 L02 - l02 /8 , L 11 L11 -- l 11 j() and L 11 L 001 - l 00 If0 for some 

constants, p, l 02 , ! 11 , !001 (we tacitly assume all the expectations involved are 
finite). It follows that !/f( 0) = !/Jo, a constant. 

Let 

(6.34) T0 = 0(1- cjn), 

where c = 1/p + (1/p 2 )(~l001 + ! 11 ). 

We show T0 is TOM. Proceed as before, and to check, it suffices to prove 
only A = 0 solves 

(6.35) [ p 2 ] sup :dA(O)} + 2X(8) > -1jp. 
o e 

Introduce an auxiliary gamma scale family 

(6.36) 
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Use 'l'h~orem 6.1 again to check that in the auxiliary problem, c) is TOA, 
where c, e is the best estimate for 8 in the auxiliary problem with respect to 
squared error loss, among estimates of the form e(l + djn), where d > 0 is a 
constant and e is the mle of e in the auxiliary problem. Now compare en e 
withe+ Jt(O)jn. A nonzero solution A of(6.35) would show c) is TOI, which 
would be a contradiction. 

We choose a third example which has some interest of its own and does not 
belong to a location or scale family. It will also bring out some of the dif
ficulties with these estimates. 

EXAMPLE 6.3. Xi = (U;, V), i = 1, 2, ... , n, are bivariate normal with zero 
means, standard deviation (s.d.) equal to 1, and correlation coefficient p = e. 
This example was introduced by Stewart to show naive substitution of known 
values of parameters for their estimates in a statistic may lead to an inferior 
estimate. In the problem of the bivariate normal, if the means and standard 
deviations were all unknown, then the sample correlation coefficient r is the 
natural estimate and it is also then the mle. Under the present setup, one is 
tempted to replace X, Y by 0 and Sx, Sy by unity in 

( 11 n) I: (Xi - X)( Y; - Y) 
SxSy 

where s; = (1/n)}:(Xi -- X)2 and Sf= (1/n)}:(Y; - Y) 2 . The resulting esti
mate 

1 -. T =- ,..,XY 
n L.. ' ' 

is worse than r in the first order for all values of e. The right way to use the 
information is to choose the consistent solution e of the likelihood equation 
which is a cubic in e under the present assumptions. The mle e is better in 
the first order than r, as expected. 

We confine ourselves, as before, to estimates e + c((J)jn. Here 

(6.37) 

For convenience we exclude e = 0 from the parameter space (making the 
problem somewhat artificial) and restrict ourselves to a subclass of '16'. We 
permit only the following Ar's. 

Either(a) I(e){A~(e)} + 2A'r(8)....., oo as e i 1 or l - 1 or (b) Ar(B)/(1- 8) 
is bounded as e i 1 or (c) Ar(8)j(1 + e) is bounded as 8 l -- 1. 

For example, if Ar(e) = p 1(e)jp 2(e), where p 10's are polynomials in e 
and p 2(8) =t- 0 for () E ( -1, 0) U (0, 1), then Ar belongs to our subclass. One 
can show 

inf supar( 8) = sup aT (e) = -2, 
AEC\ (J & 0 
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c( fj) 
To = fj + 

n 
1 - (J 2 

c(O) = 
(J 

The unpleasant fact that c( ·) becomes unbounded as e ------+ 0 indicates the care 
with which such estimates need to be used in practice. The estimate T0 will 
make sense and do better than (j in the third order minimax sense if the 
parameter space were (") = ( -1, -- o] U [ o, 1) and n is sufficiently large to 
ensure 117 + c(IJ)jnl is bounded by 1, in 0). Such a parameter space may be 
plausible if one knows some dependence must be present in the population. 

6.10. Where do we go from here? 

1. Given that FOE = SOE, it is natural to conjecture TOE = fourth order 
efficiency. The proof of that must be very messy. One may also ask if 
anything like TOE holds for (j when we go to the fifth order. Ghosh and 
Sinha (1982) show with a counterexample that this is not possible. 

2. The main advantage of these third order ideas (TOE, TOA, TOM) is, as we 
see it, that one has a set of optimality results which help one choose, 
within the frequentist paradigm, from the classical estimates for paramet
ric families. Moreover given a pair of FOE estimates 1\, T2 one can go over 
to rJ + c(O)jn and fJ + d(e)jn which are better than 1\, T2 , to third order 
with respect to all natural loss functions, and then compare the risks of 
{J + c(e)jn and {J + d(O)jn. That is almost always much easier than 
comparing the risk of the original estimates. This is how Berkson's prob
lem was solved. The most striking fact is that the same perturbation 
fJ + c((J)jn works for all natural, possibly nonconvex, loss functions, as if 
we are even better off than having a complete sufficient statistic. One of 
the reasons why this theory was developed is that classical frequentist 
statistics seems to oscillate between an asymptotic theory that holds for 
very large samples and an exact theory confined to a very small collection 
of parametric families like the normal. Higher order optimality provides 
approximations for moderate samples, presumably to the order of 10 or 15, 
and is applicable to quite general parametric families, satisfying regularity 
conditions. In particular, this can, in principle, open up the way to para
metric studies of robustness, in which one would enlarge or embed a given 
oversimplified parametric family like the normal or exponential in one 
with more parameters and study the third order properties of proposed 
estimates. 

3. There has been interesting new work by Yoshida (1992) on the application 
of Malliavin calculus to higher order asymptotics for diffusions. Of course, 
though we have worked within the self-imposed framework of i.i.d. r.v.'s, 
most of the ideas go over to dependent cases or for stochastic processes, 
but explicit calculations become more difficult. 



EFFICIENCY, ADMISSIBILITY AND MINIMAXITY 65 

4. The concepts of third order admissibility and minimaxity need more 
clarification. Can they lead to pathologies? For example, in the multipa
rameter case, we do not know of any estimate which is TOA. [In DasGupta 
and Ghosh (1983) several estimates are shown to be TOI in the multipa
rameter setting.] If all estimates in the multiparametric case turn out to 
be TOI, clearly the concept needs reexamination. Since the spherically 
symmetric case is often like the one-dimensional case, at least such 
problems ought to receive attention. The technical problem with the 
inequality defining third order admissibility is that the absence of a square 
of(g') in the defining inequality (6.16) permits g's with very large values 
of lg'l, that is g's with unacceptable oscillations. In a sense, it is also 
brought out in DasGupta and Ghosh (1983), where it is noted that the 
calculus of variation problem associated with the minimization of the 
integral of the left-hand side of (6.16) with respect to 7r( 8) leads to 
degenerate Euler equations. From a practical point of view as well as that 
of the validity of the asymptotics, one ought to put restrictions on oscilla
tions and growth of g, but no natural way of doing this is clear yet. To 
some extent, the same problem occurs with third order minimaxity; see 
Example 6.3. 

5. There is a theory of higher order inference for testing also, but it is more 
messy. For one-sided alternatives, see Pfanzagl (1979) or Akahira and 
Takeuchi (1981). For two-sided alternatives, most of the work has been 
done by Tapas Chandra and Rahul Mukerjee and their co-authors. Most of 
this work has provided complicated but fairly directly usable expressions 
for power against contiguous alternatives for a very large class of tests 
which includes Rao's, Wald's and the likelihood ratio tests. They have also 
elucidated a version of a conjecture ofRao. For a review, see Ghosh (1991). 
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