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Semiparametric models and two-phase

samples: Applications to Cox regression

Norman E. Breslow∗,‡ and Thomas Lumley†,§

University of Washington, Seattle and University of Auckland

Abstract: A standard estimation method when fitting parametric models
to data from two-phase stratified samples is inverse probability weighting of
the estimating equations. In previous work we applied this approach to like-
lihood equations for both Euclidean and non-Euclidean parameters in semi-
parametric models. We proved weak convergence of the inverse probability
weighted empirical process and derived an asymptotic expansion for the es-
timator of the Euclidean parameter. We also showed how adjustment of the
sampling weights by their calibration to known totals of auxiliary variables, or
their estimation using these same variables, could markedly improve efficiency.

Here we consider joint estimation of Euclidean and non-Euclidean parame-
ters. Our asymptotic expansion for the non-Euclidean parameter is apparently
new even in the special case of simple random sampling. The results are applied
to estimation of survival probabilities for individual subjects using the regres-
sion coefficients (log hazard ratios) and baseline cumulative hazard function
of the Cox proportional hazards model. Expressions derived for the variances
of regression coefficients and cumulative hazards estimated after calibration of
the weights aid construction of the auxiliary variables used for adjustment. We
demonstrate empirically the improvement offered by calibration or estimation
of the weights via simulation of two-phase stratified samples using publicly
available data from the National Wilms Tumor Study and data analysis with
the R survey package.

1. Introduction

Two-phase stratified sampling designs are useful for selecting informative subjects
for ascertainment of expensive covariate information. They are particularly valuable
for clinical medicine and epidemiology when a large cohort, the Phase I sample,
is followed forward in time for the occurrence of a disease event and substantial
information is already available for cohort members. Judicious selection of the Phase
II sample, combined with efficient methods of analysis, can substantially lower costs
associated with precise estimation of covariate effects. Paradigms include stratified
versions of the case-control [7] and case-cohort [4, 21] designs.

A standard method of analysis of data from two-phase stratified samples is in-
verse probability (of sampling) weighting (IPW) of the estimating equations. In
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previous work [10, 11] using this approach with likelihood equations for semipara-
metric models [25, §12.25], we derived the asymptotic distribution of estimators of
the Euclidean parameters by proving weak convergence of the IPW empirical pro-
cess. Subsequently [8] we derived asymptotic expansions for the estimators when
weights were adjusted by their calibration [14] to Phase I totals of auxiliary vari-
ables known for all cohort members. We adopted a “plug in” method of constructing
near optimal calibration variables and evaluated its performance by repeated draw-
ing of stratified Phase II samples from a cohort of National Wilms Tumor Study
(NWTS) patients [9]. Similar results were obtained when the weights were adjusted
via estimation, i.e., by fitted values from a logistic model regressing the Phase II
sampling indicators on the calibration variables [22].

After reviewing this earlier work, we consider joint estimation of Euclidean and
non-Euclidean parameters with data from two-phase samples. An asymptotic ex-
pansion for the non-Euclidean parameter estimator based on calibrated weights is
derived and used to motivate a further suggestion for calibration variables. Sim-
ulations based on NWTS data are extended to investigate the gains from use of
calibrated or estimated weights to estimate the survival probabilities. The mathe-
matical exposition is informal, with minimal attention paid to assumptions needed
for a rigorous development. Lumley’s R survey package [17] was used for all calcu-
lations.

2. Background and notation

2.1. The model

Following [25] consider a model Pθ,η(X) for a random variable X where θ ∈ Θ ⊂
Rp and η ∈ H ⊂ B, with B typically a normed space of functions or measures.
P0 = Pθ0,η0 is the distribution from which X is actually sampled. Expectations

are denoted P0f =
∫
f(x) dP0(x) for real or vector-valued functions f . Let �̇θ,η

denote the p-dimensional likelihood score for θ and Bθ,η the score operator [3]
that maps directions h ∈ H from which one dimensional sub-models ηt approach η
into the corresponding likelihood scores. Let (X1, . . . , XN ) denote a simple random
sample from P0 and denote by PN the corresponding empirical measure: PNf =
(1/N)

∑N
i=1 f(Xi). We assume sufficient regularity to guarantee

√
N consistency

and asymptotic Gaussianity for maximum likelihood (ML) estimators (θ̃N , η̃N ) [10,
11].

X is not completely observed for the simple random sample, however. We denote
by X̃ = X̃(X) the portion that is observed and by U a vector of auxiliary variables.
W = (X,U) denotes data potentially available for all N subjects and V = (X̃, U) ∈
V data actually observed for all of them.

2.2. The sampling design

Consider two-phase sampling in which the Phase I sample (main cohort) is drawn
by simple random sampling from an infinite super-population specified by P0, which
we redefine to be the distribution of W . ΣN denotes the sigma field generated by
(W1, . . . ,WN ), also known as the complete data. Our goal is to use (V1, . . . , VN )
together with the additional data collected at Phase II to estimate (θ, η), coming
as close as possible to the ML estimates (θ̃N , η̃N ) that would have been obtained
had complete data been observed.
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At Phase II a subsample is drawn with sampling probabilities dependent on V
and the remainder of X is observed for subjects in the subsample. We consider
stratified random samples where V is partitioned into J strata, V = V1

⋃
· · ·

⋃
VJ .

Let Ri denote a random binary indicator of whether or not the ith main cohort
subject is sampled at Phase II and define the corresponding sampling probabil-
ity by πi = Pr(Ri = 1|Vi). There are two possibilities. With Bernoulli sampling
[15, 18] the N variables Vi are inspected sequentially and the Ri are generated
independently with πi = pj for Vi ∈ Vj . The pj > 0 are known sampling proba-
bilities. This setup preserves the i.i.d. structure of the observed data (Vi, Ri, RiXi)
and simplifies the theoretical development. The finite population stratified sampling
(FPSS) design, which is closer to actual practice, records the stratum frequencies

Nj =
∑N

i=1 1Vj (Vi) at Phase I and selects into the Phase II sample nj ≤ Nj of
the observations in the jth stratum by random sampling without replacement. With
FPSS the sampling indicators Ri are no longer mututally independent. However,
those corresponding to different strata are independent and within each stratum the
indicators are exchangeable. The Phase II sample size is n =

∑J
j=1 nj =

∑N
i=1 Ri.

The sampling fractions are assumed to converge: nj/Nj → pj as N ↑ ∞.

2.3. IPW empirical measure and estimating equations

Define the discrete measure Pπ
N by putting masses 1/(Nπi) on each of the n selected

(Ri = 1) observations and 0 mass on the remaining (N − n). Pπ
N is analogous to

the bootstrap in that it involves sampling from PN . The IPW estimating equations
are

P
π
N �̇θ,η =

1

N

N∑
i=1

Ri

πi
�̇θ,η(Xi) = 0,(2.1)

P
π
NBθ,ηh =

1

N

N∑
i=1

Ri

πi
Bθ,ηh(Xi) = 0 ∀h ∈ H,(2.2)

whose solution we denote by (θ̂N , η̂N ). Were complete data available for all main
cohort subjects, the maximum likelihood estimates (θ̃N , η̃N ) would be obtained by
solving the same equations with PN replacing P

π
N . The only Phase I information

used in this process are the stratum frequencies (N1, . . . , NJ) that determine the
sampling weights πi in (2.1) and (2.2). In Section 3.3 we show how to utilize more
of this information by adjusting the weights.

3. IPW estimation of Euclidean parameters

3.1. Weak convergence of the IPW empirical process

Asymptotic properties of the IPW empirical process G
π
N =

√
N(Pπ

N − P0) under
Bernoulli sampling follow from van der Vaart’s infinite dimensional Z-estimation
theorem [25, Thm 19.26]. Using results of Præstgaard and Wellner [20] on weak con-
vergence of the exchangeably weighted bootstrap, Breslow and Wellner [10] showed
for the FPSS design that, with GN =

√
N(PN − P0) the usual empirical process,

(3.1) G
π
N = GN +

√
N
(
P
π
N − PN

)
� G+

J∑
j=1

√
νj

√
1− pj
pj

Gj ,
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where νj = P0(V ∈ Vj) is the “size” of the jth stratum, G is the P0-Brownian
bridge and, with P0|j denoting P0 restricted to stratum j1, Gj is the P0|j-Brownian
bridge. The limiting Gaussian processes (G,G1, . . . ,GJ), which are mutually inde-
pendent, are each indexed by a P0-Donsker class of functions F and � denotes
weak convergence in �∞(F).

3.2. Asymptotic distribution of θ̂N

Under stated regularity conditions A1-A4, we previously [10, §5] derived the ex-
pansion

(3.2)
√
NΨ̇0

(
θ̂N − θ0
η̂N − η0

)
= −G

π
N

(
�̇0
B0h

)
+ op(1),

where Ψ̇0 denotes the Fréchet derivative at (θ0, η0) of the map Ψ = (Ψ1,Ψ2) :
Θ×H 
→ Rp×�∞(H) with components Ψ1(θ, η) = P0�̇θ,η and Ψ2(θ, η) = P0Bθ,ηh−
Pθ,ηBθ,η, h ∈ H . We further assumed (A5) that η could be considered a measure

and that Ψ̇0 admitted a partition as in [25, Eq. 25.91]. With I0 = P0(�̇0�̇
T
0 ) the ordi-

nary information for θ, B∗
0 the adjoint of B0 = Bθ0,η0 and (B∗

0B0) the information
operator [3], this allowed us to write (3.2) as

− I0
√
N(θ̂N − θ0)−

√
N(η̂N − η0)B

∗
0 �̇0 = −G

π
N �̇0 + op(1),(3.3)

−P0

[
(B0h)�̇

T
0

]√
N(θ̂N − θ0)−

√
N(η̂N − η0)B

∗
0B0h = −G

π
NB0h+ op(1).(3.4)

Choosing h = (B∗
0B0)

−1B∗
0 �̇0 and subtracting (3.3) from (3.4) as in [25, p. 424] led

to the key result

(3.5)
√
N(θ̂N − θ0) = G

π
N �̃0 + op(1)

which may also be written in the form

√
N(θ̂N − θ0) =

√
N(θ̃N − θ0) +

√
N(θ̂N − θ̃N )

(3.6)

=
1√
N

N∑
i=1

�̃0(Xi) +
1√
N

N∑
i=1

(
Ri

πi
− 1

)
�̃0(Xi) + op(1),

valid for both Bernoulli and FPSS designs. Here �̃0 = Ĩ−1
0 �∗0 denotes the semipara-

metric efficient influence function whose components

�∗0 =
(
I −B0

(
B∗

0B0

)−1
B∗

0

)
�̇0 and(3.7)

Ĩ0 = P0

[(
I −B0

(
B∗

0B0

)−1
B∗

0

)
�̇0�̇

T
0

]
(3.8)

are the efficient score and efficient information, respectively.
The expansion (3.5) together with (3.1) shows that

√
N(θ̂N−θ0) has under FPSS

an asymptotically Gaussian distribution with mean zero and variance

(3.9) VarA
√
N(θ̂N − θ0) = Ĩ−1

0 +

J∑
j=1

νj
1− pj
pj

Varj(�̃0).

1P0|j(A) = P0(AVj)/P0(Vj)
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This equals the sum of the Phase I variance Ĩ−1
0 , the variance of the unobserved ML

estimator θ̃N based on complete data, and the Phase II variance, which captures the
error in the normalized difference between θ̂N and θ̃N . Here Varj denotes the within
stratum variance based on P0|j . The analogous expression for Bernoulli sampling

replaces Varj(�̃0) with Ej(�̃
⊗2
0 ), the within stratum second moment. FPSS has a

clear advantage if the sampling strata are correlated with �̃0(X).

3.3. Adjustment of the weights

The asymptotic distribution of the second term on the RHS of equation (3.6) is
almost surely the same whether it is considered unconditionally or conditionally
given ΣN , the sigma-field for all the study data both observed and unobserved [10].
Conditional inference, which considers randomness only in the sampling indicators
Ri, is called design based inference by survey samplers [17]. From this perspective,
the asymptotic Phase II variance is the almost sure limit of the design based variance
of the IPW estimator of the unknown finite population total �̃Tot =

∑N
i=1 �̃0(Xi).

This insight provides the key to using sample survey methods to improve estimation
efficiency through adjustment of the weights so as to bring in more of the Phase I
information.

One approach is calibration [14] of the design weights di = 1/πi using a q-vector
C = C(V ) of calibration variables that are correlated with �̃0. New weights wi =
gidi are selected to be as close as possible to the di in terms of a distance measure
G(w, d) and yet to exactly estimate the Phase I totals of the Ci. Mathematically
the problem is to minimize, as a function of the design weight multipliers gi, the
sum

∑N
i=1 RiG(wi, di) subject to constraints

(3.10)

N∑
i=1

RiwiCi =

N∑
i=1

Ci

known as the calibration equations. The optimization problem involves a q-vector
λ = λ̂N of Lagrange multipliers for the constraints (3.10). Choosing G(w, d) = (w−
d)2/2d, one finds gi = 1− λ̂T

NCi in a procedure known as least squares calibration.
Choosing the Poisson deviance G(w, d) = w log(w/d) − w + d for the distance

measure, in a procedure known as raking, yields gi = exp(−λ̂T
NCi) so the weights

wi = gidi are always positive. Under standard regularity conditions for design based
inference, and mild conditions on the distance measure G, Deville and Särndal [14]
showed that solutions to the optimization problem satisfied

λ̂N = D̂−1
N

(
P
π
N − PN

)
C +Op

(
n−1

)
, where(3.11)

1

N
D̂N = P

π
NCCT = P0(CCT) + op(1),(3.12)

whatever G was chosen.
In [8] we used these results, together with (3.2) and [11, Thm. 1], to derive the

asymptotic distribution for θ̂N (λ̂N ), the estimator obtained using calibrated weights
in place of design weights. The first step was to write the conclusion of [11, Thm 1]
in the form

−I0
√
N
(
θ̂N (λ̂N )− θ0

)
−

√
N
(
η̂N (λ̂N )− η0

)
B∗

0 �̇0

= −I0
√
N
(
θ̂N (0)− θ0

)
−

√
N
(
η̂N (0)− η0

)
B∗

0 �̇0(3.13)

+ P0(�̇0C
T)

√
Nλ̂N + op(1)
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and

−P0

[
(B0h)�̇

T
0

]√
N
(
θ̂N (λ̂N )− θ0

)
−
√
N
(
η̂N (λ̂N )− η0

)
B∗

0B0h

= − P0

[
(B0h)�̇

T
0

]√
N
(
θ̂N (0)− θ0

)
−

√
N
(
η̂N (0)− η0

)
B∗

0B0h(3.14)

+ P0

[
(B0h)C

T
]√

Nλ̂N + op(1).

From (3.11), (3.12) and the fact that n ↑ ∞ faster than
√
N we concluded

(3.15)
√
Nλ̂N =

(
G

π
N −GN

)[
P0(CCT)

]−1
C + op(1).

Choosing h = (B∗
0B0)

−1B∗
0 �̇0 in (3.14) and subtracting this equation from (3.13)

yielded

(3.16)
√
N
(
θ̂N (λ̂N )− θ0

)
=

√
N
(
θ̂N (0)− θ0

)
− P0(�̃0C

T)
√
Nλ̂N + op(1).

Combining (3.6), (4.7) and (3.16) led to the conclusion that
√
N(θ̂N (λ̂N )− θ0) had

a limiting mean zero Gaussian distribution with variance

(3.17) VarA
√
N
(
θ̂N (λ̂N )− θ0

)
= Ĩ−1

0 +

J∑
j=1

νj
1− pj
pj

Varj(�̃0 −QC),

where QC = P0(�̃0C
T)(P0CCT)−1C is the projection in L2(P0) of each component

of �̃0 onto the linear subspace spanned by components of C. Under Bernoulli sam-
pling the optimal choice for C is Copt = E(�̃0|V ). Estimators θ̂N (λ̂N ) with weights
calibrated to Copt have asymptotic variance equal to that of the optimal member
of the class of augmented IPW estimators considered by Robins et al. [22] and
others [8].

3.4. Applications to Cox regression

For Cox’s [12] model X = (T,Δ, Z), where T is the observed failure time, Δ a
censoring indicator and Z a vector of covariates. The Euclidean parameter θ is
the vector of regression coefficients. The non-Euclidean parameter η consists of
the baseline hazard function Λ, the conditional (given Z) distribution of censoring
times and the marginal distribution of Z [19, 24]. Efficient estimation of θ with
incomplete data is seriously complicated by the presence of the three infinite di-
mensional parameters. With complete data, however, the likelihood factors so that
ML estimation of (θ,Λ) need not consider the censoring and covariate distributions
[25, §25.12.1]. Since our interest is in IPW versions of the standard ML equations,
we follow this latter approach.

Let N(t) = Δ · 1[T ≤ t] and Y (t) = 1[T ≥ t] denote counting and “at risk”
processes for t ∈ [0, τ ] and let

(3.18) M(t) = N(t)−
∫ t

0

eZ
Tθ0Y (s) dΛ0(s)

denote the usual martingale process [1, §2]. Define S
(0)
0 (t) = P0(e

ZTθ0Y (t)),

S
(1)
0 (t) = P0(ZeZ

Tθ0Y (t)) and m(t) = S
(1)
0 /S

(0)
0 (t) = P0(Z|T = t,Δ = 1). Cox
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regression admits simple, explicit expressions for the scores:

�̇0(X) = ΔZ − ZeZ
Tθ0Λ0(T ) =

∫ τ

0

Z dM,(3.19)

B0h(X) = Δh(T )− eZ
Tθ0

∫ T

0

h dΛ0 =

∫ τ

0

h dM ∀h ∈ H,(3.20)

where H = BV[0, τ ] is the set of bounded functions of bounded variation on [0, τ ],
corresponding to one-dimensional submodels of the form dΛt = (1+ht) dΛ. Solution
of the IPW likelihood equations (2.1, 2.2) leads to IPW versions of the Cox [13]
“partial likelihood” equations for θ and the “Breslow” [5] estimator of the baseline
hazard [10].

van der Vaart [25, §25.12] derived the adjoint operator evaluated at the θ score,
the information operator for continuous Λ0 and its inverse as

(3.21) B∗
0 �̇0 = S

(1)
0 , B∗

0B0h = hS
(0)
0 and

(
B∗

0B0

)−1
h = h/S

(0)
0

and thus obtained the efficient score and information

�∗0 =
[
I −B0

(
B∗

0B0

)−1
B∗

0

]
�̇0 =

∫ τ

0

[
Z −m(t)

]
dM(t),(3.22)

Ĩ0 = P0

(
�∗0�

∗T
0

)
= P0e

ZTθ0

∫ τ

0

[
Z −m(t)

]⊗2
Y (t) dΛ0(t)(3.23)

which implied a limiting distribution for θ̃N in agreement with Cox [3]. The asymp-

totic variances for θ̂N and θ̂N (λ̂N ) under FPSS are obtained by using these expres-
sions to replace Ĩ0 and �̃0 = Ĩ−1

0 �∗0 in formulas (3.9) and (3.17), respectively.

4. IPW estimation of the non-Euclidean parameter

4.1. Asymptotic distribution of η̂N and η̂N(λ̂N)

Define the operator A : H 
→ L2(P0) by

(4.1) Ah = B0

(
B∗

0B0

)−1
h− P0

[
B0

(
B∗

0B0

)−1
h�̇T0

]
�̃0.

Substituting (B∗
0B0)

−1h for h in (3.4), using (3.5) and rearranging we have

(4.2)
√
N(η̂N − η0)h = G

π
NAh+ op(1).

This explicit expansion for η̂N is apparently a new result, even for the case of simple
random sampling where GN is substituted for Gπ

N .
Again substituting (B∗

0B0)
−1h for h in (3.14), using (3.16) and rearranging yields

another expansion for the estimator obtained using calibrated weights:
√
N
(
η̂N (λ̂N )− η0

)
h

=
√
N
[
η̂N (0)− η0

]
h+ P0

[
B0

(
B∗

0B0

)−1
h�̇T0

]√
N
(
θ̂N (0)− θ̂N (λ̂N )

)
(4.3)

− P0

[
B0

(
B∗

0B0

)−1
hCT

]√
Nλ̂N + op(1).

Writing (3.16) in the form

√
N
(
θ̂N (0)− θ̂N (λ̂N )

)
= P0(�̃0C

T)
√
Nλ̂N + op(1),
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and using (3.15) and (4.2) we find

√
N
(
η̂N (λ̂N )− η0

)
h

(4.4)
= GNAh+

(
G

π
N −GN

){
Ah− P0(AhCT)

[
P0(CCT)

]−1
C
}
+ op(1).

It follows that
√
N(η̂N (λ̂N ) − η0) has a limiting mean zero Gaussian distribution

indexed by h ∈ H such that

VarA
√
N
(
η̂N (λ̂N )− η0

)
h

(4.5)

= Var0(Ah) +

J∑
j=1

νj
1− pj
pj

Varj
[
Ah−Π(Ah|C)

]
where Var0 is the variance under P0 and Π(Ah|C) denotes the least squares pro-
jection of Ah onto the linear subspace spanned by the calibration variables C.

4.2. Application to Cox regression

From (3.21) we find for h ∈ H = BV[0, τ ]

(4.6) Ah =

∫ τ

0

h

S
(0)
0

dM − P0

(∫
h

S
(0)
0

dM�̇T0

)
�̃0,

where the two terms on the RHS are uncorrelated by construction: �∗0 is the least
squares projection of �̇0 on the orthogonal complement of the nuisance tangent

space, which is readily seen from (3.20) to equal {
∫ τ

0
h dM : h ∈ BV[0, τ ]}.

4.2.1. Results for complete data

Substituting GN for G
π
N in (4.2), we find the asymptotic distribution for the ML

estimator from

(4.7)
√
N(Λ̃N − Λ0)h = GN

[∫ τ

0

h

S
(0)
0

dM − P0

(∫ τ

0

h

S
(0)
0

dM�̇T0

)
�̃0

]
+ op(1).

Set ht = 1[0, t] and let 〈M〉(t) = eZ
Tθ0

∫ t

0
Y dΛ0 denote the predictable variation

process for the counting process martingale M [1, Eq. 2.43]. Using standard results
for the predictable covariation processes of martingale integrals [1, Eq. 2.31], we
conclude that the limiting process Z∗ = Z∗(t) of

√
N(Λ̃N − Λ0)(t) is the sum of a

mean zero Gaussian process Z = Z(t), with

Cov
(
Z(t),Z(s)

)
= P0

∫ τ

0

hths

[S
(0)
0 ]2

d〈M〉 =
∫ t∧s

0

1

S
(0)
0

dΛ0,

and an independent mean zero p-dimensional Gaussian variable Z∗, with covariance
equal to Ĩ−1

0 , premultiplied by the function

P0

(∫ t

0

1

S
(0)
0

dM

∫ τ

0

Z dM

)
=

∫ t

0

S
(1)
0

S
(0)
0

dΛ0 =

∫ t

0

m dΛ0,

in agreement with Begun et al. [3, p. 450]. In the special case θ = 0, so that

the survival times are sampled from a homogeneous population, S
(0)
0 = P0Y and
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the baseline cumulative hazard estimator reduces to the Nelson-Aalen estimator
[1, p. 72]. The second term in square brackets in (4.7) disappears and

√
N(Λ̃N −

Λ0)(t) converges to a mean zero Gaussian process with independent increments and
variance function

VarA
√
N(Λ̃N − Λ0)(t) = Var

(∫ t

0

1

P0Y
dM

)
=

∫ t

0

1

P0Y
dΛ0

as established by Breslow and Crowley [6, Theorem 4].

4.2.2. Results for finite population stratified sampling

Asymptotic properties of Λ̂N under FPSS follow by substituting (4.6) for Ah in (4.2)
and using the basic weak convergence result (3.1). Deriving explicit expressions for
the variances of the limiting Gaussian process when h = ht = 1[0, t] is more com-

plicated than for complete data since the random variables �̃0 and
∫ t

0
(h/S

(0)
0 ) dM

need not be uncorrelated under P0|j as they are for P0.

4.3. Limit law for estimator of individual hazards

The limiting distribution for the estimated cumulative hazard function ez0θ̂N Λ̂N (t)
for a subject with covariates z0 may be derived from equations (3.5) and (4.2) by
inserting the expressions shown earlier (3.22), (3.23), (4.6) for the efficient influence
function �̃0 = Ĩ−1�∗0 and the operator A under Cox regression, and using the delta
method. Suppressing the subscripts N , we have

√
N
[
ez0θ̂Λ̂(t)− ez0θ0Λ0(t)

]
=

√
N
[
ez0θ0(Λ̂− Λ0)(t) +

(
ez0θ̂ − ez0θ0

)
Λ0(t)

]
+

√
N
[(
ez0θ̂ − ez0θ0

)
(Λ̂− Λ0)(t)

]
(4.8)

=
√
N
[
ez0θ0(Λ̂− Λ0)(t) + ez0θ

∗
z0(θ̂ − θ0)Λ0(t)

]
+ op(1)

= ez0θ0
√
N
[
(Λ̂− Λ0)(t) + z0(θ̂ − θ0)Λ0(t)

]
+ op(1)

= ez0θ0Gπ
N

[∫ t

0

dM

S
(0)
0

+

(
z0Λ0(t)−

∫ t

0

mdΛ0

)
�̃0

]
+ op(1),

where in the third line |θ∗ − θ0| ≤ |θ̂− θ0| . For complete data, substituting GN for
G

π
N and again exploiting the orthogonality of the two terms within square brackets,

this converges to the Gaussian process

ez0θ0
[
Z(t) +

∫ t

0

(z0 −m) dΛ0 · Z∗

]
.

Compare with Begun et al. [3, p. 451], who worked with the survival function

instead of the cumulative hazard and thus had an additional term exp(−ez
T
0 θ0Λ0(t))

multiplying this expression.

The expansion (4.8) suggests that, for estimation of the cumulative hazard at

time t, we take as an additional calibration variable E(
∫ t

0
dM/S

(0)
0 |V ).
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5. Simulations

In view of (3.17) and the ensuing discussion, a good choice for the calibration
variables C for θ estimation would be an approximation to Copt = E(�̃0|V ). In
[8], following Kulich and Lin [16], we proposed an approximation that involved five
steps: (i) fitting a parametric model using IPW to the Phase II data to predict
each of the partially missing components of X from V ; (ii) imputing values for
the partially missing components of X for all Phase I subjects using the prediction
model; (iii) fitting the main model Pθ,η(X) to the Phase I subjects using the imputed
data; (iv) taking for the Ci the estimated influence function contributions that are
routinely supplied by standard programs; and (v) using the Ci to calibrate the
weights for IPW fitting of the model Pθ,η using (2.1) and (2.2). An example of a
model assisted survey sampling technique [23], the prediction model in (i) need not
be correct for the procedure to yield valid inferences.

Simulations to assess the improvement in θ estimation with calibration or esti-
mation of the weights were reported in [8]. These results are extended here to esti-
mation of Λ and of survival probabilities. Briefly, a Cox model for time to relapse
(or death without relapse) as a function of unfavorable (UH) vs. favorable (FH)
histologic type, age at diagnosis (yr.), stage (III/IV vs. I/II) and tumor diameter
(cm.) was fitted to data for 3,915 NWTS patients.2 Histologic type as evaluated by
central pathology was treated as the partially missing variable, with histologic type
as evaluated by the patient’s institution, and thus known for all cohort members,
used as a surrogate. Sixteen strata were defined based on outcome (relapsed cases
vs. controls), institutional histology (UH vs. FH), stage and age (< vs. ≥ 1). All
cases and all those with UH were sampled at 100%. Among FH controls the Phase
II sample contained 120/452 of those with stage I/II disease < 1 year, 160/1,620 of
those with stage I/II disease ≥ 1 year, all 40 of those with stage III/IV disease <
1 year and 208/914 of those with stage III/IV disease ≥ 1 year, for a total Phase
II sample size of 1,329 patients.

Ten thousand Phase II samples were drawn and each used first to fit a logistic
regression model by IPW to estimate UH (central pathology) with UH (institu-
tional histology) and other Phase I variables as predictors. This model was used
to impute UH (central pathology) for all Phase I subjects and the Cox model was
first fitted using the imputed data. Calibration variables included the estimated
influence function contributions (“delta-betas”) described above to approximate
Copt = E(�̃0|V ). A further calibration variable∫ t

0

dM̂i

Ŝ
(0)
0

=
Δi1[Ti ≤ t]

Ŝ
(0)
0 (Ti)

− eZ
T
i θ̂

∫ t∧Ti

0

dΛ̂

Ŝ
(0)
0

,

where θ̂, Λ̂ and Ŝ
(0)
0 denote quantities estimated from the imputed data fit, was

employed at each time t = 1, 2, 5, 10 to improve the efficiency of estimation of Λ(t)
as suggested following (4.8). Finally, the Cox model was fitted to the two-phase data
using IPW score equations with either standard (design) or adjusted (calibrated and
estimated) weights. We ignored the additional variability stemming from the use
of Phase II data to construct the calibration variables. Further work is needed to
determine if this actually increases the asymptotic variance.

Figure 1 shows survival curves estimated from the Cox model fit to the entire
cohort for four covariate configurations: A) FH, age = 1, stage = I/II, diameter =

2Data available at http://faculty.washington.edu/norm/software.html

http://faculty.washington.edu/norm/software.html
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Fig 1. Predicted relapse-free survival curves (complete data).

8; B) FH, age = 4, stage = III/IV, diameter = 10; C) UH, age = 0.5, stage = I/III,
diameter = 10; and D) UH, age = 7, stage = III/IV, diameter = 16. Averages of the
curves estimated by IPW from the 10,000 replications of the two-phase sampling
design were virtually identical to those shown except for configuration D. Here the
estimated percentages of relapse-free survival at 1, 2, 5 and 10 years past diagnosis
(Dx) were 68.2, 55.7, 49.2 and 47.8 for the fit to the entire cohort, but only 67.1, 54.4,
47.8 and 46.4 for the averages based on standard weights. Averages for adjusted
weights were within 0.2 percentage points of those for standard weights.

Table 1 shows the root mean squared errors (RMSE) of estimation using the two-
phase design of the survival probabilities shown in Figure 1. These are empirical
Phase II standard deviations. Adjustment of the weights reduced the Phase II error,
with the relative gains substantial for Configurations A and B.

6. Discussion

This paper has used tools of semiparametric inference and empirical processes, as
developed over the years by Jon Wellner, his students and his colleagues, to at-

Table 1

Phase II RMSE of estimation of relapse-free survival probabilities

Configuration A Configuration B

Years from Dx: 1 2 5 10 1 2 5 10
Standard 0.24 0.36 0.43 0.44 0.39 0.56 0.65 0.67
Calibrated 0.10 0.14 0.17 0.18 0.26 0.34 0.40 0.41
Estimated 0.13 0.20 0.23 0.24 0.24 0.33 0.38 0.39

Configuration C Configuration D

Years from Dx: 1 2 5 10 1 2 5 10
Standard 2.76 2.71 2.51 2.45 4.71 5.85 6.24 6.31
Calibrated 2.50 2.44 2.26 2.21 4.49 5.55 5.93 5.99
Estimated 2.47 2.44 2.25 2.20 4.58 5.70 6.09 6.15
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tempt to solve a problem of substantial practical interest and importance: how to
improve estimation of “survival” probabilities with data from two-phase stratified
sampling designs that are increasingly used in epidemiology and clinical medicine.
Little attention was paid to assumptions needed to justify the formal calculations
and substantial work will be needed to clearly delineate the boundaries of applica-
tion. We relied heavily on van der Vaart’s [25, §25.12.1] treatment of the Cox model,
which involved several “partly unnecessary” assumptions including fixed, bounded
covariates and restrictions on censoring. Assumptions needed for the Z-estimation
theorem with estimated nuisance parameters [11] likewise include bounded calibra-
tion variables and covariates. We anticipate that the results can be shown to be
valid under conditions such as those imposed by Andersen and Gill [2] in their
classic treatment of the Cox model with time-dependent covariates. We are hopeful
that the basic weak convergence result (3.1) can be extended from FPSS to other
complex sampling designs. In addition to the theoretical developments, extensive
simulation studies, ideally based on actual data such as those conducted in §5, will
be needed to engender confidence in the proposed methods.
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