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Abstract: In the spirit of modeling inference for microarrays as multiple test-
ing for sparse mixtures, we present a similar approach to a simplified version
of quantitative trait loci (QTL) mapping. Unlike in case of microarrays, where
the number of tests usually reaches tens of thousands, the number of tests per-
formed in scans for QTL usually does not exceed several hundreds. However,
in typical cases, the sparsity p of significant alternatives for QTL mapping is in
the same range as for microarrays. For methodological interest, as well as some
related applications, we also consider non-sparse mixtures. Using simulations
as well as theoretical observations we study false discovery rate (FDR), power
and misclassification probability for the Benjamini-Hochberg (BH) procedure
and its modifications, as well as for various parametric and nonparametric
Bayes and Parametric Empirical Bayes procedures. Our results confirm the
observation of Genovese and Wasserman (2002) that for small p the misclas-
sification error of BH is close to optimal in the sense of attaining the Bayes
oracle. This property is shared by some of the considered Bayes testing rules,
which in general perform better than BH for large or moderate p’s.

1. Introduction

Multiple tests have received considerable attention recently because of application
to microarrays, where one simultaneously tests a few thousands (m) of null hypothe-
ses with only a small proportion (p) of signals, i.e., possibly significant alternatives.
Some recent references are Benjamini and Hochberg [1], Efron et al. [8], Efron and
Tibshirani [7], Storey et al. [32], Genovese and Wasserman [13], Müller et al. [19],
Sarkar [24] or Scott and Berger [25]. If one increases m further, say m = 106, one
would move from microarrays to problems of homeland security, see for example
Donoho and Jin [6].

We wish to consider a still different scale, namely m in the range of a few hun-
dreds, which is relevant for quantitative trait loci (QTL) mapping. In this setup we
explore and compare different multiple testing rules, ranging from the Benjamini
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and Hochberg [1] procedure [BH], Parametric Empirical Bayes [PEB] procedures,
to the fully Bayes rule of Scott and Berger [25]. Also, included is a Bayesian non-
parametric analysis based on Dirichlet mixtures as well as a novel application of
a nonparametric algorithm for mixture estimation, due to Newton [21]. Our study
is based on simulations as well as some theoretical observations. The magnitude of
signals used in our simulation study is chosen according to the suggestions included
in Donoho and Jin [6], so as to fulfill the condition of detectability in very sparse
mixtures. For each of the considered multiple testing procedures we study its power
(expected value of percentage of correctly identified alternative hypotheses), false
discovery rate (FDR) and misclassification error and compare them with properties
of a Bayesian oracle. We pay special attention to BH since one motivation for our
study was to see if we can come up with a better Bayes or PEB rule.

Our results confirm the observation of Genovese and Wasserman [12] that for
very small values of p’s (for m = 200, p < 0.05) the misclassification error of
BH is close to optimal in the sense of attaining a Bayesian oracle. This property is
shared by some of the considered Bayes testing rules, which perform better than BH
for larger p. Moreover, in Section 3 we demonstrate that controlling positive false
discovery rate (pFDR) is equivalent to controlling Bayes risk with the loss function
depending only on α and thus, somewhat unexpectedly, the rules to control FDR
or pFDR have a strong Bayesian flavor.

While our results provide some insight on QTL studies, much further work is
needed to make our results directly applicable to actual QTL mapping. Our model-
ing is similar to that of microarrays, whereas the QTL designs require more complex
linear modeling than for microarrays. The related multiple testing problem, which
arises when there are many predictors (markers) to choose from, was first addressed
in Bogdan et al. [4], where a suitable modification of BIC, namely mBIC, is pro-
posed. We believe that our current research throws some light on how mBIC can be
further improved by implementing a less conservative multiple testing adjustment.

The outline of the paper is as follows. In Section 2 we introduce our models and
explain how some of them are related to QTL mapping. In Section 3 we discuss dif-
ferent notions of error in multiple testing as well as the relationship between FDR
controlling rules and Bayesian testing. The procedures considered in our study are
described in Section 4, except for Bonferroni, which is described in Section 3. The
results of simulations are given in Section 5. Section 6 contains some illustrations of
the problem of nonidentifiability of parameters in the mixture model and justifica-
tion for using the informative prior distribution on p. Section 7 contains our main
conclusions. Some theoretical results on the performance of the parametric Bayes
procedure and the nonparametric Bayes procedure based on Dirichlet mixtures are
given in the Appendix.

2. Models and implications for QTL mapping

We consider a multiple testing problem, when the number of tests m is in the
range of a few hundreds. Such values of m are of importance in QTL mapping and
they have a methodological interest in that the asymptotic results of Genovese and
Wasserman [13], Donoho and Jin [6] or Meinshausen and Rice [18] do not yet apply.

We use the parametric model proposed in Scott and Berger [25]. Thus we consider
m test statistics X1, . . . , Xm and assume that Xi has either the null distribution
N(0, σ2) or the non-null distribution N(μi, σ

2), where μi �= 0 represents some
signal (e.g. a QTL close to the i-th marker). The signal μi is taken to be random,
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distributed as N(0, τ2). Hence the non null distribution of Xi is N(0, σ2 + τ2). We
also define a random indicator variable γi, which is equal to 1 if Xi is generated
by the non-null distribution (i.e. it represents the signal) or 0 in the other case. If
p = P (γi = 1), then the marginal distribution of Xi is the scale mixture of normals,
namely,

(2.1) Xi ∼ (1 − p)N(0, σ2) + pN(0, σ2 + τ2).

Moreover, we assume that (Xi, γi), 1 ≤ i ≤ m, are i.i.d. random vectors. We
will consider both sparse mixtures, with p ≤ 0.2, and non-sparse mixtures, with a
relatively large p. Usually we assume that p and τ are not known, while σ can be
known or unknown, depending on the application.

For each i we test whether Xi has a null or non null distribution, i.e.

(2.2) H0i : γi = 0 vs HAi : γi = 1.

A major potential application of our model is QTL mapping. Our modeling takes
into account the possibility that apart from QTL the trait can be influenced by a
large number of polygenes, i.e. genes with very small effects, distributed over the en-
tire genome. If our main interest is in identifying markers linked to QTL we consider
a sparse mixture (2.1), where p is small and N(0, σ2) represents the distribution
of the sum of polygenic and random (environmental) effects. In this context σ is
usually unknown. The second component in the mixture, namely N(0, σ2 + τ2),
represents the distribution of the QTL effect, μi, and the sum of polygenic and
random effects. Following the majority of Bayesian papers related to QTL map-
ping (see e.g. Yi [33]) we use N(0, τ2) to model the distribution of μi. Thus our
model assumes that the probabilities of a positive and a negative QTL effect are
the same and is suitable in the situation when the analyzed trait is not the subject
of a strong selection. Note that under this scenario detecting QTL is particularly
difficult. Another plausible distribution for |μi| is the gamma distribution (see e.g.
Otto and Jones [22]). A completely robust alternative is to model μi’s with a non-
parametric distribution P and put a further prior P ∼ Dirichlet, which leads to
Dirichlet location mixture distribution for Xi’s. We investigate this approach and
propose an alternative nonparametric inference based on Newton [21].

If our main interest is in both QTL and polygenic effects, the null component,
N(0, σ2), represents the distribution of random effects, and N(0, τ2), represents
the distribution of effects due to QTL and polygenes. In this setting p need not be
small and σ2 may be assumed known, since we can precisely estimate it through
replications.

Remark 1. The number of strong QTL, which are significantly different from the
background of polygenes, is usually small. In this case only relatively large QTL
effects, |μi| ≥ σ

√
2 log m, may be identified, since extreme values of the “null”

component of the mixture are approximately equal to σ
√

2 log m. In order that
such signals are generated by the non null component τ2 should be comparable or
larger than 2σ2 log m.

Remark 2. The assumption of the independence of Xi can be used when markers
are distant from each other. When markers are close to each other, the correspond-
ing test statistics might be strongly correlated. However, the results reported in
this paper demonstrate some general properties of the multiple testing procedures
and show the directions in construction of related methods for detection of linked
QTL.
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3. Different notions of error in multiple testing

Consider the problem of testing of m hypothesis H01, . . . , H0m, specified in (2.2).
For each individual test two types of error can occur: the null hypothesis can be
rejected even though it is true (type I error) or be not rejected when it is false (type
II error). Following the notation of Benjamini and Hochberg [1], Table 1 defines
variables describing counts of possible outcomes of a multiple testing procedure.

The main focus of classical statistics is on tests minimizing the probability of the
type II error (or maximizing the power), while controlling the probability of the type
I error at a given significance level α. The natural extension of the type I error to the
situation of testing m hypotheses is the family-wise error rate, FWER = P (V > 0).
Additionally, the notion of power can be naturally extended to the multiple testing
as E( S

m1
|m1 > 0). Here, as well as in the next part of the paper, E is used to denote

the frequentist expectation (i.e. conditional on the vector parameters of the model
(2.1)). The classical approach to the multiple testing problem relies on constructing
procedures maximizing the power while controlling FWER at a given level (see e.g.
Holm [16]).

In the situation when m is large, procedures controlling FWER are usually very
conservative. Note that in many practical applications one would often accept false
discoveries as long as they consist only a small proportion of all discoveries. Going
along these practical expectations Seeger [26] elaborated on the idea of Eklund
(unpublished seminar papers) and discussed a stepwise multiple testing procedure
aimed at controlling the proportion of false discoveries among all discoveries. The
same stepwise multiple testing procedure has been later discovered by Simes [27],
who proved that it controls FWER in a weak sense (when all hypothesis are true).
The notion of proportion of false discoveries appeared again in a paper by Sorić
[28]. Following this paper, Benjamini and Hochberg [1] formally defined the false
discovery rate as FDR = E(V

R ), where V
R = 0 if R = 0. Benjamini and Hochberg

also proved that the multiple testing procedure of Seeger and Simes controls FDR
at a desired level when the test statistics are independent. Following Benjamini and
Hochberg [1] this procedure gained a large popularity and is currently known as
the Benjamini and Hochberg (BH) procedure.

Let P(1) ≤ P(2) . . . ≤ P(m) be the ordered p-values of m tests. Let

(3.1) k = max
{

i : P(i) ≤
iα

m

}
.

BH rejects all hypotheses for which the corresponding p-values are smaller than P(k).
In Benjamini and Yekutieli [3] and Sarkar [23] it is proved that BH controls FDR
also under certain forms of positive dependence between test statistics. Following
Benjamini and Hochberg [1] many other criteria and procedures which allow for
controlling a number or proportion of false discoveries, were developed (see e.g.
Lehmann and Romano [17], Sarkar [24], Storey [31] and references given there) but
BH still remains one of the most popular methods of multiple testing.

Table 1

Counts of possible outcomes of m hypothesis tests

Accept null Reject null Total
Null true U V m0

Alternative true T S m1

W R m
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Multiple testing problems can be approached also from the point of view of
decision theory. Depending on the specifics of the problem, different loss functions
can be assigned to the two types of errors and the procedure minimizing the related
risk can be constructed. The corresponding procedures in the framework of Bayesian
decision theory were discussed e.g. in Müller et al. [19], Müller et al. [20] or Scott
and Berger [25]. Further references to Bayesian multiple testing procedures as well
as a novel Bayesian stepwise multiple testing procedure can be found in Chen and
Sarkar [5].

To point at some similarities between controlling FDR and Bayesian approach
to multiple testing we now briefly discuss the positive false discovery rate,

pFDR = E

(
V

R
|R > 0

)
=

FDR

P (R > 0)
,

defined in Storey [30] and Bayesian false discovery rate

BFDR = P (H0 is true|H0 is rejected),

defined in Efron and Tibshirani [7].
Theorem 1 of Storey [30] states that in case when individual test statistics are

generated by the two-component mixture model, like in our setting, pFDR =
BFDR. It is also pointed out that there are situations in which BFDR can not
be controlled. An obvious example is when p = 0, since then BFDR = pFDR = 1.
It is however easy to show that in our testing problem (2.2) BFDR can be con-
trolled at any given level α if p > 0. The corresponding threshold for the absolute
value of the test statistic Xi is given by the formula

(3.2) cfdr = inf
{

x > 0 :
(1 − p)(1 − Φ0(x))

1 − F (x)
< α

}
,

where Φ0 and F are cdfs of N(0, σ2) and the mixture distribution (2.1), respectively.

Remark 3. The difference between FDR and BFDR may be relatively large for
small p and a small deviation between the null and alternative distribution (i.e.
small power). However, in typical QTL or microarray experiments, where m is
large and some rejections typically occur, the difference between BFDR and FDR
is usually very small. Based on the asymptotic approximation of FDR by BFDR,
Genovese and Wasserman [13] call (3.2) an oracle threshold to control FDR.

Remark 4. Theorem 5.1 of Benjamini and Yekutieli [3] states that if the test
statistics are continuous and independent then FDR of BH is equal to αm0/m.
Thus FDR of BH is close to α only when m0 is close to m and converges to 0 when
m0 → 0. When m0 is known one can easily modify BH to control FDR at the level
α by replacing k (see 3.1) with

(3.3) k1 = max
{

i : P(i) ≤
iα

m0

}
.

In Benjamini and Hochberg [2] a graphical method to estimate m0 is proposed and
the formula (3.3) is used to construct an adaptive version of BH.

Under the mixture model (2.1) the expectation of m0 is equal to m(1 − p) and
a corresponding modified version of BH can be obtained by replacing k1 with

(3.4) k2 = max
{

i : P(i) ≤
iα

m(1 − p)

}
.
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Table 2

Matrix of losses

Accept H0i Reject H0i

H0i true 0 δ0
HAi true δA 0

It is easy to prove that this version of BH also has FDR equal to α. Moreover,
in Efron and Tibshirani [7] it is noticed that the modified BH (3.4) is equivalent
to the BFDR controlling rule (3.2), with the cdf of the mixture distribution esti-
mated by the empirical distribution function. In many consecutive papers (see e.g.
Efron et al. [8], Efron and Tibshirani [7], Storey [29] and Genovese and Wasserman
[13]) different nonparametric methods of the estimation of (1 − p) and F (x) were
considered, leading to FDR controlling rules which are more liberal than BH.

Let us now consider the multiple testing problem from the perspective of decision
theory. Table 2 defines the specific matrix of losses for making the wrong decision.

Let us denote by t1 and t2 the probability of type I and type II errors of a single
test. The Bayes risk related to the above matrix of losses is given by the following
equation

(3.5) BRδ0,δA
= δ0(1 − p)t1 + δApt2.

The Bayes rule, i.e., the test which minimizes this risk, rejects the null hypothesis
if

(3.6)
fA(Xi)
f0(Xi)

>
(1 − p)δ0

pδA
,

where f0 and fA are the densities of Xi under H0 and HA, or equivalently if

(3.7) pi = P (HAi|Xi) >
δ0

δ0 + δA
.

We call this test a Bayes oracle and compare other tests to this oracle.
Let us observe that

BFDR =
(1 − p)t1

(1 − p)t1 + p(1 − t2)
.

Thus

(3.8) BFDR < α iff (1 − α)(1 − p)t1 + αpt2 < αp

and controlling BFDR controls the Bayes risk with a loss δ0 = 1 − α and δA = α.
The classical flavor of BFDR is however strongly reflected in assigning much larger
loss to the type I error than to the type II error.

The accuracy of the multiple testing procedure can be judged by its misclas-
sification probability, MP = E(V +T )

m . Note that MP = BR1,1, where BR1,1 is
the Bayes risk corresponding to 0-1 loss. In our parametric setting (2.1) the Bayes
oracle minimizing BR1,1 rejects the hypothesis H0i if

(3.9) X2
i >

2(σ2 + τ2)σ2

τ2

(
1
2

log
(

σ2 + τ2

σ2

)
+ log

1 − p

p

)
.

In Figure 1 we compare the Bayes oracle (3.9) to BH and the standard test-
ing procedure based on the Bonferroni correction. The significance level for each
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individual test in Bonferroni procedure is equal to α/m. For this presentation
as well as for simulations reported in Section 5 we use m = 200, σ = 1 and
τ =

√
2 ∗ log(200) ≈ 3.26. For BH and Bonferroni procedures α = 0.05. Apart

from the standard BH we use its modified version, with the cutoff for p-values
k2 specified by (3.4). The reported characteristics for the Bonferroni correction
and Bayes oracle were obtained theoretically, while the characteristics of BH were
computed using computer simulations, based on 10000 replicates.

Figure 1 demonstrates that, as expected, the modified version of BH keeps FDR
exactly at the level 0.05, while FDR of the original BH decreases linearly with p.
Comparison of 1(a) and 1(b) shows that the difference between BFDR and FDR
is substantial when p < 0.03. In particular, neither versions of BH controls BFDR
in this range of p. This seems due to the fact that for very small p the threshold
based on the empirical mixing distribution is substantially more liberal than the
one provided by (3.2). Both versions of BH take an intermediate position between
the Bonferroni procedure, which is most conservative, and the most liberal Bayes
oracle. Figure 1 demonstrates that the most powerful Bayes oracle has also the
largest FDR. However, as expected, type I and type II errors balance in such a way
that the misclassification probability (MP ) of the Bayes oracle is smaller than that
of any other method. Interestingly, the modified version of BH performs very well in
terms of MP over the entire range of p. When p is very small also the original BH
has a very low MP, which for p = 0.015 is very close to the optimal value provided
by the Bayes oracle.

Fig 1. Characteristics of multiple testing procedures.
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4. Bayes, parametric empirical Bayes and modified BH procedures

PEB procedures: The natural way of applying the Bayes classifier (3.9) in the
situation when parameters of (2.1) are unknown is to use their consistent estimates
and plug them into (3.9). In particular, maximum likelihood estimators (MLE)
could be considered.

Let

L(X1, . . . , Xm|p, τ, σ) =
m∏

i=1

(pfA(Xi) + (1 − p)f0(Xi)).

We estimate our model parameters in two steps. First we fix p and estimate τ(p)
and σ(p) using the EM algorithm. In the second step we estimate p by maximizing
L(X1, . . . , Xm|p, τ̂(p), σ̂(p)) using numerical methods. We plug our estimated pa-
rameters into (3.9) and denote the resulting Parametric Empirical Bayes Classifier
as PEB1. As reported in Section 5, PEB1 performs very well for moderate values
of p. However, when p is very small PEB1 has large FDR and MP. This behavior is
related to the problems with identifiability of parameters of mixture distributions
discussed in Section 6. Since our main interest is in sparse mixtures we consider
the following modification of PEB1. Firstly we stabilize the performance of MLE
by supplying the information included in the data with the prior information on p.
Using a subjective, informative, prior on p is also strongly recommended in Scott
and Berger [25], where the following prior density is proposed;

(4.1) f(p) = β(1 − p)β−1.

In simulations reported in Scott and Berger [25], the parameter β is set to be equal
to 11, so the corresponding prior on p has its median close to 0.07. To adjust to the
sparsity typical for QTL mapping experiments we slightly shift this prior towards
0 and choose β so that the prior median is 0.03, which for m = 200 corresponds to
6 signals on average. In our simulations β = 22.76. The results aren’t sensitive to
small changes in β.

The estimate of p is obtained by maximizing

(4.2) log L(X1, . . . , Xm|p, τ̂(p), σ̂(p)) − (β − 1) log(1 − p)

and can be interpreted as a mode of the “posterior” density of p.
The second modification relies on replacing the maximum likelihood estimates of

τ(p) and σ(p) with the moment estimates based on the fourth and the second mo-
ment of the mixture distribution. We observe that using the fourth moment makes
our procedure sensitive to the change in the tail of the mixture distribution and
hence yields good results in a very sparse mixture case. The resulting Parametric
Empirical Bayes Classifier is denoted by PEB2.

When σ is known PEB1 and PEB2 are constructed accordingly. For PEB2 τ(p)
is estimated using the fourth moment of the mixture distribution.

Modified BH: We use estimates of p and σ computed by PEB methods to
construct modified versions of BH, with the threshold specified by (3.4). The version
based on MLE is denoted by BH1 and the sparse mixture version, based on the
estimates derived by maximizing (4.2), by BH2.

Full Bayes approach: We use the framework of Scott and Berger [25] and con-
struct the full Bayes procedure minimizing the posterior Bayes risk corresponding
to the 0-1 loss (1 for making type I or type II error). We use noninformative priors
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for τ2 and σ2, suggested in Scott and Berger [25], with densities

(4.3) πSB(σ2) =
1
σ2

and πSB(τ2|σ2) =
σ2

(σ2 + τ2)2
.

When σ is known only the prior for τ is used. The prior on p is the same as the
one used by PEB methods, namely (4.1), with β = 22.76. To compute the posterior
probability of H0i (see formula (9) of Scott and Berger [25]) Markov chain Monte
Carlo (MCMC) is applied, which according to our simulations is more stable than
the importance sampling suggested in Scott and Berger [25]. The hypothesis H0i is
rejected if

(4.4) P (H0i|X1, . . . , Xm) < 0.5

and the resulting multiple testing procedure is denoted by SB.

Remark 5. Note that minimizing the posterior Bayes risk is conceptually different
from minimizing the risk BR1,1 (see (3.5)). BR1,1 is conditional on the vector of
parameters of the mixture model (2.1), while the posterior Bayes risk is conditional
on the data and depends on the prior. However, Theorem 8.2 in the Appendix states
that if the parameter space (i.e. p ∈ (0, 1), σ > 0 and τ > 0) and m increased then
the misclassification probability of SB converges to the optimal value provided by
the oracle (3.7). This result is a consequence of Theorem 8.1 on posterior consistency
under the considered mixture model. Obviously, for each fixed m, the difference
between misclassification probability of SB, and the oracle depends on the accuracy
of prior assumptions and due to the choice of the prior on p we expect SB to resemble
the oracle when the data are generated by the sparse mixture.

Dirichlet mixtures: The procedures presented so far are based on the assump-
tion that the distribution of the signals (of μi’s given γi = 1) is completely known
up to finitely many parameters. In practice, however, a lot less is known about the
signals. A realistic model for such a situation is to consider : μi|(γi = 1) ∼ P sig for
some unknown probability measure P sig with P sig({0}) = 0, which doesn’t need
to be restricted to any parametric family. In this case, Xi’s arise as independent
observations from the mixture density f(x) =

∫
φσ(x − μ)dP (μ), where P is a

probability measure that puts some positive mass at the point 0 and distributes
the remaining mass p according to P sig. A Bayesian analysis of this model is pos-
sible by using a prior distribution on the space of such probability measures P . A
suitable candidate is a Dirichlet process prior. Below we introduce a new procedure
based on this model and prior.

Let πSB(τ2, σ2) = (σ2 + τ2)−2 denote the joint prior distribution on (τ2, σ2)
recommended in Scott and Berger [25]. We assume that

Xi|μi, P, σ2, τ2, p0, c ∼ N(μi, σ
2),

μi|P, σ2, τ2, p0, c ∼ P,

P |σ2, τ2, p0, c ∼ Dir(c, (1 − p0)δ{0} + p0N(0, τ2)),

(p0, c, τ
2, σ2) ∼ Beta(1, 22.76) × Gamma(1, 1) × πSB(τ2, σ2),

where Dir(c, P0) denotes the Dirichlet process prior (see Ferguson [11]) with pre-
cision constant c > 0 and base measure P0 - a probability measure on the real
line. Our choice of the base measure, namely P0 = (1− p0)δ0 + p0N(0, τ2), ensures
that a random P ∼ Dir(c, P0) almost surely puts some positive mass 1 − p on 0
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and distributes the remaining positive mass p on the real line according to some
probability measure P sig, which is singular to δ{0}. Therefore, without any ambi-
guity, we can import our familiar signal indicators γi into this model by defining
γi = I(μi �= 0).

Note that the priors for p0 and (τ2, σ2) match the priors chosen for these para-
meters in the model proposed in Scott and Berger [25] and presented in the previous
section. The precision constant c is modeled with a Gamma(1, 1) prior, which is
quite diffuse with a mean equal to 1 – a conventional choice of this parameter.

Toward implementation of this model, we first integrate out P from the hier-
archical structure by using the Pólya urn representation of a Dirichlet process.
Although our specification includes an improper prior on σ2, it turns out that the
posterior distribution of (μ1, . . . , μm, σ2, τ2, p0) is indeed a proper distribution; see
Theorem A.3 in Appendix. This allows us to obtain an MCMC sample of obser-
vations (μ(l)

1 , . . . , μ
(l)
m ), l = 1, . . . , L, from the posterior distribution of μi’s given

the data. We use the algorithm described in Escobar and West [10] with suitable
adaptations to our model. Our model differs from the one considered in Escobar
and West [10] in two aspects: 1. we consider only a location mixture of normals and
2. our base measure has a point mass at {0}. The adaptations, however, are not
complicated and we omit further details.

With the sample of μi’s collected from the posterior we calculate P (γi = 0|X1,

. . . , Xn) ≈ 1
L

∑
l I(μ(l)

i = 0). As before, we reject H0i if this estimate is smaller
than 0.5. We denote this multiple testing procedure by DPP.

Approximate nonparametric Bayes procedure based on Newton’s al-
gorithm, NPBN: A somewhat related procedure can be obtained by combining
the above nonparametric model with Newton’s algorithm (see Newton [21]), which
produces an easy to compute, recursive estimate of the distribution P . In particu-
lar, we start with an initial guess of P given by P0 = (1− p0)δ{0} + p0N(0, τ2) and
then recursively update this guess as

Pi(dμ) = (1 − wi)Pi−1(dμ) + wi
φσ(xi − μ)Pi−1(dμ)∫
φσ(xi − ν)Pi−1(dν)

,

where wi ∈ (0, 1) are prefixed weights (we take wi = (i + 1)−1). We take the
final update Pm as the estimate of P . Note that the estimate Pm, too, puts some
positive mass 1− pm at 0 and distributes the rest according to some density fm on
the real line. Testing is then performed by mimicking the Oracle rule and replacing
P with the estimate Pm: we reject H0i if (1/pm −1)φσ(xi)/

∫
φσ(xi −μ)fm(μ)dμ <

1. We call this procedure Nonparametric Bayesian Procedure based on Newton’s
algorithm (NPBN).

For every i, if one models xi ∼
∫

φσ(x − μ)P (dμ) with P ∼ Dir(1, Pi−1) then
the posterior expectation of P given the singleton sample {xi} equals Pi. In spite
of this resemblance, NPBN should not be taken as an approximation to DPP. The
former, however, has its own set of advantages.

The biggest advantage of using NPBN is that it produces extremely fast com-
putation while using a nonparametric model. The reason for its speed stems from
the one pass routine employed by the algorithm.

The output of the NPBN procedure depends on the order in which data are fed
to the algorithm. In our simulations we align the observations in their ascending
order of magnitude. With this alignment, Pi’s are first trained on small observa-
tions, which are mostly noise, followed by the large ones coming mainly from the
signals. However, as the later updates are rather less influential (small wi), the
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concentration of Pm on 0 would be systematically inflated. Therefore the chosen
alignment would systematically result in a more conservative procedure than what
a random alignment would produce. Such a conservative approach is well suited to
our anticipation of a small to moderate number of signals.

While greater speed is a selling point for NPBN, it does suffer from some in-
flexibility in model specification. Unlike DPP, the NPBN setting does not allow
a further prior specification on the parameters p0, τ

2, σ2. It is hard to generalize
the recursive algorithm to include unknown parameters. In the present paper we
consider NPBN only when σ is known and specify τ2 = σ2, which is equal to the
mean of the prior distribution on τ2 used by SB and DPP.

We choose p0 as

p0 =
1
m

∑
i

I

(
φσ(xi)

φ√
σ2+τ2(xi)

< 1
)

.

This quantity is equal to the proportion of rejections one would make by assuming
P = 1

2δ0 + 1
2N(0, τ2). This choice calibrates p0 to τ2 in a natural way - once τ2 is

picked we update our noniformative choice of p0 = 1/2 by using this chosen value
of τ2. Our simulation study indicates that this data dependent choice of p0 leads
to an overall higher efficiency compared to any fixed choice of p0.

5. Simulation results

Table 3 and Figure 2 demonstrate characteristics of SB, PEB1, PEB2, BH1, BH2
and NPBN. “Efficiency”, represented in Figures 2(a) and (c), is defined as

E =
MP of the oracle

MP of a given procedure
.

We do not report the results of the original BH since the performance of BH2 is
systematically better. The parameter values used in the simulations are m = 200,
σ = 1 and τ =

√
2 ∗ log(200) ≈ 3.26. Due to the computational complexity the

results for SB are based on 3000 replicates. The results of all other procedures are
based on 10000 replicates. The large scale simulations were not feasible for DPP,
which is not represented in Table 3 and Figure 2.

Table 3 demonstrates that for p ≤ 0.05 PEB1 and BH1 have large MP and FDR.
The properties of these rules quickly improve with increasing p and for p ≈ 0.2 MP
of PEB1 is close to optimal and FDR of BH1 is close to 0.05. When σ is known
the characteristics of PEB1 and BH1 stay at the assumed level for all p ≥ 0.2
but when σ is unknown these rules deteriorate again when p > 0.8. The sparse
mixture rules: SB, PEB2 and BH2, perform well for very small p. When σ is known
these rules retain good properties for p ∈ [0, 0.6] but when σ is unknown they
deteriorate already at p ≈ 0.3. Figure 2(d) demonstrates that at this point all sparse
mixture rules start to loose power and become overly conservative. The reason for
this behavior as well as the corresponding loss of power for PEB1 and BH1 when
p > 0.8 is the difficulty with identifying the model parameters, discussed in detail
in Section 6.

Figures 2(a) and (c) demonstrate the “efficiencies” of the sparse mixture rules in
the most interesting range p ≤ 0.2. PEB1 and BH1 are not represented since their
“efficiencies” for p < 0.03 are below 50%. Figures 2(a) and (c) show that when
p ∈ [0.01, 0.03] BH2 is almost optimal and has the “efficiency” slightly larger than
the “efficiencies” of other procedures. However, this characteristic of BH2 system-
atically decreases with an increase of p and at p = 0.2 it is substantially smaller



222 M. Bogdan, J. K. Ghosh and S. T. Tokdar

Table 3

FDR and Misclassification Probability of multiple testing procedures. BO stands for
the Bayes Oracle (3.9)

σ known σ unknown
p BO SB PEB1 PEB2 BH1 BH2 NPBN SB PEB1 PEB2 BH1 BH2

Misclassification probability in %
0.0 0 0.01 82.4 0.04 73.2 0.03 0.01 0.02 31.3 0.04 14.3 0.03
0.025 1.76 1.8 19.3 1.77 16.8 1.77 1.82 1.84 11.0 1.81 5.11 1.80
0.05 3.36 3.38 7.01 3.40 6.19 3.42 3.46 3.48 6.36 3.48 4.35 3.51
0.2 11.7 11.8 11.8 11.8 12.1 12.2 11.9 12.4 12.2 12.3 12.3 13.0
0.5 23.5 24.5 24.1 24.5 25.5 26.2 24.0 35.5 24.9 40.0 26.4 42.6
0.8 20.0 29.6 21.1 29.5 28.8 35.1 22.2 79.6 30.2 79.7 41.7 79.9

False Discovery Rate in %
0.0 0 3.1 93.1 6.0 79.4 5.2 2.4 4.4 49.4 5.5 42.4 5.6
0.025 9.4 7.8 31.5 7.2 20.5 5.0 5.5 8.6 28.0 6.3 18.7 4.1
0.05 11.2 8.7 17.5 8.0 8.0 4.9 6.9 9.2 19.9 7.0 11.0 3.9
0.2 12.2 9.2 12.9 8.4 5.0 4.7 8.6 5.5 13.9 7.6 6.5 2.9
0.5 13.9 8.0 14.7 8.0 5.3 4.1 11.0 1.1 14.6 2.0 6.2 0.7
0.8 20.0 5.0 17.2 5.1 6.1 2.4 14.8 0.0 13.1 0.0 4.4 0.0

Fig 2. Characteristics of multiple testing procedures.

than the “efficiencies” of PEB2 and SB. The “efficiencies” of PEB2 and SB stay
constant at the level close to 99% when σ is known and only slightly decrease to
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94.5% at p = 0.2 when σ is unknown.
When σ is known the nonparametric NPBN procedure performs surprisingly

well over the entire range of p. It is slightly less efficient than SB and PEB2 when
p < 0.2 but it retains good properties also for p close to 1.

In order to get a feeling of the performance of DPP we compare it with SB on a
case by case basis with the help of a few toy data sets. We generated 10 data sets,
each of size 200, from the model described in Section 1, with σ = 1, τ =

√
2 log 200

and various values of p. Five of these data sets are represented in Figure 3. On each
panel, two scatter plots of Pr(γi = 0|x1, . . . , xm) versus xi are presented. The open
circles joined by the solid line correspond to DPP, whereas the filled circles joined
by the dotted line correspond to SB. The left column in Figure 3 corresponds to
the known σ case – i.e., both DPP and SB are employed with σ2 fixed at 1 and the
conditional prior π(τ2|σ2 = 1) is used for τ2. The right column corresponds to the
unknown σ case.

It appears that DPP and SB perform quite similarly, although the former is a
little more conservative than the latter, particulary when the number of signals is
very small. This is further illustrated by Table 4. The ten columns in the table
represent the ten data sets, with the number of signals shown on the header row.
In each cell of the body of the table, the two values give the numbers of correct
and incorrect discoveries of signals made by the corresponding procedure for that
particular data set. From Table 4 we also note that DPP and NPBN are quite
similar except for samples with many signals (last two columns), where the prior
on p used by DPP was strongly inappropriate.

5.1. When the prior assumption is wrong

In this section we demonstrate the results of simulations illustrating the perfor-
mance of our methods in the situation when the assumption that the distribution
of μi under the alternative is normal does not hold. For this simulation we consider
the case with σ known and generate μi’s using a symmetrized gamma distribution
instead of normal distribution.

Let g(x, r, u) denote the density of the gamma distribution with the shape pa-
rameter r and the scale parameter u. The symmetrized gamma density describ-
ing the prior distribution of μi under the alternative is given by the equation

gA(x) = 0.5g(|x|, r, u). For the current simulation we use r = 4 and u = 2
√

2 log m

r
√

2π
.

As demonstrated in Figure 4, the deviation from the prior assumption strongly
affects the behavior of PEB1 and BH1, which are based on the maximum likelihood
estimates of parameters under the wrong mixture model (2.1). In particular, for
p ∈ (0.3, 0.8) these procedures are much too liberal and do not achieve the assumed
characteristics. The misclassification probability of PEB1 is close to optimal only in
the range of p ∈ (0.1, 0.2) and p > 0.9. Also, only in this range FDR of BH1 is close
or below the assumed value of 0.05. Over the entire range of p the misclassification
probability of the nonparametric procedure NPBN is decisively smaller than for
PEB1, which clearly demonstrates the advantage of using nonparametric methods in
case when the prior distribution is not known. Surprisingly, PEB2 and BH2, which
are based on the moments estimates under the wrong model and use the strongly
informative prior on p, behave very well over the entire range of p. We believe that
their good behavior for moderate and large p is just a coincidence, resulting from
the opposite influence of different types of errors of our estimation procedure. As
noted before, under this particular violation of the prior assumption the methods



224 M. Bogdan, J. K. Ghosh and S. T. Tokdar

Fig 3. A case by case comparison of DPP and SB for known σ: scatter plots of Pr(γi =
0|x1, . . . , xm) vs. xi. Open circles connected by solid line represent DPP, filled circles connected
by dotted line represent SB. Left column depicts the situation when σ is known, right when σ is
unknown.

which do not use the prior on p are too liberal when p ∈ (0.3, 0.8). In case of PEB2
and BH2 this error seems to cancel the error resulting from using the informative,
but not adjusted to this range, prior on p. However, other simulations, not reported
in this paper, suggest that the good behavior of PEB2 and BH2 for p < 0.2 is a
quite general rule, working under a wide set of different, also asymmetric, prior
distributions on μi. A theoretical explanation of this phenomenon still needs to be



Bayesian multiple testing 225

Table 4

A comparison of the numbers of correct and false discoveries of DPP, SB and NPBN

signals 3 5 14 12 19 30 97 100 164 146
σ known

SB 2 0 2 1 9 1 6 0 5 2 14 0 51 3 60 7 110 10 95 6
DPP 0 0 0 0 9 3 6 0 7 2 14 0 62 7 58 7 109 9 89 2
NPBN 1 0 1 0 8 1 4 0 3 0 15 1 59 7 64 7 164 36 111 18

σ unknown
SB 2 0 3 2 9 1 8 3 2 0 14 0 29 0 56 5 0 0 0 0
DPP 0 0 0 0 9 2 7 0 0 0 13 0 23 0 39 0 0 0 0 0

Fig 4. Characteristics of multiple testing procedures when the assumption on the prior distribution
of μi is violated.

worked out.

6. Problems with identifiability of model parameters

An early treatment of the problem caused by lack of identifiability of mixtures
can be found in Ghosh and Sen [15]. Another recent reference is Elmore et al. [9].
In this section we illustrate this problem by a numerical study on the Kullback-
Leibler distance between different mixture densities and the resulting behavior of
the maximum likelihood method.

Consider the problem of a choice between two competing probability models
M1 and M2, characterized by the density functions f1(x) and f2(x). Let K12 =∫

[log( f1(x)
f2(x) )]f1(x)dx denote the Kullback-Leibler distance between these two dis-

tributions and let V12 =
∫

[log( f1(x)
f2(x) )]

2f1(x)dx. Further assume that V12 is finite.
We consider the case when no prior information is available and our choice of the
model depends only on the likelihood of the data under M1 and M2.

Assume now that a sequence of i.i.d. data X1, . . . , Xm is generated according
to the model M1. Let L1 =

∏m
i=1 f1(Xi) denote the corresponding likelihood. Let

L2 =
∏m

i=1 f2(Xi) denote the likelihood of the data under the wrong model M2.
The probability that the likelihood points at the the wrong model M2 is equal to
P (log L1 < log L2). Let us denote D12 = log L1 − log L2. Note that

D12 =
m∑

i=1

log
f1(Xi)
f2(Xi)

.
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Thus, by the Central Limit Theorem, for sufficiently large m the distribution of
D12 can be approximated by the normal distribution with mean equal to mK12

and variance mV12.

Consider now the case when the models M1 and M2 belong to the class of mixture
densities specified in (2.1). The parameters for the model M1 are p = 0.01 , σ1 = 1
and τ1 =

√
2 log 200 ≈ 3.26 and the corresponding parameters for the model M2 are

p2 = 1, σ2 = 1 and τ2 =
√

pτ1 ≈ 0.326. The parameters for the model M2 are chosen
in such a way that the probability distributions corresponding to M1 and M2 have
the same variance. We used the Monte Carlo method to calculate K12 ≈ 0.083 and
V12 ≈ 0.33. Thus E(D12) ≈ 3.93, Var(D12) ≈ 66.58 and a probability of making a
wrong decision P (D12 < 0) ≈ 0.31. Note that while the Kullback Leibler distance
between M1 and M2 is rather small these models are completely different in the
percentage of alternative hypothesis and the resulting testing procedures give very
different results. Wrong decision of accepting the model M2 leads to a rejection
of all null hypothesis, while in reality about 99% of them are true. Interestingly,
the probability of wrongly detecting the corresponding ”full” model M2 quickly
decreases with an increase of p. This dependence is demonstrated in Figure 5(a).
The described phenomenon appears when σ is known and unknown and forces us to
use the informative prior distribution on p when testing is performed in the sparse
mixture setting.

In case when σ is unknown we observe a parallel problem with identifying the
parameters of the mixture distributions with large values of p. For example con-
sider the model M1 with p = 0.95 , σ1 = 1 and τ1 =

√
2 log 200 ≈ 3.26 and the

corresponding “null” model M2 with p2 = 0 and σ2 =
√

σ2
1 + pτ2

1 ≈ 3.33. For
this example K12 ≈ 0.0013, V12 ≈ 0.0505 and a probability of making an error
P (D12 < 0) ≈ 0.37. Similarly as before, choosing M2 instead of M1 leads to a
completely wrong testing procedure (i.e. accepting all hypotheses). In this situa-
tion, probability of making a wrong decision increases with p and is illustrated in
Figure 5(b). The described phenomenon causes the power of our testing procedures
to diminish when the fraction of alternatives exceeds a certain threshold value, as
demonstrated in Figure 2(d).

Fig 5. Probability of making a wrong model choice as a function of true p.
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7. Conclusions

We have examined several multiple testing procedures keeping in mind both FDR
and decision theoretic criteria like MP (Misclassification Probability), efficiency
(MP of oracle/MP) and power. We also studied the robustness to some deviations
from the assumed prior distribution and compared our fully parametric methods
with methods based on nonparametric priors/mixing distributions as in Dirichlet
process mixtures or Newton’s algorithm.

We observed that if σ is known then most methods tend to perform poorly at
one of the two extremes. The MLE-based methods (PEB1, BH1) suffer near p = 0
due to near lack of identifiability. On the other hand procedures that make use of
a conservative prior on p (PEB2, BH2, SB) tend to be too conservative near p = 1.
Surprisingly, the NPBN procedure, based on Newton’s algorithm, does well over
the entire range.

Our results confirm the observation of Genovese and Wasserman [12] that for
very small p’s (for m = 200, p < 0.03) the misclassification error of BH is close to
optimal in the sense of attaining a Bayesian oracle. In this range of p BH works
similarly to the Bayes oracle also in terms of FDR and the power. However for
p > 0.03 the Bayes oracle becomes much more liberal than BH and allows to obtain
much smaller misclassification rate. Interestingly, the misclassification probability
of the modified version of BH, which uses the knowledge on p, is comparable to
the misclassification probability of the Bayes oracle over the entire range of p. This
happens even though the False Discovery Rate and the power of these two are quite
different. Our simulations demonstrate that Empirical Bayes methods can be used
to estimate p and construct modified versions of BH when the model parameters
are unknown.

An interesting methodological fact is that in case when σ is unknown all of the
considered procedures break down for relatively large p. It is somewhat unexpected
that one would have a problem when p, i.e. the proportion of signals, is large.
Section 6 explains how this arises due to the nonidentifiability of mixtures.

The above facts have interesting as well as useful implications for the two appli-
cations discussed in Section 2. If our main interest is in QTL and polygenic effects,
then σ is due to random effects and can be estimated well by appropriate repli-
cation. This will virtually reduce the case of unknown σ to the known σ case and
improve the quality of inference. On the other hand, if our goal is QTL mapping
alone, then σ represents both random effects and polygenic effects and hence can
not be directly estimated even with replication. But fortunately for the range of
p that is relevant for QTL mapping, namely p < 0.2, unknown σ does not cause
problems at least for m ≥ 200 (see Figure 2(c)).

Appendix

Theorem A.1. Let X1, . . . , Xm be the sequence of i.i.d. rv’s with the density spec-
ified by (2.1). Assume that the unknown vector of parameters θ0 = (p0, σ

2
0 , τ2

0 ) is
in the interior of the parameter space Ω = [0, 1] × R+ × R+. Moreover, assume
that the prior density is continuous and positive at θ0 and that there exists m0 ∈ N
such that the corresponding posterior distribution Π(·|x1, . . . , xm) is proper when
m ≥ m0. Then the posterior distribution is consistent, i.e. with probability 1 for
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every Euclidean neighborhood U of θ0 it holds

(A.1) {Π(U |X1, . . . , Xm)}→1 as m → ∞.

Theorem 4.4.1 of Ghosh and Ramamoorthi [14] shows that the posterior prob-
ability of any weak neighborhood of the mixture distribution Pθ0 tends to one as
m tends to infinity. However, the same result for an Euclidean neighborhood of
the true parameter θ0 requires considerably more work. We omit the proof to save
space.

Theorem A.2. The misclassification probability of the full Bayes procedure SB,
specified in (4.4), converges to the optimal misclassification probability provided by
the Bayes oracle (3.9).

Theorem A.2 essentially follows from Theorem A.1 and regularity properties
of the mixture density, but the full proof, though along standard lines, is also
somewhat long and hence omitted.

Theorem A.3. The joint posterior distribution of (μ1, . . . , μm, p, τ2, σ2, c) under
the DPP specification is proper.

Proof. We need to show that

I =
∫ [ m∏

i=1

1√
2πσ2

exp
(
− (xi − μi)2

2σ2

)]
π(dμ1, . . . , dμm, dσ2, dτ2, dp)

is finite. Integrating out P in the hierarchical specification of DPP leads to the
following joint conditional distribution of the μi’s:

μ1, . . . , μm|σ2, τ2, p

∼
m∏

i=1

[
c

c + i − 1
(1 − p)δ{0} +

c

c + i − 1
pN(0, τ2) +

1
c + i − 1

i−1∑
j=1

δ{μj}

]
.

From this it can be shown that I equals

∑
a(S0, Φ)

∫ ∞

0

∫ ∞

0

∏
i∈S0

1√
2πσ2

exp
(
− x2

i

2σ2

)

×
∏
S∈Φ

1
(
√

2πσ2)|S|−1
exp

(
− t2S

2σ2

)
1√

2π(σ2 + |S|τ2)

× exp
(
− |S|m2

S

2(σ2 + |S|τ2)

)
1

(σ2 + τ2)2
dτ2dσ2

where the sum is taken over all S0 ⊂ {1, . . . ,m}, Φ ∈ P({1, . . . , m} \ S0) – the
collection of all partitions of {1, . . . , m} \ S0,

a(S0, Φ) =
∫

[ ∏|S0|
i=1(c(1 − p) + i − 1)

][ ∏
S∈Φ(cp){(|S| − 1)!}

]
∏m

i=1(c + i − 1)
π(dp, dc)

and
mS =

1
|S|

∑
i∈S

xi, tS =
∑
i∈S

(xi − mS)2.
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From this one can show that I < ∞ by a direct verification of the finiteness of
each of the integrals entering the above finite sum. This exercise can be carried out
by 1. substituting Z = τ2

σ2 , 2. integrating out σ2 and 3. by using the fact that τ2/σ2

admits a proper density.
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