
SECTION 1 

Introduction 

As it has developed over the last decade, abstract empirical process theory has 
largely been concerned with uniform analogues of the classical limit theorems for 
sums of independent random variables, such a..'> the law of large numbers, the central 
limit theorem, and the law of the iterated logarithm. In particular, the Glivenko
Cantelli Theorem and Donsker's Theorem, for empirical distribution functions on 
the real line, have been generalized and extended in several directions. Progress 
has depended upon the development of new techniques for establishing maximal 
inequalities for sums of independent stochastic processes. These inequalities can 
also be put to other uses in the asymptotic theory of mathematical statistics and 
econometrics. With these lecture notes I hope to explain some of the theoreti
cal developments and illustrate their application by means of four nontrivial and 
challenging examples. 

The notes will emphasize a single method that has evolved from the concept of a 
Vapnik-Cervonenkis class of sets. The results attained will not be the best possible 
of their kind. Instead I have chosen to strive for just enough generality to handle the 
illustrative examples without having to impose unnatural extra conditions needed 
to squeeze them into the framework of existing theory. 

Usually the theory in the literature has concerned independent (often, also iden
tically distributed) random elements 6, 6, ... of an abstract set 3. That is, for 
some a-field on 3, each ~i is a measurable map from a probability space (n, A, JP') 
into 3. For each n, the { ~i} define a random probability measure on the set 3: the 
empirical measure Pn puts mass 1/n at each of the points 6(w), ... , ~n(w). Each 
real-valued function f on 3 determines a random variable, 

1 
Pnf =- L f(~i(w)). 

n .< ,_n 
For fixed J, this is an average of independent random variables, which, under 
appropriate regularity conditions and with the proper standardizations, will satisfy 
a law of large numbers or a central limit theorem. The theory seeks to generalize 
these classical results so that they hold uniformly (in some sense) for f ranging 
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over various classes :J of functions on 2. 
In asymptotic problems, :J is often a parametric family, {!(·, t) : t E T}, with T 

not necessarily finite dimensional. One can then simplify the notation by writing 
fi(w, t) instead of f(ei(w), t). In my opinion, this is the most natural notation for 
the methods that will be developed in these notes. It accommodates gracefully 
applications where the function f is allowed to change with i (or n). For example, 
in Section 11 we will encounter a triangular array of processes, 

for i = 1, ... , n, 

generated by a reparametrization of a censored regression. The { Zni} will be con
structed from the deterministic vectors {xi} by means of a transformation that 
depends on n. Such processes do not fit comfortably into the traditional notation, 
but their analysis depends on the same symmetrization and conditioning arguments 
as developed in the literature for the empirical measure Pn. 

The notation also allows for transformations that depend on i, as with the 
fi(w, t)/i that will appear in Section 8. It also eliminates an unnecessary nota
tional distinction between empirical processes and partial-sum processes, bringing 
both closer to the theory for sums of independent random elements in Banach 
space. In these notes, however, I will concentrate on problems and methods that 
are usually identified as belonging to empirical process theory. 

The general problem to be attacked in the next six sections will be that of finding 
probabilistic bounds for the maximal deviation of a sum of independent stochastic 
processes, 

Sn(w, t) = L fi(w, t), 
i:::;n 

from its expectation, 

Mn(t) = IPSn(·, t) = L IPfi(·, t). 
i:::;n 

That is, we will seek to bound ~n(w) = suptET /Sn(w, t)- Mn(t)/. In applications 
the fi will often acquire a second subscript to become a triangular array. But, since 
most of the argument is carried out for fixed n, there is no need to complicate the 
notation prematurely. 

For a general convex, increasing function <I> on JR+, Section 2 will derive a bound 
for IP <I>(~n). The strategy will be to introduce a more variable process, 

Ln(u,w) = sup/Ladi(w,t)j, 
t i:::;n 

defined by means of a new sequence of independent random variables { ai}, each 
O'i taking only the values +1 and -1, both with probability 1/2. We will find that 
IP<I>(~n) is less than IP<I>(2Ln). 

With w held fixed, Ln is a very simple process indexed by a subset of JRn, 

:fw = {(h(w, t), ... , fn(w, t)): t E T}. 

The indexing of the points of :J w by T will become irrelevant; the geometry of :J w 
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will be all that matters. In terms of the usual inner product on ]Rn, 

Ln(u,w) = sup lu ·fl. 
fES'w 
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Section 3 will establish a general inequality for processes like this, but indexed by 
fixed subsets of JRn; it will be applied conditionally to Ln. The inequality will take 
the form of a bound on an Orlicz norm. 

If iP is a convex, increasing function on JR+ with 0 S <P(O) < 1, the Orlicz norm 
IIZII<t> of a random variable Z is defined by 

IIZII<t> = inf{C > 0 : J!b<P(IZI/C) S 1}, 

with +oo as a possible value for the infimum. If J!b<P(IZI/Co) < oo for some finite 
Co, a dominated convergence argument shows that J!b <P(IZI/C) -+ <P(O) < 1 as 
C ...... oo, which ensures that IIZII<t> is finite. If one identifies random variables that 
are equal almost everywhere, II · I let> defines a norm on the space £., <l> of all random 
variables Z for which IIZII<t> < oo. (The space t:.,<t> is even complete under this norm, 
a property we will not need.) In the special case where <P(x) = xP for some p 2:: 1, 
the norm ll·ll<t> coincides with the usual II· liP, and £., <t> is the usual space of random 
variables with finite pth absolute moments. Finiteness of IIZII<t> places a constraint 
on the rate of decrease for the tail probabilities via the inequality 

JP{IZI 2:: t} S J!b<P(IZI/C)/<P(t/C) 

s 1/<P(t/C) if c = IIZII<l>· 
The particular convex function 

IJ!(x) = i exp(x2 ) 

would give tails decreasing like exp( -Ct2 ) for some constant C. Such a rate of 
decrease will be referred to as subgaussian tail behavior. 

The inequality in Section 3 will be for processes indexed by a subset ~ of JRn. It 
will take the form of a bound on the particular Orlicz norm, 

II sup lu · flliw• 
fES' 

involving the packing numbers for the set ~. [The packing number D(f, :J) is the 
largest number of points that can be packed into~ with each pair at least e apart.] 
In this way we transform the study of maximal inequalities for ~n into a study of 
the geometry of the set ~ w. 

Section 4 will make the connection between packing numbers and the combina
torial methods that have evolved from the approach of Vapnik and Cervonenkis. It 
will develop the idea that a bounded set ~ in JRn that has a weak property shared 
by V -dimensional subspaces should have packing numbers like those of a bounded 
subset of lR v. The three sections after that will elaborate upon the idea, with Sec
tion 7 summarizing the results in the form of several simple maximal inequalities 
for ~n· 

Section 8 will transform the maximal inequalities into simple conditions for uni
form analogues of the law of large numbers. Sections 9 and 10 will transform them 
into uniform analogues of the central limit theorem-functional limit theorems that 
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are descendents of Donsker's Theorem for the empirical distribution function on the 
real line. The approach there will depend heavily on the method of almost sure 
representation. 

Section 9 will be the only part of these notes where particular care is taken with 
questions of measurability. Up to that point any measurability difficulties could 
be handled by an assumption that T is a Borel (or analytic) subset of a compact 
metric space and that each of the functions fi(w, t) is jointly measurable in its 
arguments w and t. Such niceties are left to the reader. 

The challenging applications will occupy the last four sections. 
The key to the whole approach taken in these notes is an important combinatorial 

lemma, a refinement of the so-called Vapnik-Cervonenkis Lemma. It deserves an 
immediate proof so that the reader might appreciate the simplicity of the foundation 
upon which all else rests. 

In what follows, Swill denote the set of all2n possible n-tuples of +1's and -1's. 
The pointwise minimum of two vectors CT and 7J inS will be denoted by CT 1\ 71· The 
symbol # will denote cardinality of a set. Inequalities between vectors in S should 
be interpreted coordinatewise. 

(1.1) BASIC COMBINATORIAL LEMMA. For each map 17 from S into itself there 
exists a one-to-one map () from S onto itself such that 0( CT) 1\ CT = 17( CT) 1\ CT for 
every CT. 

PROOF. Replacing TJ( CT) by 17( CT) 1\ CT if necessary, we may simplify the notation 
by assuming that TJ(CT) ~ CT for every CT. Then for each CT inS we need to choose O(CT) 
from the set K ( CT) = { o: E S : o: 1\ CT = TJ( CT)}. For each subset A of S define 

K(A) = U K(CT). 
<TEA 

The idea is to prove that #K(A) ~ #A, for every choice of A. The combinatorial 
result sometimes known as the Marriage Lemma (Dudley 1989, Section 11.6) will 
then imply existence of a one-to-one map () from S onto itself such that 0( CT) E K ( CT) 

for every CT, as required. 
For the special case where TJ(CT) = CT for every CT, the inequality holds trivially, 

because then CT E K(CT) for every CT, and K(A) 2 A for every A. The general case 
will be reduced to the trivial case by a sequence of n modifications that transform 
a general T/ to this special 'TI· 

The first modification changes the first coordinate of each TJ(CT). Define a new 
map 'T/* by putting TJ*(CT)i = TJ(CT)i for 2 ~ i ~ n, and TJ*(CTh = a 1 . Let K*(CT) be 
the subset of S defined using 'T/*. We need to show that 

#K(A) ~ #K*(A). 

To do this, partitionS into 2n-l sets of pairs {,a-, ,a+}, where each ,a- differs from 
its ,a+ only in the first coordinate, with /31 = -1 and /3{ = + 1. It is good enough 
to show that 

# [K(A) n {,8-, ,a+} J ~ # [K*(A) n {,8-, ,a+} J 
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for every such pair. This will follow from: (i) if 13- E K*(A) then K(A) contains 
both 13- and (3+; and (ii) if (3+ E K*(A) but 13- ¢. K*(A) then at least one of (3-
and (3+ must belong to K(A). 

Let us establish (i). Suppose 13- E K*(A). Then, for some u in A, we have 
(3- E K*(u), that is /3- 1\ u = 17*(u). For this u we must have 

-1 = min[-1,111] = 1J*(uh = 111. 

Since 7J(u) :5 u, it follows that 7J(uh = -1 and 17(u) = 1J*(u). Thus (3+ 1\ u = 
(3- 1\ u = 7J(u), as required for (i). 

For (ii), suppose (3+ belongs to K*(A) but 13- does not. Then, for some u in 
A, we have 13+ 1\ u = 17* ( u) =f:. 13- 1\ u. Both vectors 13+ 1\ u and /3- 1\ u agree with 
17* ( u ), and hence with 17( u ), in coordinates 2 ton. Either 17( u h = -1 = ((3- 1\ u h 
or 7J(uh = 111 = +1 = (/3+ 1\ uh. Thus either 17(u) = (3+ 1\ u or 7J(u) = 13- 1\ u, 
as required for (ii). 

We have now shown that the modification in the first coordinate of the 1J map 
reduces the cardinality of the corresponding K(A). A similar modification of r/* 
in the second coordinate will give a similar reduction in cardinality. After n such 
modifications we will have changed 1J so that 17( u) = u for all u. The corresponding 
K(A) has cardinality bigger than the cardinality of A, because it contains A, but 
smaller than the cardinality of the K(A) for the original7J. D 

REMARKS. Several authors have realized the advantages of recasting abstract 
empirical processes as sums of independent stochastic processes. For example, 
Alexander (1987b) has developed general central limit theorems that apply to both 
empirical processes and partial-sum processes; Gaenssler and Schlumprecht (1988) 
have established moment inequalities similar to one of the inequalities that will 
appear in Section 7. 

The proof of the Basic Combinatorial Lemma is based on Lemmas 2 and 3 of 
Ledoux and Talagrand (1989). It is very similar to the method used by Steele (1975) 
to prove the Vapnik-Cervonenkis Lemma (see Theorem 1!.16 of Pollard 1984). 
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