
CHAPTER 8 

Finite de Finetti Style 
Theorems 

The purpose of this chapter is to introduce the ideas surrounding the so called 
finite de Finetti style theorems. Four examples, one of which comes from the 
classical de Finetti theorem and three related to the normal distribution, are 
discussed here. These examples are introduced by first describing the "infinite 
version" of a result and then moving to the "finite version." In all of these 
examples, the infinite version came first, followed by a finite version. However, 
recent work on finite versions has suggested new infinite versions; some of these 
are discussed in the next chapter. 

8.1. The de Finetti theorem. We begin with a review of the classical 
de Finetti theorem for an exchangeable infinite sequence of 0-1 valued random 
variables. Let X= {0, 1} and for each integer n, 1 .::;; n < + oo, let x<n) be the 
n-fold product of X with itself. Given a probability P on the infinite product xoo, 
p<n) denotes the projection of Ponto x<nl. If X= (X1, X2, .•• ) is a sequence of 
random variables with values in X 00 , then x<n) denotes the first n coordinates of 
X. Thus, if the probability law of X in X 00 is P, written !l'(X) = P, then 

Recall that P, a probability on xoo, is called exchangeable if for each n, p<n) 
on x<n) is exchangeable, that is, if p<n) is invariant under the action of the 
permutation group on x<n). Equivalently, if X E X 00 , then X is exchangeable if 
for each n, the random vector x<n) has a distribution which is invariant under 
permutations. As an example, let Z = (Z1, Z2 , ••• ) be a sequence of iid Bernoulli 
random variables with probability a of success and let Pa denote the distribution 
of Z on xoo. Obviously Pais exchangeable as is any mixture, over a, of P,. That 
is, let J.L be a probability measure defined on the Borel sets of [0, 1] and define P~" 
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on xoo by 

(8.1) 

for B in the a-algebra of xoo. Thus, for each n, 

(8.2) 

for relevant sets B. These two equations are often written as 

(8.3) 

and 

(8.4) 

a notation which is adopted here. Thus, [>,. given in (8.3) is exchangeable. The 
important observation of de Finetti (1931) is: 

THEOREM 8.1. Suppose P on xoo is exchangeable. Then there is a unique 
probability measure p. on [0, 1] such that 

(8.5) 

One consequence of (8.5) is that for each positive integer k, 

(8.6) 

In other words, all of the marginal distributions of P have the representation 
(8.6). Now, fix a finite integer n and assume p<n) on x<n) is exchangeable. Thus 
all of the lower dimensional marginals, say p<kl with 1 :$; k < n, are exchange­
able. It seems natural to ask if the p<kl have the representation (8.6). The 
answer is no; an example is given below. However, what is true is that the p<kJ 
"almost" have such a representation when n is a lot bigger than k. The problem 
is to make this precise. We now tum to a careful discussion of this problem 
which was solved by Diaconis and Freedman (1980). 

The sample space x<nl consists of n dimensional vectors, which we write as 
column vectors 

x= 

where each X; is 0 or 1. The group of n X n permutation matrices !!i'n acts on the 
left of x<n>. Consider a probability measure p<nl on x<nl which is exchangeable, 
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that is, p<nl satisfies 

(8.7) gp\n) = p<n), 

or equivalently, 

where p<nl = .P(X<nl). The results of Example 4.2 give us a representation for 
p<nl. A cross section in this example is 

Y ={Yo, Yu···• Yn}, 

where Yi has its first i elements equal to 1 and the remaining elements are 0. 
Thus x<nl has a representation as x<nl = UY where U is uniform on !!J'n, Y is 
independent of U and Y has an arbitrary distribution on Y. Let Hi denote the 
distribution of Uyi on x<nl. Obviously Hi is the uniform distribution on the orbit 

{gyilg E !!J'n} 

and Hi puts mass ( 7) -I on each point in this orbit. Let 

Pi= Prob{Y = yJ. 
From the representation x<nl = UY, it is clear that 

(8.8) 
n 

p(n) = L pJ!i. 
i~O 

Conversely, any probability measure of the form 

is exchangeable. Further, the representation is unique because the Hi are mutu­
ally singular. Summarizing we have: 

THEOREM 8.2. In order that p<nl on x<nl be exchangeable it is necessary 
and sufficient that 

n 

(8.9) p<n) = L PiHi 
i~O 

for some Pi~ 0, '[.pi= 1. The representation is unique. 

It is clear that the set of exchangeable probabilities on x<nl is a convex set. 
Theorem 8.2 shows that the extreme points of this convex set are H0 , H 1, ... , Hn. 
Now, focus on the exchangeable probability H1 and let .P(X<nl) = H 1• Consider 
the possibility of representing H 1 in the form (8.6), that is, suppose 

(8.10) 

for some f.L where p;_n) is the probability measure for iid Bernoullis with success 
probability a. The claim is that (8.10) cannot hold for any f.L· On the contrary, if 
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(8.10) holds, observe that 

and 

1/n = EX[n> = [ap.( da) 
0 

0 = EX[n>x~n) = [a2p.(da). 
0 
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The second equation implies that p.({O}) = 1 and this contradicts the first 
equation. This shows Theorem 8.1 is false for every finite n. 

Again assume p<nl = .P(X<nl) is an exchangeable probability on x<n>. As 
usual, x<k) is the vector of the first k coordinates of x<n) where p<k> = .P(X<k>). 
Obviously p<kl is an exchangeable probability on x<kl and p<k) is the "projec­
tion" of p<n> down to x<k>. More precisely, let w be the k X n matrix defined by 

w = ( lk 0): k X n, 

where Ik is the k x k identity matrix. Obviously 
wx<n> = x<k> 

so 

where 
(wp<nl)(B) = p<n>(w- 1(B)) 

for subsets B of x<k>. A main result in Diaconis and Freedman (1980) shows that 

(8.11) !lk,n = i~f~~p(k)- fp~k>p.(da)ll :S: 4kjn, 

where II · II denotes variation distance (as discussed in Chapter 7) and the in£ is 
over all the Borel measures on [0, 1]. The interpretation of (8.11) is that when 
p(k) is the projection of an exchangeable probability on x<n>, then p<k> is within 
4kjn of some mixture of iid Bemoullis. The basic step in the proof of (8.11) is 
the following: 

THEOREM 8.3. The variation distance between wH; and p~k) with a= ijn is 
bounded above by 4kjn. 

PROOF. With .P(X<k>) = wH;, x<k> is the outcome of k draws made without 
replacement from an urn with i 1's and n - i O's. But p~k) represents the 
probability measure of k draws made with replacement from the same urn. 
Bounding the variation distance between wH; and p~k>, which involves some 
calculus, is carried out in Lemma 6 of Diaconis and Freedman (1980). 0 

THEOREM 8.4. Given an exchangeable p(n) on x<n) and p<k) = wP<n>, Equa­
tion (8.11) holds. 

PROOF. First use Theorem 8.2 to write 
n 

p(n) = L P;H; 
i=O 
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so that 
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n 

p<kl = '!Tp<nl = L P;'lTH;. 
i=O 

Let p. 0 be the probability on [0, I] which puts mass P; at the point a; = ijn, 
i = 0, ... , n. Then 

D.k,n = i~f~~p(k)- fp~klp.(da)ll :s:llp<kl- fp~k)P.o(da)ll 

=II ~P;'lTH; - ~piP~,k) II :5: ~Pill 'IT Hi - P~,k) II :5: 4kjn, 

where the last inequality follows from Theorem 8.3. Then next to the last 
inequality is a consequence of the fact that variation distance is a norm and 
hence is a convex function. 0 

The argument given above shows that to bound D.k n in (8.11), it is sufficient 
(and necessary) to bound D.k n when p<kl is one of th~ projected extreme points 
'IT Hi, i = 0, ... , n. This type ~f argument is used in all of the examples in this and 
the next chapter. Theorem 8.4 is often called a finite style de Finetti theorem 
because n and k are both fixed and finite. This result can be used to provide an 
easy proof of the infinite de Finetti theorem. For example, see 'l'heorem 14 in 
Diaconis and Freedman (1980) where the sort of argument used above provides 
an easy proof of the Hewitt-Savage (1955) generalization of the de Finetti 
theorem. An interesting related paper is Dubins and Freedman (1979). 

Finally, a few remarks about extendability. Theorem 8.4 concerns those p<kJ 
on x<kl which are n-extendable in the sense that there exists an exchangeable 
p<n) on x<n) such that 

p(k) = '!Tp(n). 

Thus, an n-extendability assumption on p<kl is equivalent to saying that p<kl is 
the projection of some exchangeable p<nl on x<nJ. This latter condition is a bit 
more convenient and will appear throughout this and the next chapter. However, 
the reader should keep the equivalence in mind since n-extendability sometimes 
is a bit easier to think about. 

The results of this section show that if p<kJ is n-extendable for all large n, 
then p<k) has the representation (8.6). However, if p<k) is n-extendable for some 
fixed n, then (8.6) need not hold, but when n is much bigger than k, then (8.6) 
almost holds in the sense of Theorem 8.4. 

8.2. Orthogonally invariant random vectors. The material in this section 
is related to Example 4.3. For 1 ::::; n::::; oo, let Rn denote n dimensional coordi­
nate space. Given X= (X1, X2, ••. ) in R 00 , X has an orthogonally invariant 
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distribution if for each finite n, 

xn 
has an on invariant distribution. If X E R<Xl and p = !t"(X), we say p is 
orthogonally invariant if X is orthogonally invariant. Of course, this means that 
for each finite n, the projected measures 

p<n) = !£'( x<n)) 
are on invariant. 

For example, if Z = (Z1, Z2 , ••• ) has iid coordinates which are N(O, a 2 ), let P" 
denote the probability on Rrx; of Z. Then p~n) is the joint distribution of 

zl 
z<n) = 

z2 

In other words, 
!t"(z<nl) = N(O, a2In) 

for 0.::;; a < + oo, so P" is orthogonally invariant. Given any probability J.L on 
[0, oo ), it is clear that 

(8.12) 

is orthogonally invariant. Probabilities of the form (8.12) are called scaled 
mixtures of normals. When (8.12) holds, then for each n, 

(8.13) PJn) = loop~n)p.(da). 
0 

In the present setting, here is the "infinite theorem." 

THEOREM 8.5. P on R<Xl is orthogonally invariant iff P has the representa­
tion (8.12). Further the representation in (8.12) is unique. 

This result is commonly attributed to Schoenberg, but see Section 6 in 
Diaconis and Freedman (1987). A proof of this theorem, based on the "finite 
version" given below, can be found in Theorem 3 in Diaconis and Freedman 
(1987). The representation has been rediscovered in a number of different 
contexts, for example, see Hill (1969), Andrews and Mallows (1974) and Eaton 
(1981). The uniqueness part of the theorem follows easily from the uniqueness of 
Laplace transforms because (8.12) implies 

PJ1l = 100 PYlJ.L ( da). 
0 
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Thus PJ1l has characteristic function 

t--+ fooo exp(- ~a 2t2 ] JL( da ). 

Therefore, if JL 1 and JL 2 both represent P1, they have the same Laplace trans­
forms and hence are equal. 

We now turn to a finite version of Theorem 8.5. Fix a positive integer n and 
let p<nl be an On-invariant probability on Rn. Given r ~ 0, let Hr denote the 
uniform distribution on 

{xlx ERn, llxll = r}, 
the sphere of radius r in Rn. Naturally H0 is the probability degenerate at 
0 E Rn. Clearly each Hr is On-invariant. The arguments given in Chapter 4 
establish: 

THEOREM 8.6. A probability p<nl on R<nl is On-invariant iff for some Borel 
measure JL on [0, oo ), 

(8.14) p<n) = loo Hr!L( dr). 
0 

It is clear that the On-invariant probability H1 cannot be represented in the 
form (8.12). Thus, Theorem 8.5 is false for any finite integer n. To establish an 
analog of Theorem 8.4 in the present context, fix an integer k < n and let p<kl 
be the probability measure of the first k coordinates of x<nl where p<nl = 
2(X<nl). Further, let 

7r = (Ik 0): k X n 

be a k X n real matrix so 

and 
p<k) = 7T p<n). 

The main result below, due to Diaconis and Freedman (1987), shows that p<kl is 
close to a scale mixture of normals in the following sense: 

THEOREM 8.7. Assume p<n) is On-invariant and k :s; n- 4. Then, with 
p<k) = 7Tp(n), 

(8.15) dk,n= i~fllp(k)_ Iaoop;k)JL(da)ll :s; :~:~)3' 
where II ·II denotes variation distance and the inf is over all Borel measures on 
[0, oo). 

The proof of this theorem follows much the same lines as the proof of 
Theorem 8.4. Equation (8.15) is first established for 1rHr and then (8.14) is used 
for the general case. 
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THEOREM 8.8. Inequality (8.15) holds for p<k) = 'TTHr for each r ::?: 0. 

PROOF. For r = 0, the result is obvious. For r > 0, Hr is the probability 
measure of the random vector 

x<n) = ru<n), 

where u<n) is uniform on the sphere of radius 1 in Rn. Thus, 7THr is the 
distribution of 

7T x<n) = rU<k). 

Taking p = k in Proposition 7.6 shows that 

-ll£>(vnu<kl) - N(o, Ik) II :-:; 2(k + 3)/(n- k- 3). 

Because variation distance is invariant under one-to-one bimeasurable transfor­
mations, this implies that 

(8.16) 

Hence (8.15) holds for 'TTHr because 'TTHr = .P(rU<kl). 0 

PROOF OF THEOREM 8.7. Because p<n) is On-invariant, (8.14) implies that 

p<k) = 7Tp(n) = fooo'TTHrP.o( dr) 

for some !Lo· Thus, using (8.16), 

i~fllp<kl- {~)N(o, r 2Ik)JL(dr)ll 

:-:;II p<kl - Iaoo N( 0, n -·lr2Jk )P.o( dr) II 

= lliuoo 7THrJLo(dr)- foooN(O, n- 1r 2Ik)!Lo(dr) II 

:$100 117THr- N(O, n- 1r 2Ik)IIJLo(dr) :-:; 2(k + 3)/(n- k- 3). 0 
0 

The essentials of the argument are much the same as they were in Section 8.1, 
namely, the set of On-invariant probabilities is a convex set with extreme points 
Hr, r::?: 0. Thus, to approximate p<k) well by a scale mixture of normals, it is 
sufficient to approximate 'TTHr well (in this case, uniformly) by scaled normals. 
This is what Theorem 8.8 together with Proposition 7.6 does. 

The remarks concerning extendability made at the end of the previous section 
apply here. In particular, if p<k) on Rk is 0k-invariant and if p<k) is n-extend­
able (that is p<kl = 7Tp(n) for some 0 -invariant p<n) on Rn) then p<k) is 

' n ' 
within 2(k + 3)/(n- k- 3) of some scale mixture of normals. This is just a 
restatement of Theorem 8.7. 
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8.3. Orthogonally invariant random matrices. Here, the results of the 
previous section are extended to the matrix case. First a bit of notation is 
needed. Fix a positive integer q and let .Pq, n be the vector space of all real 
n X q matrices, 1 :;;; n:;;; + 00. Given a random matrix X in .Pq,oo> let x<n>: 
n X q for 1 :;;; n < + oo denote the matrix in .Pq, n consisting of the first n rows 
of X. If P = .P(X) is the distribution of X, then p<nl denotes the distribution of 
x<n>. The group On acts on .Pq, n via matrix multiplication on the left: 

X~ gx, X E .Pq,n• g EOn. 

A probability P on .Pq, 00 is left-orthogonally invariant if for each finite n, 

p<n) = gp(n), g EOn. 

Thus, if .P(X) = P and Pis left-orthogonally invariant, then 

.P(gX<nl) =.P(X<nl), g EOn, 

for each finite n. 
As an example, consider Z in .Pq,oo whose rows Z{, Z:2, ... are iid Nq(O, a 2) 

where a is a q X q positive semidefinite matrix. Then 

.P(z<nl) = N(O, In® a 2 ) 

with ® denoting the Kronecker product. Let Pa = .P(Z) so Pa is obviously 
left-orthogonally invariant. Further, given any probability measure f.L on the set 
S of q X q positive semidefinite matrices, the probability 

(8.17) PP. = jPap.(da) 

is also left-orthogonally invariant since 

(8.18) 

The converse of this observation, established in Dawid (1977), is: 

THEOREM 8.9. Assume P on .Pq, oo is left-orthogonally invariant. Then P 
has the representation (8.17). Further, the representation is unique. 

This "infinite" theorem is usually stated as "P is left-orthogonally invariant 
iff P is a covariance mixture of normals." The uniqueness of f.L is proved in the 
same way it is proved in the case q = 1. Theorem 8.9 can be proved using the 
finite version of this theorem to which we now tum. 

As in the two previous sections, now fix a finite n and consider p<nl on .Pq, n 
which is left-orthogonally invariant. Our first task is to apply Theorem 4.1 to the 
case at hand. The group On acts on .Pq, n· To specify a cross section in .Pq, n• let 

Y = {xix EfRq,n,X =(~),a E s}, 
and define r on .Pq, n to Y by 

r(x) = ( (x'~)l/2)· 
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Here, (x'x)112 denotes the unique positive semidefinite square root of x'x E S. 
That Y is a measurable cross section (according to Definition 4.1) is easily 
checked. Theorem 4.3 yields: 

THEOREM 8.10. For a E S, letHa denote the distribution of 

u( ~). 
where U is uniform on On and ( ~) is in Y. Then p<nl on .fl!q, n is left-orthogo­
nally invariant iff 

(8.19) p<n) = JIIap.(da) 

for some probability p. on S. 

PROOF. Apply Theorem 4.3 with Ha = iJ.y and p. = Q. 0 

Now, let 'lf denote the k X n matrix 

'lf = (Ik 0), 
where k < n. If p<n) = .fi!(X<nl), then 

p<k) = 'lfp<n) =.fl!('lfX<nl). 

To establish a finite theorem for p<kl, we first establish a finite theorem for 'lfHa 
and then use (8.19). 0 

THEOREM 8.11. Fork+ q.::;; n- 3, the variation di..<;tance between 7THa and 
the normal distribution N(O, n- 1Ik 181 a2 ) is bounded above by 8n given in 
Proposition 7. 7. 

PROOF. Recall that Ha is the distribution of 

u( ~ ) = U [ ~q) a, 

where U is uniform on On. Thus, 7THa is the distribution of 

'lfu(~) = (Ik o)u[~ ]a= Aa, 

where A is the k X q upper left corner of U. Proposition 7.7 implies that 

jj!I!(A)- N(o, n- 1Ik 181 Iq) 1!.::;; 8n. 

Since 'lfHa = .fi!(Aa), the result follows. 0 

The following finite theorem is from Diaconis, Eaton and Lauritzen (1987). 

THEOREM 8.12. Suppose p<n) on .fl!q, n is left-orthogonally invariant. If 
k + q .::;; n - 3, then 

(8.20) i~fllp<k)- jN(O, Ik 181 a2)p.(da)ll s 8n, 
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where the in£ ranges over all probabilities on S and 8n is given in Proposition 
7.7 (withp replaced by k). 

PROOF. Since p<nl is left-orthogonally invariant, we can write 

p<n) = j HaP.o( da) 

for some probability p. 0 on S. Therefore, 

p<k) = 'TTp(n) = j'TTHaP.o(da). 

Since variation distance is a convex function, Theorem 8.11 yields 

llp<kl- jN(O, n- 1Ik ® a2 )p. 0(da)ll 
=iiJ['TTHa- N(O, n- 1Ik ® a2 )]p.0(da)ll 
~ jii'TTHa- N(O, n- 1lki ® a2 )llp. 0(da) ~ 8n. 

Hence (8.20) holds. D 

The comments concerning extendability made at the end of the last section 
are valid here. Of course, extendability refers to increasing n with fixed k and q. 

8.4. A linear model example. Some new considerations arise when we try 
to formulate a finite version of an "infinite" theorem described in Smith (1981). 
To describe the infinite result, let Rn, 1 ~ n ~ oo, denote n dimensional coordi­
nate space and for each finite n, let 

On( e)= {gig EOn, ge = e}, 
where e is the vector of l's in Rn. Let Z = (Z1, Z2 , ••• ) E R 00 have coordinates 
which are iid N(m, a 2 ) where mE R1 and a ;;::: 0. Thus the distribution of 

zl 
z<n) = 

Zz 

is N(me, a 2In). Clearly 

2(z<nl) = 2(gz<nl), 

Pm, a denotes the distribution of Z on R 00 and 

2(z<nl) = p<n) = N(me a2I ) 
m,a ' n · 

Given a probability p. on R1 X [0, oo ), let 

(8.21) 
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so P,. is a translation-scale mixture of iid normals. Thus the projection of P on 
Rn is given by P. 

p<n) = jjp<n) 11 (dm dG) 
p. m,af"' ' • 

Clearly gP?> = PJn> for g E On( e). 

THEOREM 8.13 [Smith (1981)]. Let P be any probability on R 00 • Then the 
projection of P on Rn, say p<n>, is O<nle)-invariant for all n = 1,2, ... iff P has 
the representation (8.21). 

To describe a finite version of this result, we first need a representation for 
p<n> defined on Rn (fixed n) which is On( e)-invariant. Here is a convenient cross 
section for this example. Fix the vector 

and let 

1 
Xo = /2 

1 
-1 

0 

0 

Y = {xlx ERn, x = GX0 +me; G ~ 0, mE R1}. 

Define Ton Rn toY by 

T(X) = IIX- ieiiXo + xe, 

where 

and II ·II denotes standard Euclidean distance. That Y is a measurable cross 
section is easily verified. Given G ~ 0 and m E Rl, let Hm, a be the distribution of 

GUx0 +me, 

where U is uniform on On< e). Note that the random vector Ux 0 has a uniform 
distribution on 

{xlx ERn, llxll = 1, x'e = 0}. 

THEOREM 8.14. Let p<n> be a probability on Rn. Then, p<n> is On( e)­
invariant iff 

p<n) = J J Hm, ai-!( dm, dG) 

for some probability p, on R1 X [0, oo ). 

PROOF. This is an easy application of Theorem 4.3. 0 
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As usual, we use 

'lT = (Ik 0): k X n 

to project down from Rn to Rk with k < n. The next step in the argument is to 
approximate 'lTHm," by some normal distribution. The approximation is based on 
the following: 

LEMMA 8.1. For U uniform on On( e), 'lTUx0 is distributed as A V where: 

(i) Vis distributed as the first k coordinates of a random vector which has a 
uniform distribution on 

{xlx E Rn-1, llxll = 1} · 
(ii) The k X k fixed matrix A is given by 

A = ( 7TQo7T')l/2 

with 

PROOF. See Proposition A.l in Diaconis, Eaton and Lauritzen (1987). D 

THEOREM 8.15. For k ~ n - 5, 

(8.22) 

where 

(8.23) 
k+3 

/3n = 2 k + 2 ( ( det A r 1 - 1] . 
n- -4 

PROOF. The probability 'lTHm, u is the law of 

a'lTUx0 + m'lTe, 

which, according to Lemma 8.1, is the same as the law of 

aAV + m'lTe. 

Here, A and V are as defined in Lemma 8.1. For notational convenience, let W 
be N(O, Ik ). Thus, the left side of (8.22) is 

11~( aAV + m'lTe) - ~((n- 1) - 112 aW + m'lTe) II 
~~~~(AV) -~((n -1)-1/2w)ll 

~~~~(Av) -.?((n -1)-1/2Aw)ll 

+ll.?((n -1)-1/2AW) -.?((n- 1)-1/2w)ll 

~~~~(v) -~((n -1)- 112W)II +II.?(AW) -~(W)II. 
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But, Proposition 7.6 (with n replaced by n- 1) yields 

k+3 
11£-'(V) -2((n -1)-l/2w)ll ~ 2n- k- 4 

121 

for k ~ n- 5. Because all the eigenvalues of A are less than or equal to 1, the 
easily established inequality 

11£-'(AW) -£-'(W)II ~ 2[(detA)- 1 - 1] 

completes the proof. 0 

Finally, we come to the finite version of Theorem 8.13. 

THEOREM 8.16. Given p<n) on Rn which is On( e)-invariant and k ~ n - 5, 
let p(k) = Trp(n). Then 

(8.24) 

where the inf ranges over all probabilities on R1 X [0, oo) and f3n is given in 
(8.23). 

PROOF. Since p<n) is On( e)-invariant, Theorem 8.14 yields 

p(k) = Trp(n) = j j TrHm, 0 J.L 0 ( dm, da) 

for some J.Lo· Thus 

i~f II p<k)- j j N( m1re, a2Ik)J.L( dm, da) II 

~II j j[ 1rHm,, - N( m1re, ( n - 1) - 1a2Ik)] J.Lo( dm, da) II 
~ j JIITrHm,a- N(m1re,(n- 1)- 1a2Ik)IIJ.Lo(dm, da) ~ f3n· 

The final inequality follows from Theorem 8.15. D 

The upper bound !3n in (8.23) and (8.24) consists of two parts. The argument 
used to prove Theorem 8.15 pinpoints the origin of the two pieces. The first piece 
is from a routine application of Proposition 7.6 which we understand fairly well. 
The second piece arises because the group in question leaves the subspace span 
{ e} fixed so that previous arguments must be modified by dropping down one 
dimension. The reduction in dimension introduces the k X k matrix A which 
appears in the bound as 

2 ( ( det A r- 1 - 1] . 

A routine calculation shows that 
k 

det A 2 = 1- -
n 



122 FINITE DE FINETTI STYLE THEOREMS 

so 

( k) -1/2 k 
( det A) - 1 - 1 ::;:;: 1 - -n - 1 ::;:;: 

n-k 

for k ::;:;: n - 5. Thus !3n is bounded above by 

k+3 
4----
n-k-4 

for k ::;:;: n - 5. This bound is of the same type as obtained for the previous finite 
theorems (a constant times kjn for kjn bounded away from 1). From this, we 
conclude that the situation considered in this section is qualitatively the same as 
the situation in Section 8.2. 

The finite result of this section is from Diaconis, Eaton and Lauritzen (1987) 
where a multivariate version of Theorem 8.16 is also proved. The previous 
remarks on extensions are of course valid for the situation of this section. 


