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Bootstrapping the Grenander estimator

Michael R. Kosorok1,∗
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Abstract: The goal of this paper is to study the bootstrap for the Grenander
estimator. The first result is a proof of the inconsistency of the nonparametric
bootstrap for the Grenander estimator at a given point. The second result is
the development and verification of a bootstrap for the L1 confidence band for
the Grenander estimator. As part of this work, kernel estimators are studied
as alternatives to the Grenander estimator. We show that when the second
derivative of the true density is assumed to be uniformly bounded, there exist
kernel estimators with faster convergence rates than the Grenander estimator.
We study the implications of this in developing L1 and uniform confidence
bands and discuss some open questions.

1. Introduction

The Grenander estimator (Grenander [6]) is the maximum likelihood estimator
(MLE) f̂n of the density f of a positive, real random variable X, under the con-
straint that f is monotone non-increasing. For simplicity, we will assume the support
of X is [0, 1], and that the data used for estimation is an i.i.d. sample X1, . . . , Xn

from f .
Not only is the Grenander estimator worthy of study in its own right, but it

is also useful because of its connection to the MLE of the survival function from
current status time-to-event data. Current status data arises from only observing
the current status of the event time T at a random observation time Y . Specifically,
one only observes 1{T ≤ Y } and Y , where 1{A} denotes the indicator of A. The
connection between the estimators is that the current status MLE of the cumulative
distribution at a single point and f̂n(t) for a point t both have the same limiting
distribution after suitable standardization. This limiting distribution is

C ≡ arg max
h∈R

{
Z(h) − h2

}
,

where Z is two-sided Brownian motion with Z(0) = 0. This result was obtained for
the Grenander estimator by Rao [16] (see also Groeneboom [7]) and for the current
status estimator by Groeneboom [8] (see also Groeneboom and Wellner [10]).

Because of this similarity between the Grenander estimator and the current
status survival estimator, it appears that at least some of what we could learn about
the Grenander estimator may be applicable on many levels to inference problems
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in current status and possibly other, more complex, data types. We will not pursue
this connection further in this paper, but the interested reader should compare and
contrast the derivations of both of these estimators as given side-by-side in Sections
3.2.14 and 3.2.15 of van der Vaart and Wellner [18].

There are number of challenges with using C – Chernoff’s distribution – directly
for inference. The first challenge is that the density for C, the form of which was
derived by Groeneboom [9], does not have a closed form. Computing critical values
for the distribution is quite difficult (Dykstra and Carolan [5], Narayanan and Sager
[14]) but has been done (Groeneboom and Wellner [11]). A second challenge is that
the normalization constants involved can be difficult to estimate. For these reasons,
computationally reasonable approaches that avoid computing critical values from
Chernoff’s distribution, and/or ameliorate the need for computing complicated nor-
malization constants, would be very appealing. This pursuit is the theme of this
paper.

An obvious approach to consider because of computational simplicity is the non-
parametric bootstrap. Unfortunately, the first main result of this paper is that the
nonparametric bootstrap is inconsistent for pointwise inference (i.e., inference for
f(t) at a given value of t ∈ [0, 1]). We prove this rigorously in Theorem 2.1 below.
The key argument is contained in Theorem 2.2 below and is applicable to many
other inference settings. The inconsistency of the bootstrap was also observed by
Abrevaya and Huang [1] for the maximum score estimator, which also has a Cher-
noff limit, although they did not provide a rigorous proof of this. Fortunately, we
are able to show that a smoothed bootstrap (Silverman and Young [17]) obtained
by sampling from a certain kernel estimator is consistent. These pointwise inference
results will be presented in Section 2.

It would be nice if some of the pointwise results could be utilized in the de-
velopment of uniform confidence bands, but this appears to be an excruciatingly
difficult problem. However, some progress has been made for L1 confidence bands.
Building on the work of Groeneboom et al. [12], who derive the limiting distrib-
ution of the L1 error of the Grenander estimator, we propose a “supersampling”
smoothed bootstrap. This is discussed in Section 3. One of the discoveries made in
this process is that the assumptions needed for L1 convergence of the Grenander
estimator are so strong that there exist kernel estimators with faster convergence
rates than the Grenander estimator.

We conclude the paper with a discussion of the implication of these results and
several open questions in Section 4. The main contributions of the paper are first, a
proof of the invalidity of the nonparametric bootstrap for the Grenander estimator,
and, second, the development of smoothed bootstrap procedures for both pointwise
and L1 confidence bands. The results and ideas of this paper should prove useful in
developing solutions to the confidence band problem for the Grenander estimator as
well as for current status survival function estimators and other related monotone
function estimators.

2. Pointwise error

The focus of this section is on pointwise inference based on the Grenander estimator.
Before presenting the main results on the bootstrap, we first briefly review known
asymptotic distribution results for the Grenander estimator f̂n. Before doing this,
however, we make the following assumptions about the density f :

A1. 0 ≤ f(1) ≤ f(s) ≤ f(t) ≤ f(0) < ∞, for all 0 ≤ t ≤ s ≤ 1; and
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A2. f is differentiable with derivative ḟ satisfying

0 < inf
t∈(0,1))

|ḟ(t)| ≤ sup
t∈(0,1)

|ḟ(t)| < ∞.

We may occasionally need stronger assumptions which will be introduced as needed.
It is well known that f̂n is the left derivative of the least concave majorant of

the empirical distribution function Fn (see, for example, Section 3.2.14 of van der
Vaart and Wellner [18]). Moreover, under assumptions A1 and A2, we have the now
classic result that for any t ∈ (0, 1),

n1/3(f̂n(t) − f(t)) � |4ḟ(t)f(t)|1/3 arg max
h∈R

{
Z(h) − h2

}
≡ c(t)C

(Groeneboom [8]). Both the normalizing constant c(t) and critical values for Cher-
noff’s distribution are needed for inference.

Before proceeding to the bootstrap discussion, we point out that an alternative
to the above approach to inference about f is to use the nonparametric maximum
likelihood ratio as done by Banerjee and Wellner [2] which has an asymptotically
pivotal distribution that avoids the need to estimate a normalizing constant. The
limiting distribution in this setting is not Chernoff’s distribution but is still quite
complicated and does not have a known, closed form. Computing critical values is
possible but complicated (Banerjee and Wellner [3]).

Another alternative that almost always works theoretically is the subsampling
bootstrap of Politis and Romano [15]. The basic idea is to perform a bootstrap
without replacement of sample size m which is much smaller than the actual sample
size n. Provided m → ∞ and m/n → 0, the standardized subsample bootstrap will
be valid. Unfortunately, in practice, this will not work unless n is quite large since
the asymptotic approximation must be approximately valid for the subsample size
m, not just valid for n. We will not pursue the subsample bootstrap further in this
paper.

Let F
∗
n be the usual nonparametric bootstrap empirical distribution function,

and let f̂∗
n be the the left derivative of the least concave majorant of F

∗
n. What we

would like to show is that n1/3(f̂∗
n(t) − f̂n(t)), conditional on the data X1, X2, . . . ,

converges to the unconditional limiting distribution of n1/3(f̂(t) − f(t)). Our first
main result is that this approach is unfruitful, as we now show in the following
theorem:
Theorem 2.1. The nonparametric bootstrap is inconsistent for the Grenander es-
timator, i.e., n1/3(f̂∗

n(t)− f̂n(t)) does not converge in probability, conditional on the
data, to c(t)C, for any t ∈ (0, 1).

Before giving the proof of this theorem, we present a general theorem which
can be useful in studying bootstrap validity. Let Xn be a random variable in a
Banach space (B, ‖ · ‖) that converges weakly to a tight limit X, and let X̂n denote
a bootstrapped version of Xn based on some random weighting mechanism Wn

which is independent of the data Xn used to generate Xn. We say that X̂n is a
valid bootstrap if its limiting distribution conditional on Xn “converges weakly” to
X.

We now define what “converges weakly” means in this context. Let BL1(B) be
the collection of all Lipschitz continuous functions h : B �→ R bounded in absolute
value by 1 and having Lipschitz constant 1, i.e., |h| ≤ 1 and |h(x)−h(y)| ≤ ‖x−y‖
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for all x, y ∈ B. We say X̂n converges weakly conditional on the data to X if

sup
h∈BL1(B)

∣∣∣E·|Xn
h(X̂n) − Eh(X)

∣∣∣ → 0,

in outer probability, where E·|Xn
denotes conditional expectation given Xn, and

provided h(X̂n) is asymptotically measurable unconditionally for all h ∈ BL1(B).

We denote this kind of conditional convergence X̂n
P�
W

X. We also require h(X̂n) to
be a measurable function of Wn conditional on Xn for all h ∈ BL1(B). A more
precise discussion of this general formulation of the bootstrap can be found in van
der Vaart and Wellner [18]. The following is a general result for these kinds of
bootstraps:

Theorem 2.2. Assume Xn � X, where X is tight, and that X̂n
P�
W

X, where Wn �→
h(X̂n) is measurable conditional on Xn for all h ∈ BL1(B). Then (X̂n, Xn) �
(X̃1, X̃2) unconditionally, where X̃1 and X̃2 are independent copies of X.

Proof. Let X̃1 and X̃2 be two independent copies of X, which are also independent
of the data Xn, and note that

sup
h∈BL1(B2)

∣∣∣E∗h(X̂n, Xn) − Eh(X̃1, X̃2)
∣∣∣

≤ sup
h∈BL1(B2)

∣∣∣E∗h(X̂n, Xn) − E∗h(X̃1, Xn)
∣∣∣

+ sup
h∈BL1(B2)

∣∣∣E∗h(X̃1, Xn) − Eh(X̃1, X̃2)
∣∣∣

≡ An + Bn.

Note also that for any h ∈ BL1(B2) and any y ∈ B, both x �→ h(x, y) and
x �→ h(y, x) are members of BL1(B). As a consequence of the weak convergence of
X̂n, we therefore have

sup
h∈BL1(B2)

∣∣∣E·|Xn
h(X̂n, Xn) − E·|Xn

h(X̃1, Xn)
∣∣∣

≤ sup
h∈BL1(B)

∣∣∣E·|Xn
h(X̂n) − Eh(X̃1)

∣∣∣
P→ 0,

where P→ denotes convergence in outer probability. Provided both

sup
h∈BL1(B2)

∣∣∣E∗E·|Xn
h(X̂n, Xn) − E∗h(X̂n, Xn)

∣∣∣ → 0(2.1)

and

sup
h∈BL1(B2)

∣∣∣E∗E·|Xn
h(X̃1, Xn) − E∗h(X̃1, Xn)

∣∣∣ → 0,(2.2)

we will obtain that An → 0.
Arguing in a similar manner but utilizing instead the assumed weak convergence

of Xn, we have

sup
h∈BL1(B2)

∣∣∣E∗
·|X̃1

h(X̃1, Xn) − E·|X̃1
h(X̃1, X̃2)

∣∣∣ ≤ sup
h∈BL1(B)

∣∣∣E∗h(Xn) − Eh(X̃2)
∣∣∣

→ 0,
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where E·|X̃1
denotes conditional expectation given X̃1. Provided

sup
h∈BL1(B2)

∣∣∣E∗E∗
·|X̃1

h(X̃1, Xn) − E∗h(X̃1, Xn)
∣∣∣ → 0,(2.3)

we will obtain that Bn → 0, and the desired conclusion of the theorem will follow.
The proof is essentially complete, except for establishing (2.1), (2.2), and (2.3),

which are primarily measurability technicalities. The uninterested reader can skip
this part of the proof and proceed directly to the proof of Theorem 2.1 below. Since
h(X̂n) is asymptotically measurable for all BL1(B), it is asymptotically measurable
for all h that is bounded and Lipschitz continuous for any Lipschitz constant. Thus
the conditional weak convergence of X̂n implies that for every ε > 0, there exists a
compact K ⊂ B such that

E∗P
(

X̂n ∈ Kδ
∣∣∣Xn

)
→ P (X ∈ Kδ) ≥ 1 − ε,

for every δ > 0, where Kδ ≡ {x ∈ B : ‖x − y‖ < δ, for some y ∈ K}. Hence, by
Fubini’s theorem for outer expectations (Lemma 1.2.6 of van der Vaart and Well-
ner [18]), X̂n is asymptotically tight unconditionally. Thus it is also asymptotically
measurable unconditionally by reapplication of Lemma 1.3.13 of van der Vaart and
Wellner [18]. Since marginal asymptotic tightness plus marginal asymptotic mea-
surability implies joint asymptotic tightness and measurability (see Lemmas 1.4.3
and 1.4.4 of van der Vaart and Wellner [18]), we have that (X̂n, Xn) is jointly
asymptotically tight and measurable. Thus

sup
h∈BL1(B2)

∣∣∣E∗h(X̂n, Xn) − E∗h(X̂n, Xn)
∣∣∣ → 0,

and condition (2.1) follows.
The assumed weak convergence of Xn implies asymptotic measurability via

Lemma 1.3.13 of van der Vaart and Wellner [18], and thus (2.2) also follows. Since
Xn converges weakly, (X̃1, Xn) jointly converges weakly, and thus (X̃1, Xn) is as-
ymptotically measurable. Hence

sup
h∈BL1(B2)

∣∣∣E∗h(X̃1, Xn) − E∗h(X̃1, Xn)
∣∣∣ → 0,

and (2.3) will follow. This completes the proof in all of its formality.

Proof of Theorem 2.1. The basic idea of the proof is to assume that

n1/3(f̂∗
n(t) − f̂n(t))

P�
W

c(t)C,(2.4)

where the W refers to the random multinomial weights Wn ≡ {Wn,1, . . . , Wn,n} in
the nonparametric bootstrap, and then use Theorem 2.2 to obtain a contradiction.
Accordingly, assume (2.4), and let X̂n = n1/3(f̂∗

n(t)− f̂n(t)) and Xn = n1/3(f̂n(t)−
f(t)). Then Theorem 2.2 implies that X̂n + Xn � c(t)(C1 + C2), unconditionally,
where C1 and C2 are two independent copies of C.

Since Yn ≡ X̂n+Xn = n1/3(f̂∗
n−f(t)), the above results imply that Yn converges

unconditionally to a tight limiting distribution which has twice the variance of c(t)C.
Using arguments along the lines of those used in Section 3.2.14 of van der Vaart
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and Wellner [18], along with properties of bootstrapped empirical processes, it is
not hard to verify, however, that

[
n

4ḟ(t)f(t)

]1/3

(f̂∗
n(t) − f(t)) � argmaxh

{
Z1(h) + Z2(h) − h2

}
≡ C̃,(2.5)

where Z1 and Z2 are independent two-sided Brownian motions.
Using symmetry properties of Brownian motion and a careful change of variables,

we can derive that C̃ has the same distribution as a arg maxh{
√

2aZ(ah) − (ah)2},
for a two-sided Brownian motion Z. Choosing a = 21/3 yields that C̃ has the same
distribution as 21/3

C, and thus the variance of the limiting distribution of Yn is
22/3 < 2 times the variance of c(t)C. This is a contradiction, and thus the desired
conclusion follows.

We now work toward developing an asymptotically valid alternative to the non-
parametric bootstrap. To accomplish this, we propose a version of the “smoothed”
bootstrap (Silverman and Young [17]). The idea is that we estimate the density with
a certain modified kernel density estimator f̃n, and then draw a smoothed boot-
strap sample from f̃n. Our goal is to ensure that the properties of this procedure
lead to valid inference.

Let the kernel be K and assume the bandwidth 1/2 ≥ h → 0 as n → ∞. For all
t ∈ [h, 1 − h], let

f̌n =
∫ 1

0

1
h

K

(
t − u

h

)
dFn(u),

and denote f̌
(1)
n as the first derivative of f̌n (so far only defined on [h, 1 − h]). For

t ∈ [0, h), let

f̌n(t) = f̌n(h) + (t − h)
{

f̌ (1)
n (h) ∧ 0

}
,

and for t ∈ (1 − h, 1], let

f̌n(t) = f̌n(1 − h) + (t − 1 + h)
{

f̌ (1)
n (1 − h) ∧ 0

}
.

Finally, define

f̃n(t) =
f̌n(t) ∨ 0∫ 1

0

{
f̌n(s) ∨ 0

}
ds

.

We need the following assumptions on K:

B1. The kernel K is nonnegative with support on [−1, 1];
B2. K is bounded and

∫ 1

−1
K(v)dv = 1;

B3. K̇ is bounded, vK̇(v) ≤ 0 for all v ∈ [−1, 1],
∫ 1

−1
K̇(v)dv = 0, and∫ 1

−1
vK̇(v)dv = −1; and

B4. |K̈| is uniformly bounded over (−1, 1).

Two examples of kernels that satisfy B1–B4 are K(v) = (3/4)(1 − v2) and K(v) =
(15/16)(1 − v2)2.

We now have the following lemma:
Lemma 2.1. Provided h = Rnn−α, where 0 < Rn+R−1

n = OP (1) and α ∈ (0, 1/3),
we have the following under assumptions A1–A2 and B1–B4:
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(i) f̃n is uniformly consistent for f ;
(ii) There exists constants 0 < a < b < ∞ such that

−b − oP (1) ≤ inf
t∈(0,1)

f̃ (1)
n (t) ≤ sup

t∈(0,1)

f̃ (1)
n (t) ≤ −a + oP (1).

Under the additional assumption

A3. ḟ(t) is continuous at t = t0, for some t0 ∈ (0, 1),

we also have

(iii) f̃
(1)
n (t0) = ḟ(t0) + oP (1).

Proof. The proof of conclusion (i) follows from standard arguments, and we omit
the details. For (ii), we use change of variables to obtain that

∫ 1

−1

h−2K̇

(
t − u

h

)
dFn(u) − ḟ(t) = n−1/2

∫ 1

−1

h−2K̇

(
t − u

h

)
dHn(u)

+h−1

∫ 1

−1

K̇(v)(f(t − hv) − f(t))dv

= OP

(
n−1/2h−2 sup

n|s−t|≤h

|Gn(s) − Gn(t)|
)

+h−1

∫ 1

0

K̇(v)
[
−ḟ(thv)hv

]
dv,

where u �→ Hn(u) ≡ Gn(u) − Gn(t), Gn ≡ √
n(Fn − F ) and thv is on the line

segment between t and t − hv. By A1 and A2 combined with the fact that

n−1/2h−3/2

√
log

(
1
h

)
= o(1),

conclusion (ii) follows. Conclusion (iii) follows because, when ḟ is continuous at t0,
ḟ(thv) → ḟ(t) at t = t0.

Now let f̃∗
n be the left derivative of the least concave majorant of the distribution

function of a sample of size n drawn from f̃n. Computationally, this is easy to do
using rejection sampling applied to f̌n so that normalization of f̌n is not needed.
We have the following result:
Proposition 2.1. Under conditions A1–A3 and B1–B4,

n1/3(f̃∗
n(t0) − f̃n(t0))

P�
∗

c(t0)C,

where ∗ denotes the random component of the smoothed bootstrap. In other words,
the proposed smoothed bootstrap is consistent in probability.

Sketch of proof. The proof follows the same general arguments used in the proof
of the weak convergence of n1/3(f̂n(t) − f(t)). The main idea is that because f̃n

satisfies the conclusions of Lemma 2.1, it satisfies assumptions A1 and A2, for
all n large enough with probability approaching 1, and both f̃n(t0)

P→ f(t0) and
f̃

(1)
n (t0)

P→ ḟ(t0). The key challenge is to obtain empirical process results for G̃n ≡√
n(P̃n − Pn), where P̃n is the empirical distribution for an i.i.d. sample from Pn,
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where Pn changes with n. We need modulus of continuity results which are uniform
in Pn. Some related uniformity concepts and results are given in Chapter 2.8 of van
der Vaart and Wellner [18]. In our case, Pn is the probability measure obtained by
integrating f̃n. We omit the remaining details (which are lengthy).

3. L1 Error

Under A1–A2 and the additional assumption

A3′. supt∈(0,1) |f̈(t)| < ∞,

Groeneboom et al. [12] proved that

n1/6

{
n1/3

∫ 1

0

|f̂n(t) − f(t)|dt − μ(f)
}

� N(0, σ2),

where
σ2 ≡ 8

∫ ∞

0

cov (|ξ(0)|, |ξ(x)|) dx

and, for a differentiable density g,

μ(g) ≡ 2E|ξ(0)|
∫ 1

0

∣∣∣∣12 ġ(t)g(t)
∣∣∣∣
1/3

dt.

In the above, the process ξ is a stationary process constructed from a two-sided
Brownian motion Z as follows:

ξ(t) ≡ arg max
h∈R

{
Z(t + h) − Z(t) − h2

}
.

We will utilize the smoothed bootstrap f̃∗
n again, for inference in this setting,

but we will need a “smoother” kernel and larger bandwidth. In particular, we need
the additional assumptions

B5.
∫ 1

−1
vK(v)dv = 0,

∫ 1

−1
K̈(v)dv = 0, and

∫ 1

−1
vK̈(v)dv = 0; and

B6. |(d/(dt))K̈(t)| is uniformly bounded over (−1, 1).

A kernel that satisfies B1–B6 is K(v) = (15/16)(1 − v2)2.
We have the following lemma. The proof is similar to the proof of Lemma 2.1,

and we omit the details.
Lemma 3.1. Assume h = Rnn−α, where 0 < Rn + R−1

n = OP (1) and α ∈
(1/6, 1/5). Under A1–A2, A3′, and B1–B6, we have the following:

(i) supt∈[0,1] |f̃n(t) − f(t)| = OP (n−2α);

(ii) supt∈(0,1) |f̃
(1)
n (t) − ḟ(t)| = OP (n−α); and

(iii) There exists a constant a < ∞ such that

sup
t∈(0,1)

|f̃ (2)
n (t)| ≤ a + oP (1).

In particular, we have that

∫ 1

0

∣∣∣∣12 f̃ (1)
n (t)f̃n(t)

∣∣∣∣
1/3

dt −
∫ 1

0

∣∣∣∣12 ḟ(t)f(t)
∣∣∣∣
1/3

dt = oP (n−1/6).
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Here is the proposed procedure. Let

• f̃∗
n be a bootstrapped Grenander estimator based on a i.i.d. sample X∗

1 , . . . , X∗
n

drawn from f̃n and
• f̃∗∗

n,m be an additional bootstrapped Grenander estimator based on an i.i.d. sample
X∗∗

1 , . . . , X∗∗
m also drawn from f̃n but independent of the first sample, where m

is much larger than n, i.e., we require m/n → ∞.

Compute

μ̂n,m = m1/3

∫ 1

0

∣∣∣f̃∗∗
n,m(t) − f̃n

∣∣∣ dt

based on one large bootstrap realization. Finally, estimate the 1 − α upper critical
value, which estimate we denote Ĉα, of the bootstrapped distribution of

n1/6

{
n1/3

∫ 1

0

∣∣∣f̃∗
n(t) − f̃n(t)

∣∣∣ dt − μ̂n,m

}
,

based on repeating the bootstrap f̃∗
n. Note that the large bootstrap (a “supersample

bootstrap”) is only computed once in the process of obtaining this critical value.
We have the following proposition:

Proposition 3.1. Assume the conditions of Lemma 3.1 and that Ĉα is obtained
through using the above procedure. Then the set of densities{

g :
∫ 1

0

∣∣∣f̂n(t) − g(t)
∣∣∣ dt ≤ n−1/3μ̂n,m + n−1/2Ĉα

}
has asymptotically (1 − α) coverage, provided m/n → ∞.

Sketch of proof. The proof is very lengthy and we omit the details. As with the proof
of Proposition 2.1, the basic argument is that f̃n shares the required properties
of f for all sufficiently large n with probability approaching 1, as a consequence
of Lemma 3.1. Under these circumstances, the arguments in the proof given in
Groeneboom et al. [12] can be carried over from f to f̃n. Accordingly, we first
obtain that

n1/6

{
n1/3

∫ 1

0

|f̃∗
n(t) − f̃n(t)|dt − μ(f̃n)

}
P�
∗

N(0, σ2)

and

m1/6

{
m1/3

∫ 1

0

|f̃∗∗
n,m(t) − f̃n(t)|dt − μ(f̃n)

}
P�
∗

N(0, σ2).

Thus μ̂n,m − μ(f̃n) = OP (m−1/6) = oP (n−1/6), conditionally on the data, and
hence both

n1/6

{
n1/3

∫ 1

0

|f̃∗
n(t) − f̃n(t)|dt − μ̂n,m

}
P�
∗

N(0, σ2)(3.1)

and

n1/6

{
n1/3

∫ 1

0

|f̂n(t) − f(t)|dt − μ̂n,m

}

= n1/6

{
n1/3

∫ 1

0

|f̂n(t) − f(t)|dt − μ(f)
}

+ oP (1)

� N(0, σ2),

since μ(f̃n) = μ(f) + oP (n−1/6) by lemma 3.1 and the restriction that α > 1/6.
Combining this with (3.1), we obtain the desired conclusion.
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4. Discussion and open questions

We note that Abrevaya and Huang [1], in their Theorem 3, provide a general result
on the unconditional limiting distribution of the bootstrap for argmax estimators
that implies (2.5) and includes many other monotone function settings. Their result,
in combination with our arguments and our Theorem 2.2, could thus probably be
used to deduce bootstrap inconsistency for monotone function estimators in general.

Note also that under the conditions of Lemma 3.1,

sup
t∈[0,1]

∣∣∣f̃n(t) − f(t)
∣∣∣ = oP (n−1/3).

This means that the assumptions on the smoothness of f used in Groeneboom et al.
[12] are so strong that we can construct a kernel density estimator that uniformly
converges faster than the Grenander estimator. Thus, with these assumptions, the
Grenander estimator is clearly not optimal. This raises the important question
about whether the assumptions in Groeneboom et al. [12] can be relaxed to the point
that there are no kernel density estimators superior to the Grenander estimator.
Alternatively, is it possible to show that the assumptions cannot be relaxed? If this
is the case, then the Grenander is generally not optimal for L1 confidence band
construction.

Perhaps a more pressing open problem is constructing valid uniform confidence
bands for the Grenander estimator. It appears as if establishing the uniform rate,
which seems to be n1/3(log n)−1/3, is not too hard in comparison to establishing
distributional convergence. As with the arguments used in Groeneboom et al. [12]
for the L1 error, it appears as if the uniform error should converge to some extremum
of the process |ξ(t)| defined in section 3 over some increasing interval [0, τn]. If this
could be done, then the extremal limiting distribution results in Hooghiemstra and
Lopuhaä [13] may be applicable, yielding an extreme value distribution in the limit
after standardization. Establishing this, however, seems to be very difficult without
results for convergence of empirical processes over noncompact index sets. A further
question is whether this can be accomplished without imposing assumptions so
strong that the primacy of the Grenander is lost (as seems to have happened in the
L1 error case). This issue of lost primacy, of course, does not arise in the pointwise
error setting (Birgé [4]).

Finally, we note that these results and issues for the Grenander estimator have
implications for the survival estimator under current status censoring as well as for
monotone function estimation in general because of the similar argmax structures
noted previously.
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