
Chapter 5 

Models for Meiosis 

5.1 The meiosis process 

In section 4.1, we introduced recombination as the process of crossing over between 
the two homologous parental chromosomes in the formation of an offspring gamete, 
and we have considered multilocus segregation probabilities under the assumption 
of no interference (section 4.7). In order to develop better models of multilocus 
segregation, it is necessary to consider the processes of mitosis and meiosis in 
greater detail. Mitosis is the normal process of cell division during somatic 
growth: meiosis is the process of gamete formation. Both processes involve 
chromosome duplication and separation, but only meiosis involves recombination. 
A chromosome is a doubled strand of helical DNA, with complementary bases on 
the two strands. Chromosomes of the shape often depicted in texts, or seen in an 
amniocentesis photograph, exist only just prior to mitosis or meiosis. These are 
actually doubled chromosomes. Each chromosome is thus two double strands of 
DNA. Each double-strand is known as a chromatid: the two chromatids of a single 
duplicate chromosome are known as sister chromatids. In the pair of chromosomes 
just prior to mitosis or meiosis, there are thus four chromatids, or eight strands 
of DNA in total. In our modeling here, we consider the four chromatids, or the 
chromatid tetrad, rather than all eight DNA strands. 

Just after the previous mitotic division, each chromosome exists as a 
concentrated double-strand of DNA in the nucleus of the cell (Figure 5.1(a)). In the 
next stage, interphase, the chromosomes elongate (Figure 5.1(b)), and duplicate; 
at this stage the length of DNA in the nucleus of a cell is 2 meters. The DNA 
then re-concentrates to form the chromatid tetrad (Figure 5.1(c)). In mitosis, 
each chromosome divides to give two daughter cells (Figure 5.1(d)), each with 
a nucleus with the identical chromosome complement as the parent cell nucleus 
(Figure 5.1(a)). In the first meiotic division, however, one of each homologous 
pair of chromosomes must go to each daughter cell. In order to achieve this, the 
pair of chromosomes must become tightly aligned, and in so doing chiasmata occur, 
resulting in an exchange of DNA between two non-sister chromatids (Figure 5.l(e)). 
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FIGURE 5.1. The processes of mitosis and meiosis, shown for· a single pair of homologous 
chmmosomes in the nucleus of a cell of a diploid organism. 8ee text for details 

The chromosomes separate; each daughter cell nucleus now contains only 50% of the 
DNA of the parent cell, but still in duplicate chromatid form (Figure 5.1 (f)). Finally 
in the second meiotic division, in a process analogous to mitosis, these chromosomes 
divide, providing potential gamete cells (Figure 5.1(g)). Each potential gamete now 
contains 50% of the parental DNA, in the haploid form of one chromosome from 
each chromosome pair. 

The crossover process is shown in more detail in Figure 5.2. Figure 5.2(a) shows 
the tetrad on which, in this example, two chiasmata are formed, and Figure 5.2(b) 
shows the four resulting gamete chromosomes. In mammalian organisms, for 
male meioses all four become gametes (sperm), while in female meioses three are 
discarded and one becomes a gamete (egg cell). However, only for certain non­
mammalian species (such as fungi), or by carefully designed experiments (Hulten 
et al., 1990), is it possible to retrieve the four sperm from a given meiosis. In the 
analysis of data on an offspring individual, we observe only one paternal and one 
maternal meiotic product. 
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FIGUHE 5.2. The formation of chiasmata, and the crossovers resulting in the chmrnosomes of 
the four offspring gametes. The cmssovers occurr·ing are the same as in Figure 5.1 (e) 

5.2 From chromatids to crossovers 

Instead of modeling the crossover locations in a gamete (section 4.1), we now 
consider the occurrence of chiasmata locations at which crossovers between non­
sister chromatids occur. Models for chiasmata formation are known as four-stmnd 
models, since the four chromatids are considered. Since each chiasma involves 
one paternal and one maternal chromatid, (paternal and maternal referring to 
the grandparcntal origins of the two homologous parental chromosomes as in 
equation (1.2)), each chiasma exists as a crossover in a resulting gamete with 
marginal probability ~. Recall that the definition of genetic distance, provides 
for an expected one crossover per Morgan (section 4.1): this corresponds to an 
expectation of two chiasmata per Morgan, or one per 50 centiMorgans (eM). 

Where only one meiotic product is observed, obtaining evidence for chromatid 
interference is practically impossible (Zhao et a!., 1995) (but see also section 5.5). 
It is therefore often assumed that there is no chmrnatid interfer·ence: that is, that 
each chiasma involves two randomly chosen non-sister chromatids, independently 
of other the chromatids involved in other chiasmata. In this case, each chiasma 
results in a crossover in a given gamete, independently with probability 4. Or the 
crossover process is just a thinned (probability= ~) version of the chiasm~ process. 
Since a thinned Poisson process is also a Poisson process, this has no impact on the 
Haldane (1919) no-interference model. The chiasma process is Poisson, rate 2 per 
Morgan. The crossover process is Poisson, rate 1 per Morgan. 

More generally, in a given chromosome interval of genetic length d, suppose 
there are N(d) chiasmata, making now no assumptions about the probability 
distribution of N. If N(d) = 0, there are no chiasmata, no crossovers, and hence 
no recombination. For any non-zero value n of N (d), in the absence of chromatid 
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interference, the probability of an odd number of crossovers is 1/2. (This is left as 
an exercise to the reader: it may be easier to think about tossing a fair coin n times, 
and the probability of an odd number of "heads".) Thus we have the formula of 
Mather (1938) for the recombination probability p(d) at genetic distance d: 

(5.1) p(d) 
1 1 
2Pr(N(d) > 0) :::: 2(1- Pr(N(d):::: 0)). 

The only assumption here is the absence of chromatid interference: under this 
assumption p(d) is an increasing function of d, and is bounded above by ~- Note 
also that under Haldane's model Pr(N(d) = 0) = exp( -2d), and Mather's formula 
applies (see equation (4.2)). 

5.3 From chiasmata to recombination patterns 

There is a multilocus version of Mather's formula ( 5.1). As in section 4. 7, consider 
a chromosome with L ordered loci, 1, ... , L, and label the intervals /1, ... , h-1 

and let Rj = 1 if a gamete is recombinant on interval Ij, and Rj = 0 otherwise 
(j = 1, ... , L- 1). The recombination pattern is a function of the meiosis indicators 
S;,j for the given meiosis i, and provides a simpler representation for the current 
discussion: 

RJ 0 if S;,J Si,H1 

RJ 1 if S;,J f. S;,3+1 

for j = 1, ... , L - 1. 
Now also let the (random) number of chiasmata in the intervals, in a meiosis, 

be N1, ... , NL-1· Let Cj = 0 if NJ = 0, and Cj = 1 otherwise (j = 1, ... , L- 1): 
CJ is an indicator of presence of chiasmata in interval Ii. If Ci = 0, then Ri = 0. 
If Cj = 1, then Pr(Rj = 1) = Pr(RJ = 0) = ~- In the absence of chromatid 
interference, the Ri are conditionally independent given Ci. Thus 

Pr((R1, ... , RL-1) = r) l)~)lcl Pr((C1 , .•• ,C£-I) =c) 
c~r 

(5.2) (~)L- 1 L21I-cl Pr((CI, ... ,C£-r) =c) 
c~r 

where /c/ = 2::~-- 1 ci is the number of unit indicators in c, and 1 is a vector of ones. 
This equation is (in essence) due to Weinstein (1936). Karlin and Liberman (1979) 
give a version in terms of the meiosis indicators rather than the recombination 
indicators. A recent discussion, using slightly different notation, is given by Speed 
(1996). 

The estimation of chiasmata presence and absence patterns from recombination 
data provides another example of usc of the EM algorithm. Consider again 
equation (5.2), and the estimation of patterns of chiasmata presence and absence, 
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from a sample of n completely observed patterns, r, of recombination and non­
recombination. An unconstrained estimate of Pr(R = r) is n(r)/n where n(r) 
is the number of meioses exhibiting recombination patterns r. However, if the 
equation 

(5.3) n(r) = n I)~)lcl Pr((C1, ... ,CL-d =c) 
c~r 

is inverted, negative values of Pr(C =c) may result. An EM algorithm (section 2.4) 
avoids this, providing estimates of the probabilities of the underlying chiasmata 
presence/absence patterns, q(c) = Pr((C1, ... , CL-I) = c), subject only to the 
constraint of no chromatid interference. In fact, this EM algorithm is very similar to 
that of section 4.2. There a phenotypic observation was partitioned in expectation 
among the possible multilocus genotypes (pairs of haplotypes) providing that 
phenotype. Here observation of a recombination pattern is subdivided among 
the chiasmata presence/absence patterns that could give rise to the recombination 
pattern: 

Pr((C1, ... , CL-d = c I r) = L:c'?.r(~)ic'l q(c*) 
0 

if c ;::: r 

otherwise. 

Thus, given current estimates q( c) and the data counts n(r), the conditional 
expected number of meioses exhibiting chiasmata pattern c is 

( l )lei q(c) 
2: n(r) L; \ l )lc'l ( •) 
r:::;c c' ~r 2 q C 

and the new estimate is simply n -l times this expected number. This EM 
algorithm, although very simply implemented, has poor convergence if there are 
many loci, or very tightly linked loci, since then many patterns c do not occur in 
the sample. Moreover, the resulting constrained MLEs differ from the inversion 
of (5.3) only when some Pr(C = c) have MLE 0. In this case, unfortunately, 
convergence of the EM algorithm can be very slow. However, again as in the case 
of section 4.2, some frequencies q(c) may be constrained to zero, and estimation of 
other chiasmata pattern frequencies continued in the subspace. 

5.4 The chiasmata avoidance process 

The vector (C1 , ... , CL-d, specifies the avoidance and non-avoidance probabilities 
of the chiasma process on intervals of the chromosome. It is slightly neater, although 
of course equivalent, to express Pr((R1 , ... ,RL-d = r) (or the probability of 
gametic types Pr(Si,.)) in terms of the avoidance probabilities alone, as in Mather's 
formula (5.1). We specify a subset T of the intervals {11 , ... , h-d as follows. Let 
ti = 1 if Ij E /, and ti = 0 otherwise. Let cf>t be the probability of no chiasmata 
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in T. The set of if>t, for all binary vectors t length ( L - 1), is the set of avoidance 
probabilities of the chiasma process. If tj = 1 there are no chiasmata in Ij, but if 
ti = 0 the presence/absence of chiasmata in Ij is unspecified. There is thus a one­
one relationship between the avoidance probabilities if>t and the presence/absence 
probabilities Pr( G\, ... , C L -l): 

(5.4) 

if>t Pr(no chiasmata in T) 

L Pr((C1, ... , C~,-1) ==c). 
c:S(l-t) 

Lange (1997) derives an expression 

(5.5) 

by a different method, again with notation differing slightly from ours. (Here, 
< r, t >is the inner product Lj riti.) Rather than deriving this equation directly, 
we use equation (5.4) to show that (5.2) and (5.5) are equivalent. Substituting (5.4) 
into (5.5) we obtain 

L( -1)<r,t> if>t = L( -l)<r,t> ( L Pr(C =c)) 
t c~(l-t) 

= L ( L ( -l)<r,t>) Pr(C =c). 
c t:S(l-c) 

Equating coefficients of Pr(C =c) from (5.2), to complete the proof we need only 
show that for each r and c 

L ( -1)<r,t> 
t:S(l--c) 

where I { c 2:: r} = 1 if c 2:: r, and 0 otherwise. Consider first the case c 2:: r. Then 
ri = 1 => Cj = 1 => t1 = 0, so< r, t >= 0 and we sum terms (+1) over 2II-c1 
values oft, confirming this case. Now consider any other c, and consider any one 
component j for which ri = 1 but Cj = 0. Thus 1 - Cj = 1, and we sum over 
t1 = 0 and ti = 1. For each set of values of the other tJ', the two values of t1 give 
opposite signs to ( -1) <r,t>. The coefficients cancel, and the overall coefficient is 0, 
as required. This completes the proof. 

Given a model which determines either Pr(C = c) or if>t, exact computation of 
probabilities Pr(R = r) of all patterns of recombination and non-recombination 
in a set of L- 1 marker intervals is practical for L up to about 12. Two methods of 
likelihood evaluation under interference have been proposed: both rely on efficient 
computation of these probabilities. Weeks et a!. (1993) provides an approach 
for models of count interference (see section 5.6), while Lin and Speed (1996) 
provides a method for the renewal process chi-square models of position interference 
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(section 5.7). For a fixed marker map, it is feasible to precompute and store 
these probabilities for up to about 12 markers (211 = 2048). However, using these 
probabilities in any exact computation of a likelihood on a pedigree usually entails 
highly computationally intensive procedures, further limiting L and/ or the pedigree 
sizes and structures that can be considered. 

5.5 Chromatid interference 

Where only one of the four gametic products of meiosis can be observed, it is 
hard to find evidence for chromatid interference. However, the non-negativity 
of probabilities P(C = c) in equation (5.2) does impose constraints on feasible 
recombination pattern probabilities P(R = r). Conversely, observed frequencies 
of patterns of recombination can provide evidence for the existence of chromatid 
interference. We consider now one specific constraint implied by Mather's formula, 
whose violation may provide evidence for chromatid interference (Fisher, 1948). 
Mather's formula (5.1) implies that recombination probabilities are an increasing 
function of genetic distance, bounded above by ~. Under chromatid interference 
this is no longer so. Consider, in particular, the case of complete positive chromatid 
interference: in that case, successive chiasmata involve alternating disjoint pairs of 
non-sister chromatids. Then the recombination probability at genetic distance d is 

p(d) = ~Pr(N(d) odd) + Pr(N(d) even but not divisible by 4). 

In the case when the chiasma process is a Poisson process rate 2, this becomes 

p(d) 

= 

1 ( 00 (2d)2k+1 
2 exp( -2d) t;c (2k + 1)! 

1 
2(1- exp( -2d) cos(2d)). 

(2d)4k+2 ) 
+ 2 (4k+2)!) 

In this case, p(d) is greater than ~ at certain distances, and is not monotone. 
Fisher (1948) discusses possible evidence for p(d) > ~ in the case of the 
pseudoautosomal region of the mammalian sex chromosomes in mice; Weinstein 
provides an interesting contribution to the discussion. 

Another possibility is complete negative chromatid interference: in this ease every 
chiasma on the tetrad involved the same pair of chromatids. Then half the gametes 
would show no recombination, but in the other potential two gametes from a meiosis 
every chiasma results in a crossover. Again, when chiasmata occur as a Poisson 
process rate 2, 

p(d) 
1 
2Pr(N(d) odd) = 

1 
4(1- exp( -4d)). 

Note that when d is small, p(d) ~ d, as usual. However, at large genetic 
distances, only one half of the gametes show independent segregation, the other half 
apparently showing tight linkage. With multilocus data, such an extreme pattern of 
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recombination would be detectable. A less extreme pattern might simply be thought 
to be due to heterogeneity of recombination among meioses. Chromatid interference 
is very much confounded both with other forms of interference, and interference in 
general may be confounded with heterogeneity in recombination. For the remainder 
of this chapter we consider only models with no chromatid interferenee. 

To ensure a biologically feasible interference model, a model of chiasma formation 
in the chromatid tetrad at meiosis is desirable. Under the no-interference model 
(Haldane, 1919), chiasmata, and hence crossovers, arise as 9- .. Poisson process; the 
count on a chromosome arm has a Poisson distribution, a'n<( conditionally on the 
count their positions are independently and uniformly distributed (all distributions 
being in terms of genetic, not physical, distance). Thus, in the absence of chromatid 
interference, there are, broadly, two classes of interferenee model: count interference 
and position interference. 

5.6 Count-location models for chiasmata 

In a count-location model, the count of chiasmata on a chromosome arm is no 
longer necessarily Poisson, but conditional upon the count, they are independently 
and uniformly distributed. In such models 

<Pt = <P( < t, d >) 

where dj is the genetic length of interval Ij. That is, the chiasma avoidance 
function depends only on the total length of chromosome avoided. Such models 
have been considered by Liberman and Karlin (1984), who call the corresponding 
map functions p( d) multilocus feasible. 

Suppose that the probability mass function of the total number of chiasmata N 
on a chromosome arm length A Morgans has probability generating function YN(·). 
Then, given N = n, the probability of no chiasmata in length dis (1 - d/ A)", and 

(5.6) </J(d) 
00 d 

= l:Pr(N=n)(l-A)n = YN(1-d/A) 
n=O 

with corresponding map function, from Mather's formula, 

(5.7) p(d) = 1 
-(1- </J(d)) 
2 

Note that the expected number of chiasmata N in length A of chromosome is, by 
the definition of genetic length, 2A. 

Consider now some simple examples: 
(1) Suppose N has a Poisson distribution with mean 2A: N "'P(2A) 
Then YN(w) = E(wN) = exp(2A(w- 1)) and from equation (5.6), 

<P(d) 
d 

exp(2A(1--- 1)) 
A 

exp( -2d) 
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and from equation (5.7) we have again the no-interference equation (4.2). 

(2) Another tractable count-location model is given by assuming a fixed maximum 
number K of chiasmata on a chromosome, and that N "' B(K, ~), with 2A = 
E(N) = K/2. 
Then gN(w) = E(wN) = (~(1 + z))K and from equation (5.6), 

</J(d) (~(2-~))K = (1-~)4A 
2 A 2A . 

For large chromosomes, there is little interference: ¢(d) becomes close to the non­
interference value exp( -2d). On small chromosomes there is stronger interference. 
For example, if A=~' <P(d) = (1- d) 2 , p(d) = d(1- ~d); the avoidance probability 
is smaller, and the recombination probability larger, than in the absence of 
interference. 

(3) It appears to be be a biological reality, that for correct division of the 
chromosomes in the first meiotic division (Figure 5.1(d) to Figure 5.1(e)), each 
chromosome pair should have at least one chiasma. Note that under any such 
model N 2: 1 so that A = ~E(N) 2: ~; in fact, even the smallest human 
autosomcs have genetic length estimates just over 0.5 Morgans. One example 
of a model which incorporates this restriction is the truncated Poisson model, in 
which N has a Poisson distribution (N "' P(a.)) conditioned on N 2: 1. Then 
2A = E(N) = a./(1 - exp( -a.)), and A is an increasing function of a., increasing 
from ~ when a.= 0. Then 

exp(a.(w- 1))- exp( -a.) ) exp(a.(1 - _Ad))- 1 
and </J(d = . 

1- exp(-n) cxp(a.)- 1 

( 4) An alternative model incorporating the restriction N 2: 1 is that due to Sturt 
(1976), in which N has a shifted, rather than truncated, Poisson distribution: 
(N- 1) "'P(2A- 1). Then 

d d 
9N(w) = wexp((2A -1)(w -1)) and </J(d) = (1- A)cxp(-(2A -1)A). 

The Sturt model has been found to fit existing data well (Weeks et al., 1993). 
All the models (2),(3) and (4) are dose to the Haldane model on large 

chromosomes, but show different departures on small chromosomes. It is an 
unfortunate feature of count-location models that the recombination probability 
at genetic distance d is determined by the length of the chromosome and the 
distribution of N on the entire chromosome. 

5. 7 Renewal process models of chiasma formation 

Although count-location models are convenient, mathematically, it is implausible 
that, given N, chiasmata are independently located. In particular, the consequence 
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that the chiasma avoidance function depends only on total length avoided is 
unrealistic. Consider two intervals, lengths d1 and d3 separated by an interval 
length d2 • Then, for a count location model, the probability 

and is independent of d2 . Position interference models allow for more general 
meiotic processes; we will consider only those where chiasmata arise as a stationary 
renewal process (Speed, 1996; Lange, 1997). This imposes certain restrictions on 
the map function p(d), which are discussed by Speed (1996); subject to these 
restrictions, the renewal density is - p" (d). 

We consider briefly some examples: more details are given by Speed (1996) and 
references therein. 
(1) Suppose chiasmata occur along the tetrad bundle as a Poisson process, rate 
2, so that the inter arrival time distribution is exponential with mean t, and has 
probability density function 2 exp( -2d). Integrating twice, and imposing the 
conditions p(O) = 0, and p'(O) = 1, we obtain again equation (4.2), confirming this 
interpretation of the no-interference model. 

(2) Kosambi (1944) proposed a map function 

p(d) 
1 
2 tanh(2d) ~ (exp(4d)- 1) 

2 exp(4d) + 1 

which satisfies the conditions detailed by Speed ( 1996) and results in a renewal 
density 

16 (exp(2d)- exp( -::-2d)) 
(exp(2d) + exp( -2d))3 · 

Although this map function is not rnultilocus feasible in the sense of Liberman and 
Karlin (1984), it has a valid interpretation as the result of a renewal process model 
for chia..'lmata. The renewal process class of models includes almost all of the map 
functions proposed in the literature, but not the Sturt map function. 

(3) Although the Sturt count-location model has no renewal process analogue, 
the truncated Poisson distribution does (Browning, 1999). This shows that two 
quite different processes can lead to same map function (Speed, 1996). f'urthcr, 
Browning (1999) has shown that a ~oro-modified Poisson distribution is the 
unique model that is both a count-location and a stationary renewal-process. 
(This includes, of course, both the Poisson model and the truncated Poisson model.) 

( 4) A flexible and simple renewal-process model is the chi-square model (Zhao et al., 
1995). The renewal density is a sealed x~(m+ll, with the sealing ( 4(m + 1))-1 such 

that the expeeted inter-arrival distance is ~. One interpretation of this model 
is that potential chiasmata oecur as a Poisson process and that every ( m + 1) th 

such potential chiasma becomes an actual chiasma. These models fit data well 
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(Zhao et al., 1995), and have properties that make recombination probabilities over 
several loci, and hence likelihood computations on pedigrees, somewhat tractable 
(Lin and Speed, 1996). A generalization of the chi-squared model is the Poisson-skip 
model (Lange, 1997). In this case, the r th potential chiasmata becomes one with 
probability f3r· The renewal density is a mixture of chi-squared (x2 ) distributions, 
with the scaling of genetic distance again chosen such the mean inter-arrival time 
of the chiasma process on the tetrad is ~. 



80 CHAPTER 5. MODELS FOR MEIOSIS 


	rcsps_vol6_85_of_190
	rcsps_vol6_86_of_190
	rcsps_vol6_87_of_190
	rcsps_vol6_88_of_190
	rcsps_vol6_89_of_190
	rcsps_vol6_90_of_190
	rcsps_vol6_91_of_190
	rcsps_vol6_92_of_190
	rcsps_vol6_93_of_190
	rcsps_vol6_94_of_190
	rcsps_vol6_95_of_190
	rcsps_vol6_96_of_190

