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Robust tests for model selection
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Abstract: It was shown almost 40 years ago by Lucien Le Cam that the ex-
istence of suitable tests between Hellinger balls in the parameter set led to
the construction of some sort of universal estimators for parametric statistical
problems with i.i.d. observations. This idea of deriving estimators from fam-
ilies of robust tests was developed and substantially generalized in some of
my previous work and more recently extended to Model Selection based esti-
mation. Since the key ingredient for the design of such estimators for a given
statistical framework is the construction of the relevant tests for this particular
framework, it is essential to explain how to build them for as many different
frameworks as possible. The purpose of this paper is to provide improved re-
sults about the existence of such tests for the problems of estimation based
on independent (not necessarily i.i.d.) observations, estimation of conditional
densities and of Markov transitions.

1. Introduction

The starting point of this work was a paper by Lucien Le Cam which appeared
in 1973 when I was still a student and that I only read a few years later. In this
fundamental paper, Le Cam addressed the problem of estimating a distribution P
on the measurable space (E, E) from an i.i.d. sampleX1, . . . , Xn of this distribution.
He showed that, if it is assumed that P belongs to some statistical model P (i.e. a set
of probability measures) with a finite dimension (in a suitable sense), one can build

an estimator P̂n(X1, . . . , Xn) ∈ P of P which converges at the rate n−1/2 uniformly

for P ∈ P . More precisely, the maximal quadratic risk of P̂n, supP∈P EP [h
2(P̂n, P )],

is bounded by Cn−1 where C is a constant depending on the dimension of P only
and h denotes the Hellinger distance. We recall that the Hellinger distance h(P,Q)
between two probabilities P and Q dominated by μ is given by

(1.1) h2(P,Q) =
1

2

∫
(
√

dP/dμ−
√
dQ/dμ)2 dμ,

the result being independent of the choice of the dominating measure μ. Le Cam
also showed, under the same dimensionality assumptions, that if a suitable prior
is given on P , the posterior will concentrate around P at the rate n−1/2 (for the
Hellinger distance).

One justification for such a construction was the well-known fact that the tradi-
tional MLE method may not work well under the assumed dimensional restrictions
(which cover most parametric problems with a compact parameter set). Many coun-
terexamples have been known for a long time and numerous comments about the
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MLE are to be found in [30]. The situation becomes even worse for nonparametric
problems although the MLE has been shown to be a good nonparametric estima-
tor in some particular situations. Examples are provided by [2, 16–19, 32] and [33]
among many others.

On the contrary, the estimator P̂n(X1, . . . , Xn) (based on i.i.d. observations)
always exists under mild assumptions (typically Hellinger-compactness of the pa-
rameter space), even in nonparametric problems. The key argument involved in
its design was the construction of tests between two convex subsets of the metric
space (M,h) (where M denotes the set of all probability measures on E) the er-
rors of which are controlled by the Hellinger distance between the two sets. More
recent proofs of the existence of such tests can be found in Section 16.4 of [29] and
an interesting discussion about the relationship between rates of convergence and
dimensional properties of the parameter set is given in [31].

Le Cam’s 1973 paper was the first of a series about the construction of estimators
of a probability P belonging to a model P the properties of which are determined by
the dimension of the model and an information index (number of observations for
an i.i.d. sample, variance of the errors for Gaussian regression, etc.). In particular,
in 1975, Le Cam extended his results to the case of independent but not necessar-
ily i.i.d. observations (with some restrictions). My own work of the 80’s, building
on Le Cam’s initial construction, but also on lower bound arguments developed
by Ibragimov and Khas’minskii ([23–25] and [26]), was dedicated to extensions of
Le Cam’s approach in various directions: dealing with infinite-dimensional mod-
els (non-parametric problems), connecting upper and lower bounds and relating
both to dimensional properties of the parameter set, improving Le Cam’s results
on testing for independent observations and extending them to some dependent
cases ([6–8] and [10]).

At this stage, an important remark is in order. Since the construction of the
estimator is based on robust tests (tests between balls) it is also robust. If the
true distribution P does not belong to the assumed model P , the estimator still
exists and the quadratic Hellinger risk is only inflated by an extra “bias” term of
order infQ∈P h2(P,Q) which means that the estimator can be based on approximate
models as shown in [10]. Since I then worked for many years with Pascal Massart on
“Model Selection”, which is based on approximate models, I decided to relate this
new research topic of the 90’s to the general approach of Le Cam. This resulted in
the construction of what I called T-estimators (T for “tests”). It is described in [12]
which provides a general approach to Model Selection via testing with extensions
to further statistical frameworks in [11] and [13].

There is nevertheless a drawback to this generality. Le Cam’s approach to estima-
tion, based on testing, is fairly abstract since it leads to a complicated construction
that requires to perform too many tests to be practically implemented. This is even
more true for my own extensions. However this construction has the theoretical
advantage of handling cases that are more general that those one can handle with
classical estimators: much greater generality but no real applicability. As we would
say in French: “on ne peut avoir le beurre et l’argent du beurre”!

I already mentioned that the key argument in Le Cam’s 1973 initial paper is the
use of suitable tests between balls in the parameter set endowed with an appropri-
ate metric and all subsequent works on the subject rely on the existence of such
tests. This is also true for some more recent results—[14] and [15]—about the con-
centration of posterior distributions in non-parametric Bayesian frameworks. Each
time one wants to apply the general theory to a new statistical framework, one has
to demonstrate the existence of the relevant tests for this particular framework. It
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has initially been proven for i.i.d. observations in [27] and an explicit construction
of such tests was given in [8]. The case of independent non i.i.d. variables dates back
to [28] and [7]. Gaussian sequences and bounded regression have been considered in
[12], Gaussian regression with random design in [11] and Poisson processes in [13].
This new paper is devoted to provide a few examples of such tests that improve,
extend, or clarify previous results on the subject.

2. A brief summary of some general results about model selection

2.1. Model based estimation

Let us consider here, to be specific, the problem of estimating a density s from an
i.i.d. sample X1, . . . , Xn when s belongs to some given set S of densities. Even if S is
a compact parametric model, it is not at all obvious to design a completely general
estimation method that leads to a quadratic risk of order n−1 for the Hellinger
distance. It is well-known that the MLE is not the right solution in many situations.
Moreover, from a realistic point of view, there are very few reasons why the chosen
model S should actually contain the true unknown density s. A typical model is just
an approximation of the truth. This has been recognized many years ago, giving
birth to various types of robust procedures—see for instance [21]—. The problem of
testing between balls and other convex sets was actually considered much earlier
than 1973, not for estimating purposes but for robustness ones, in particular by
Peter Huber. Milestones of the theory of robust testing are [20] and [22]. Extensions
have been provided by [34], [5] and others. Recent results of [3] could also be used to
derive robust tests between two probabilities based on the test statistic T (N, t, t′)
defined in Section 2.2 of [3].

Even for the simplest case of a single model that is assumed to contain the true
parameter, Le Cam’s basic construction is derived from robust tests between balls
in the parameter space. In the more general situation of a model S with metric
dimension bounded by D (see the precise definition below) that may not contain
s, the quadratic risk of a good estimator with values in S will be the sum of an
approximation term (square of the distance from s to S) and a fluctuation term
the size of which is roughly proportional to D/n. Since the approximation term is
unknown, the design of a model which is suitable for estimating the parameter s is
quite difficult. One can try to improve the procedure by introducing several models
simultaneously, hoping for better approximation properties with respect to s. An
optimal model within a given family is therefore one for which the sum of these two
error terms (approximation and fluctuation) is minimal and “Model Selection” aims
at choosing such a model from the observation of the data only. In this situation,
the models typically do not contain the true parameter s (and even if one does,
it is not necessarily the best one). Therefore some specific robustness properties
of the estimation procedures based on the models are necessary to perform Model
Selection. This is why tests between balls are at the chore of the theory for Model
Selection (with applications to adaptive estimation or estimators aggregation) that
I tried to build in [12]. It is actually the continuation of [6] which dealt with a
single discrete model for approximating a compact parameter set and results in the
construction of T-estimators that I shall now summarize.

2.2. About T-estimators

In order to explain what sort of tests are needed to make the whole construction
work, let us first describe our general setting. We observe some random element
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X from (Ω,A) to (Ξ,X ) with an unknown distribution belonging to some set P =
{Ps, s ∈ S}, indexed by S, of possible distributions on (Ξ,X ), where S denotes a
given subset of some metric space (M,d). A simple example is provided by an i.i.d.
sample X = (X1, . . . , Xn), s denoting the unknown density of the Xi with respect
to some given σ-finite dominating measure μ and M being the space L1(μ). We of
course assume that the mapping s �→ Ps is one-to-one. We denote by EP [f(X)] and
Es[f(X)] the expectation of f(X) when X has the distribution P , respectively Ps,
with a similar convention for Ps. We also write a ∨ b for max{a, b}, Bd(t, z) for the
open ball of center t and radius z in (M,d) and |Q| for the cardinality of the set Q.

The construction of T-estimators requires models. A model S ⊂ M is merely
an approximation space for s. We shall restrict our attention here to models with
a bounded metric dimension ([12], Definition 6 page 293). We recall that a subset
S of some metric space (M,d) has a metric dimension bounded by D if, for every
η > 0, there exists an η-net Sη for S which satisfies

(2.1) |Sη ∩ Bd(t, zη)| ≤ exp
[
Dz2

]
for all z ≥ 2 and t ∈ M.

Given such a model and tests between balls in M with centers in S, one can build
an estimator with values in S. If one works with many models simultaneously, the
procedure becomes slightly more complex but the construction is still based on the
same ingredients: models and tests between balls.

Let us now be more precise about our assumptions and results. The distance
d(t, S) from some point t ∈ M to some subset S of M is defined as d(t, S) =
infu∈S d(t, u). We also need a proper definition of tests between the elements of M .

Definition 1. Given a random element X with values in Ξ and two distinct points
t and u ∈ M , a test between t and u is a measurable function ψt,u(X) with values in
{t;u}, our convention being that ψt,u(X) = t means accepting t while ψt,u(X) = u
means accepting u.

We shall stick to this convention throughout the paper.
The key assumption for the construction of T-estimators is the existence of some

subset MT of M and tests between the points of MT with the following properties.

Assumption 1. There exists a subset MT of M and constants a > 0, κ > 2, B > 0
such that, for any pair (t, u) ∈ M2

T with t 
= u and any z ∈ R, one can find a test
ψt,u(X) satisfying

(2.2) sup
{s∈M |κd(s,t)≤d(t,u)}

Ps

[
ψt,u(X) = u

]
≤ B exp

[
−a

(
d2(t, u) + z

)]
;

(2.3) sup
{s∈M |κd(s,u)≤d(t,u)}

Ps

[
ψt,u(X) = t

]
≤ B exp

[
−a

(
d2(t, u)− z

)]
.

The construction of T-estimators also involves a finite or countable family {Sm,
m ∈ M} of models with respective metric dimensions bounded by Dm which are
subsets of MT . Given such a family, we fix numbers ηm for m ∈ M that satisfy the
following requirements :

(2.4)
∑

m∈M
exp

[
−aη2m/21

]
= Σ < +∞, and aη2m ≥ 21Dm/5 for all m ∈ M.

A typical choice of the numbers ηm is as follows: select numbers Δm such that∑
m∈M exp[−Δm] = Σ (or set a prior on M with a probability exp[−Δm] for m so
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that Σ = 1) and set

(2.5) ηm =
√

21a−1
(
(Dm/5) ∨Δm

)
.

Then, for each m ∈ M, we chose an ηm-net S′
m for Sm that satisfies

(2.6) |S′
m ∩ Bd(t, zηm)| ≤ exp

[
Dmz2

]
for all z ≥ 2 and t ∈ M,

which is possible according to the definition of bounded metric dimension. Then,
for each t ∈ S′ = ∪m∈MS′

m, we set η(t) = inf{ηm, m ∈ M| t ∈ S′
m}. For each pair

(t, u) ∈ S′ × S′ with t 
= u, we use Assumption 1 to design a test ψt,u between t
and u satisfying (2.2) and (2.3) with z = η2(u)− η2(t).

To build the corresponding T-estimator, we set, for each t ∈ S′, Rt = {u ∈
S′, u 
= t |ψt,u(X) = u} and we define the random function DX on S′ by

(2.7) DX (t) =

⎧⎨⎩
sup
u∈Rt

{
d(t, u)

}
if Rt 
= ∅;

0 if Rt = ∅.

A T-estimator is any measurable application ŝ(X) with values in S′ which mini-
mizes DX . When such a minimizer does not exist, we replace it by an approximate
minimizer—see [12] for details—but we shall not insist on this here, simply assum-
ing that the minimizer exists. The properties of the T-estimator ŝ(X) are given by
the following theorem—see Corollary 4 of [12]—.

Theorem 1. Under the previous assumptions with κ ≥ 4, the T-estimator ŝ(X)
satisfies, for z ≥ (κ+ 1) infm∈M[d(s, Sm) ∨ ηm],

(2.8) Ps

[
d(s, ŝ) > z

]
< (BΣ/7) exp

[
−(32/75)az2

]
.

Consequently, for all q ≥ 1 and s ∈ M ,

(2.9) Es

[
dq(s, ŝ)

]
≤ [1 +BΣζq](κ+ 1)q inf

m∈M

{
d(s, Sm) + ηm

}q
,

where ζq denotes a constant depending on q only.

It is essential to notice that the construction of T-estimators, as described above,
involves the constant a (via the choice of the discretization parameters ηm) which
has therefore to be known. But this construction does not make use of κ and B
which only influence the risk bounds for T-estimators. When the constant a is
partially unknown (if we only know that a ≤ a0) and the models have a metric
structure which resembles that of Euclidean spaces (which is more restrictive than
having a bounded metric dimension in the above sense), it is possible, in some cases,
to modify the construction of T-estimators, replacing a by a0. The resulting risk
bounds are then multiplied by some power of log(a0/a) and therefore suboptimal
but this may be useful to deal with cases where a is unknown. We shall not insist
on this extension here although it could be applied to the situations of Sections 5
and 6.

Since the statistician is absolutely free to choose suitable models, the only in-
gredient which is definitely necessary in order to apply Theorem 1 is Assumption 1
about the existence of robust tests between t and u that satisfy (2.2) and (2.3). For
any statistical framework for which Assumption 1 holds with a proper choice of the
distance d, Theorem 1 applies to any family of models Sm with a bounded metric
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dimension provided that the numbers ηm have been conveniently chosen (typically
satisfying (2.5)). Such families of models with nice approximating properties with
respect to various sorts of functions s have been provided in the different papers
devoted to T-estimators and more recently in [4] to deal with some complicated
multivariate parameters. We shall now focus on the construction of tests that do
possess the required properties.

3. The basic result

3.1. Preliminary considerations

Of special importance throughout the paper are the Hellinger distance and affin-
ity between probabilities. Given two probabilities P and Q dominated by μ, the
Hellinger distance h between P and Q is given by (1.1) and their Hellinger affinity
ρ by

(3.1) ρ(P,Q) = 1− h2(P,Q) =

∫ √
(dP/dμ)(dQ/dμ) dμ.

A useful tool for building tests between two probabilities P and Q is the following
elementary lemma.

Lemma 1. Let X be a random variable on some measurable space (Ξ,X ) and P,Q
two probabilities on Ξ. Let φ be a non-negative measurable function on Ξ such that

(3.2) EP

[
φ(X)

]
≤ exp a and EQ

[
1/φ(X)

]
≤ exp b.

Then, for all z ∈ R,

PP

[
log φ(X) ≥ z

]
≤ exp[a− z] and PQ

[
log φ(X) ≤ z

]
≤ exp[b+ z].

This lemma shows that if we are able to find a function φ satisfying (3.2), we
immediately derive from it a test between P and Q with controlled errors, the role
of z being to balance the two errors in a way chosen by the statistician. The next
section will therefore be devoted to building such functions φ.

3.2. Fundamental inequalities

Let P0 and P1 (P0 
= P1) be probabilities on Ξ and μ be some dominating measure
which will not play any special role here, the results being independent of the choice
of μ. We then set vi =

√
dPi/dμ for i = 0, 1 and denote by V the two-dimensional

linear subspace of L2(μ) spanned by v0 and v1, by V the subset of V of elements
of norm 1 (so that v0 and v1 belong to V ), by 〈·, ·〉 and ‖ · ‖ respectively the inner
product and norm in L2(μ). We define ω by

ρ(P0, P1) = 〈v0, v1〉 = cosω, 0 < ω ≤ π/2,

so that
h2(P0, P1) = 1− cos

(
2(ω/2)

)
= 2 sin2(ω/2).

For β ∈ [0, 2π/ω), we denote by vβ the element of V which is deduced from v0 by
a rotation of angle βω in the direction of v1 so that that v2β is a probability density
with respect to μ. It follows that

(3.3) vβ =
[
sin(βω) v1 + sin

(
(1− β)ω

)
v0
]
/(sinω)
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and

(3.4) 〈vα, vβ〉 = cos
(
(α− β)ω

)
.

We can now state the main result which improves over the previous ones in [8]
(and Le Cam’s results as well) since it allows to bound the error of the tests derived
from φξ via Lemma 1 whatever the true distribution R of X be.

Theorem 2. Let P0 and P1 be two probabilities on Ξ such that ρ(P0, P1) = cosω
with 0 < ω ≤ π/2. For ξ ∈ (0, 1/2), let Aξ = 2[sin((1 − 2ξ)ω)][sin(ξω)]−1 and
φξ = v1−ξ/vξ with vξ and v1−ξ given by (3.3) and 0/0 = 1. Then φξ satisfies the
following property: for any random variable X with an arbitrary distribution R on
Ξ,

(3.5) ER

[
φξ(X)

]
≤ 1− (1− 2ξ)2h2(P0, P1)−Aξ

[
ξ2h2(P0, P1)− h2(R,P0)

]
and

(3.6) ER

[
1

φξ(X)

]
≤ 1− (1− 2ξ)2h2(P0, P1)−Aξ

[
ξ2h2(P0, P1)− h2(R,P1)

]
.

In particular, for any distribution R,

ER

[
φ1/3(X)

]
≤ 1− h2(P0, P1)

3
+ 2h2(R,P0)

and

ER

[
1

φ1/3(X)

]
≤ 1− h2(P0, P1)

3
+ 2h2(R,P1).

3.3. Proof of Theorem 2

It relies on the following lemma.

Lemma 2. Let P,Q and R be three probabilities with respective densities p, q, r
with respect to μ. If P is absolutely continuous with respect to Q,

√
p/q is bounded

by λ (with the convention that
√
p/q = 1 when q = 0) and X is a random variable

with distribution R, then

(3.7) ER

[√
p(X)/q(X)

]
≤ 2λh2(R,Q) + 2ρ(R,P )− ρ(P,Q).

Proof. The left-hand side of (3.7) can be written∫
r
√
p/q dμ =

∫ √
p/q(

√
r −√

q)2 dμ+ 2

∫ √
pr dμ−

∫ √
pq dμ,

hence the result.

To prove Theorem 2 we set Pξ = v2ξ · μ, P1−ξ = v21−ξ · μ and we apply Lemma 2

with P = P1−ξ and Q = Pξ so that
√

p(X)/q(X) = v1−ξ(X)/vξ(X) since vβ is
nonnegative for 0 ≤ β ≤ 1. By definition, for all x ∈ Ξ,

v1−ξ(x)

vξ(x)
=

sin(ξω)v0(x) + sin((1− ξ)ω)v1(x)

sin((1− ξ)ω)v0(x) + sin(ξω)v1(x)
≤

sin((1− ξ)ω)

sin(ξω)
,
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since 1 > (1− ξ) > ξ > 0. This implies that ER[v1−ξ(X)/vξ(X)] ≤ K with

K = 2
sin((1− ξ)ω)

sin(ξω)
h2(R,Pξ) + 2ρ(R,P1−ξ)− ρ(Pξ, P1−ξ).

Note that any element of V can be written as θvγ with θ ≥ 0 and γ ∈ [0, 2π/ω).

Assuming, without loss of generality, that R � μ, we may write
√

dR/dμ = u+θvγ
with 0 ≤ θ ≤ 1, u orthogonal to V and θ2 + ‖u‖2 = 1. It follows by (3.4) that

ρ(R,Pξ) = θ cos
(
(γ − ξ)ω

)
, ρ(R,P1−ξ) = θ cos

(
(γ − 1 + ξ)ω

)
and ρ(Pξ, P1−ξ) = cos((1− 2ξ)ω), so that

K = 2
sin((1− ξ)ω)

sin(ξω)

[
1− θ cos

(
(γ − ξ)ω

)]
+ 2θ cos

(
(γ − 1 + ξ)ω

)
− cos

(
(1− 2ξ)ω

)
= 2θ

[
cos

(
(γ − 1 + ξ)ω

)
−

sin((1− ξ)ω)

sin(ξω)
cos

(
(γ − ξ)ω

)]
+ 2

sin((1− ξ)ω)

sin(ξω)
− cos

(
(1− 2ξ)ω

)
.

We now successively apply trigonometric formulas to get

cos
(
(γ − 1 + ξ)ω

)
−

sin((1− ξ)ω)

sin(ξω)
cos

(
(γ − ξ)ω

)
= cos(γω) cos

(
(1− ξ)ω

)
+ sin(γω) sin

(
(1− ξ)ω

)
−

sin((1− ξ)ω)

sin(ξω)
cos(γω) cos(ξω)− sin(γω) sin

(
(1− ξ)ω

)
= −cos(γω)

sin(ξω)
sin

(
(1− 2ξ)ω

)
.

It follows that K = cos((1− 2ξ)ω) + 2[sin(ξω)]−1K1 with

K1 = sin
(
(1− ξ)ω

)
− θ cos(γω) sin

(
(1− 2ξ)ω

)
− cos

(
(1− 2ξ)ω

)
sin(ξω)

= sin
(
(1− 2ξ)ω

)
cos(ξω) + sin(ξω) cos

(
(1− 2ξ)ω

)
− θ cos(γω) sin

(
(1− 2ξ)ω

)
− cos

(
(1− 2ξ)ω

)
sin(ξω)

= sin
(
(1− 2ξ)ω

)[
cos(ξω)− θ cos(γω)

]
.

Since ρ(Pξ, P0) = cos(ξω) and ρ(R,P0) = θ cos(γω), we finally get

K = ρ(Pξ, P1−ξ) + 2
sin((1− 2ξ)ω)

sin(ξω)

[
ρ(Pξ, P0)− ρ(R,P0)

]
= 1− h2(Pξ, P1−ξ) + 2

sin((1− 2ξ)ω)

sin(ξω)

[
h2(R,P0)− h2(Pξ, P0)

]
.

One then observes that

h2(Pξ, P1−ξ) = 1− cos
(
(1− 2ξ)ω

)
= 2 sin2

(
(1− 2ξ)ω/2

)
,

h2(Pξ, P0) = h2(P1−ξ, P1) = 2 sin2(ξω/2) and h2(P0, P1) = 2 sin2(ω/2).

Since the function x �→ x−1 sinx is decreasing for 0 ≤ x ≤ π/2, we deduce that
h2(Pξ, P1−ξ) ≥ (1 − 2ξ)2h2(P0, P1) and h2((Pξ, P0) ≥ ξ2h2(P0, P1), which proves
(3.5). Exchanging the roles of Pξ and P1−ξ gives (3.6).
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4. Tests for independent variables

In this section, we want to apply the previous results to the situation of indepen-
dent observations, i.e. the case of X = (X1, . . . , Xn) for independent variables Xi

with respective distributions Ri, 1 ≤ i ≤ n, on the measurable space (E, E). This
means that the distribution R =

⊗n
i=1 Ri of X belongs to the space P of product

probabilities on Ξ = En. We define the distance H on P by

H2(P,Q) =

n∑
i=1

h2(P i, Qi) for P =

n⊗
i=1

P i and Q =

n⊗
i=1

Qi.

4.1. Preliminary inequalities

Let us choose a value of ξ ∈ (0, 1/2). To each pair (P i, Qi) of probabilities on E
with ρ(P i, Qi) = cosωi, we apply the results of Theorem 2 (with P = P i and
Q = Qi) in order to derive a function φi which satisfies (3.5) and (3.6). Setting
Ai = 2[sin((1− 2ξ)ωi)][sin(ξωi)]

−1, we get from (3.5),

ERi

[
φi(Xi)

]
≤ 1− (1− 2ξ)2h2(P i, Qi)−Ai

[
ξ2h2(P i, Qi)− h2(P i, Ri)

]
≤ exp

[
−(1− 2ξ)2h2(P i, Qi)−Ai

[
ξ2h2(P i, Qi)− h2(P i, Ri)

]]
and from (3.6),

ERi

[
1

φi(Xi)

]
≤ 1− (1− 2ξ)2h2(P i, Qi)−Ai

[
ξ2h2(P i, Qi)− h2(Qi, Ri)

]
≤ exp

[
−(1− 2ξ)2h2(P i, Qi)−Ai

[
ξ2h2(P i, Qi)− h2(Qi, Ri)

]]
.

Setting φξ(X) =
∏n

i=1 φi(Xi), we derive that

ER

[
φξ(X)

]
(4.1)

≤ exp

[
−(1− 2ξ)2H2(P,Q)−

n∑
i=1

Ai

[
ξ2h2(P i, Qi)− h2(P i, Ri)

]]
and

ER

[
1

φξ(X)

]
(4.2)

≤ exp

[
−(1− 2ξ)2H2(P,Q)−

n∑
i=1

Ai

[
ξ2h2(P i, Qi)− h2(Qi, Ri)

]]
.

It finally follows from Lemma 1 that

PR

[
log

(
φξ(X)

)
≥ z

]
(4.3)

≤ exp

[
−z − (1− 2ξ)2H2(P,Q)−

n∑
i=1

Ai

[
ξ2h2(P i, Qi)− h2(P i, Ri)

]]
and

PR

[
log

(
φξ(X)

)
≤ z

]
(4.4)

≤ exp

[
z − (1− 2ξ)2H2(P,Q)−

n∑
i=1

Ai

[
ξ2h2(P i, Qi)− h2(Qi, Ri)

]]
.
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These bounds should be interpreted in the following way. Given P and Q belonging
to P, we have derived a test between them which accepts P when log(φξ(X)) < z
and rejects P when log(φξ(X)) > z, the decision being arbitrary in case of equality.
The errors of this test are bounded according to (4.3) and (4.4) whatever the true
joint distribution R of the independent observations X1, . . . , Xn be.

4.2. The i.i.d. case

When P = P
⊗n

and Q = Q
⊗n

are distributions of i.i.d. random variables, then
H2(P,Q) = nh2(P ,Q) and

Ai = 2
[
sin

(
(1− 2ξ)ω

)][
sin(ξω)

]−1
for all i, with ρ(P ,Q) = cosω.

The next corollary of Theorem 2 then follows straightforwardly from (4.3) and (4.4).

Corollary 1. Let X1, . . . , Xn have the joint distribution R =
⊗n

i=1 Ri and φξ be
defined as previously indicated in Section 4.1 in order to satify (4.1) and (4.2).
Let us set Aξ = 2[sin((1 − 2ξ)ω)][sin(ξω)]−1 with ξ ∈ (0, 1/2). Then for any real
number z,

PR

[
log

(
φξ(X)

)
≥ z

]
≤ exp

[
−z − nh2(P ,Q)

(
Aξξ

2 + (1− 2ξ)2
)
+AξH

2(P,R)
]
,

while

PR

[
log

(
φξ(X)

)
≤ z

]
≤ exp

[
z − nh2(P ,Q)

(
Aξξ

2 + (1− 2ξ)2
)
+AξH

2(Q,R)
]
.

In particular, if h(P ,Ri) ≤ ξh(P ,Q) for 1 ≤ i ≤ n or, more generally, H2(P,R) ≤
nξ2h2(P ,Q), then

PR

[
log

(
φξ(X)

)
≥ z

]
≤ exp

[
−z − n(1− 2ξ)2h2(P ,Q)

]
and if h(Q,Ri) ≤ ξh(P ,Q) for 1 ≤ i ≤ n or H2(Q,R) ≤ nξ2h2(P ,Q), then

PR

[
log

(
φξ(X)

)
≤ z

]
≤ exp

[
z − n(1− 2ξ)2h2(P ,Q)

]
.

This means that if we use the statistic log(φξ(X)) to test between P and Q, we
can bound the errors of the test whatever the true distribution R of the independent
variables X1, . . . , Xn be. The “i.i.d. case” actually refers to the probabilities P and
Q, not to the the true distribution of the variablesX1, . . . , Xn. The last error bounds
show that the test is actually a test between two balls in the metric space (P, H)
with the same radius ξH(P,Q) and respective centers P and Q. When z = 0, both
errors of this test are bounded by exp[−n(1 − 2ξ)2h2(P ,Q)]. Note that this is an
improvement over the initial version of [8] which could only deal with the cases of
h(P ,Ri) ≤ ξh(P ,Q) for 1 ≤ i ≤ n or h(Q,Ri) ≤ ξh(P ,Q) for 1 ≤ i ≤ n.

4.3. The general independent case

In the case of arbitrary elements P,Q ∈ P, we get the following result.

Corollary 2. Let X1, . . . , Xn have the joint distribution R =
⊗n

i=1 Ri ∈ P, 0 <
ξ ≤ 1/3, let φξ be defined as previously indicated in Section 4.1 in order to satify
(4.1) and (4.2) and let z be an arbitrary real number. Then

PR

[
log

(
φξ(X)

)
≥ z

]
≤ exp

[
−z −

(
(1− 2ξ)2 + 2ξ2

sin((1− 2ξ)π/2)

sin(ξπ/2)

)
H2(P,Q) + 2

1− 2ξ

ξ
H2(P,R)

]
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and

PR

[
log

(
φξ(X)

)
≤ z

]
≤ exp

[
z −

(
(1− 2ξ)2 + 2ξ2

sin((1− 2ξ)π/2)

sin(ξπ/2)

)
H2(P,Q) + 2

1− 2ξ

ξ
H2(Q,R)

]
.

In particular,

(4.5) PR

[
log

(
φ1/3(X)

)
≥ z

]
≤ exp

[
−z − 1

3
H2(P,Q) + 2H2(P,R)

]
and

(4.6) PR

[
log

(
φ1/3(X)

)
≤ z

]
≤ exp

[
z − 1

3
H2(P,Q) + 2H2(Q,R)

]
.

Proof. To derive the first bounds from (4.3) and (4.4) we merely observe that
ξ ≤ 1− 2ξ and the function z �→ sin((1− 2ξ)z)/ sin(ξz) is decreasing on [0, π/2] so
that

sin((1− 2ξ)π/2)

sin(ξπ/2)
≤ Ai

2
=

sin((1− 2ξ)ωi)

sin(ξωi)
≤ 1− 2ξ

ξ
.

The case of ξ = 1/3 immediately follows.

Again, this is an improvement over the treatment of [7] or [29], Section 16.4.

4.4. An application to fixed design regression

Corollary 2 typically applies to fixed-design regression as considered in Section 8 of
[3]. Let us provide here another illustration with independent observations

Xi = si + ξi, 1 ≤ i ≤ n,

where the errors ξi are i.i.d. with a common known probability distribution P
and the unknown vector s = (si)1≤i≤n ∈ R

n to be estimated belongs to a given
compact subset K of Rn so that sup1≤i≤n si ≤ K. In the fixed-design regression
case, si = s(xi) where s is the unknown regression function and the xi are the
design points.

We denote by Px the distribution of ξ1+x. For many distributions P , there exist
numbers a, b, α such that, for all x, y ∈ [−K,K],

(4.7) a|x− y| ≤ hα(Px, Py) ≤ b|x− y|, with 0 < a ≤ b < +∞, α ≥ 1.

For instance, if the translation family {Px, x ∈ R} is differentiable in quadratic
mean, then α = 1 and if P is a uniform distribution, then α = 2.

Since the Xi are independent non i.i.d. random variables, it follows from the
previous sections that the natural distance between two vectors t = (ti)1≤i≤n and
u = (ui)1≤i≤n of Rn is H given by H2(t, u) =

∑n
i=1 h

2(Pti , Pui). Then, by (4.7),
for t, u ∈ K,

A2
n∑

i=1

|ti − ui|2/α ≤ H2(t, u) ≤ B2
n∑

i=1

|ti − ui|2/α with A = a1/α, B = b1/α.
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Therefore if

V(t, r) =
{
u ∈ R

n |
n∑

i=1

|ti − ui|2/α ≤ r2

}
,

then

(4.8) V(t, r/B) ⊂ BH(t, r) ⊂ V(t, r/A).

Let S be a D-dimensional linear subspace of R
n and set, for t ∈ S, VS(t, r) =

V(t, r) ∩ S. The volume of the set VS(t, r) (with respect to the Lebesgue measure
on S) is independent of t ∈ S so that it is a function v(r) of r only. Moreover
it follows from the properties of the Lebesgue measure that v(λr) = λαDv(r) for
λ > 0.

Let us now consider in the metric space (S,H) some maximal η-separated set Sη

(which means that points in Sη are at distances larger than η). Then Sη is an η-net
for S. In order to bound the metric dimension of S, we have to bound the number
of points of Sη that belong to a ball BH in S with radius xη, x ≥ 2. All balls with
centers in BH ∩ Sη and radius η/2 are disjointed and they are all contained in a
ball of radius (x + 1/2)η ≤ 5xη/4. By (4.8) this ball is itself contained in some
set VS(·, 5xη/(4A)) while each ball of radius η/2 contains some VS(·, η/(2B)). It
follows that |BH ∩ Sη| is bounded by the ratio of the volumes of the corresponding
VS sets, i.e. v(5xη/(4A))/v(η/(2B)) = [5xB/(2A)]αD. Let C = 5B/(2A) ≥ 5/2.
For x ≥ 2, x−2 log(Cx) ≤ (1/4) log(2C), hence

|BH ∩ Sη| ≤ exp
[
αD log(Cx)

]
≤ exp

[
(αD/4) log(2C)x2

]
= exp

[
(αD/4) log(5B/A)x2

]
.

It therefore follows from (2.1) that the metric dimension of S with respect to the
distance H is bounded by (αD/4) log(5B/A).

If we now consider a finite or countable family {Sm,m ∈ M} of linear subspaces
of Rn with respective dimensions Dm and a family of positive numbers Δm such
that

∑
m∈M exp[−Δm] ≤ 1, we may apply Theorem 1 and derive from this family

of models an estimator ŝ of s satisfying

Es

[
H2(s, ŝ)

]
≤ C ′ inf

m∈M

{
H2(s, Sm) + Δm + (αDm/4) log(5B/A)

}
,

where C ′ is a universal constant.

5. Conditional densities

In this section, we deal with the problem of estimating the conditional density of
Y ∈ F given Z ∈ G with respect to some dominating σ-finite measure μ on F from
n i.i.d. pairs of observations Xi = (Yi, Zi), 1 ≤ i ≤ n. We assume that the Zi have
an unknown density f with respect to some reference σ-finite measure ν on G and
we denote by s(·|z) the unknown conditional density of Y given Z = z and by M
the set of such conditional densities. As before, we consider three distributions R, P
and Q for Xi and the corresponding conditional densities of Yi given Zi = zi with
respect to μ, respectively s(yi|zi), t(yi|zi) and u(yi|zi). Therefore R has density
s(y|z)f(z) with respect to the measure μ ⊗ ν on F × G with similar results for P
and Q. We then define on M the distance H by

H2(t, u) =

∫
G

h2
z(t, u) dν(z) with h2

z(t, u) =
1

2

∫
F

(√
t(y|z)−

√
u(y|z)

)2
dμ(y).
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Note that H is a distance between conditional densities which is different from the
Hellinger distance between the joint densities of the pair (Yi, Zi) since

h2(P ,Q) =
1

2

∫
F×G

(√
t(y|z)−

√
u(y|z)

)2
f(z) dμ(y) dν(z).

We shall actually make the following assumption on the density f which implies
that these two distances (H and h) are equivalent.

Assumption 2. There exist two positive constants α and β such that

0 < α ≤ f(z) ≤ β for all z ∈ G

and α is known.

Working conditionally to the value zi of Zi, we derive from Theorem 2 with
ξ = 1/3 a function φ(Yi, Zi) which satisfies

ERi

[
φi(Yi, Zi)|Zi = zi

]
≤ 1− 1

3
h2
zi(t, u) + 2h2

zi(s, t)

and

ERi

[
1

φi(Yi, Zi)
|Zi = zi

]
≤ 1− 1

3
h2
zi(t, u) + 2h2

zi(s, u).

Integrating with respect to Zi and using Assumption 2 leads to

ERi

[
φi(Yi, Zi)

]
≤ 1− α

3
H2(t, u) + 2βH2(s, t) ≤ exp

[
−α

3
H2(t, u) + 2βH2(s, t)

]
and

ERi

[
1

φi(Yi, Zi)

]
≤ 1− α

3
H2(t, u) + 2βH2(s, u) ≤ exp

[
−α

3
H2(t, u) + 2βH2(s, u)

]
.

Setting φ(X) =
∏n

i=1 φi(Xi) leads to analogues of (4.5) and (4.6), namely

PR

[
log

(
φ(X)

)
≥ x

]
≤ exp

[
−x− nα

3
H2(t, u) + 2nβH2(s, t)

]
and

PR

[
log

(
φ(X)

)
≤ x

]
≤ exp

[
x− nα

3
H2(t, u) + 2nβH2(s, u)

]
.

We can then derive a test ψt,u between t and u by setting ψt,u(X) = t if log(φ(X)) <
x and ψt,u(X) = u if log(φ(X)) > x (the case of log(φ(X)) = x being unimpor-
tant). It then follows from the previous inequalities that this test satisfies Assump-
tion 1 with B = 1, a = nα/6 and κ =

√
12β/α. If β is not known, so is κ but,

as we already mentioned, this knowledge is not necessary for the construction of
T-estimators.

6. Markov chains

We present, in this section, an improved version of some results of [7].
Here, we consider a Markov chain X0, X1, . . . , Xn on Ξ with stationary transition

kernel Ps(x,A) = P[Xi+1 ∈ A |Xi = x] for i ≥ 0 indexed by some function s from
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Ξ × Ξ to R+. More precisely, we assume the existence of some probability π on Ξ
such that Ps(x, ·) � π(·) for all x ∈ Ξ with dPs(x, ·)/dπ = s(x, ·). The distribution
of X0 is arbitrary and unknown. We denote by Fi the σ-algebra generated by
X0, X1, . . . , Xi, by P i

s the iterated kernel P i
s(x,A) = P[Xi ∈ A |X0 = x] and set

si(x, ·) = dP i
s(x, ·)/dπ, so that

si+1(x, y) =

∫
si(x, z)s(z, y) dπ(z).

On the set S of possible transition densities s, we define the semi-metric H by

H2(t, u) =
1

2

∫
dπ(x)

∫ (√
t(x, y)−

√
u(x, y)

)2
dπ(y) =

∫
h2(tx, ux) dπ(x),

with the obvious notation tx(y) = t(x, y). In the sequel we shall assume the follow-
ing:

Assumption 3. There exist integers k ≥ 1 and l ≥ 0 and positive numbers α and
β such that

α ≤ 1

k

k∑
j=1

sl+j(x, y) ≤ β for all (x, y) ∈ Ξ× Ξ,

where k, l and α are known, but not necessarily β.

By integration with respect to si(z, ·)π(·), we derive from Assumption 3 that

(6.1) α ≤ 1

k

k∑
j=1

sl+i+j(x, y) ≤ β for all i ≥ 0.

Note that the same argument shows that Assumption 3 holds if

sl+1(x, y) ≤ β and
1

k

k∑
j=1

sj(x, y) ≥ α for all (x, y) ∈ Ξ× Ξ.

For given t, u ∈ S and x ∈ Ξ, we may apply Theorem 2 with ξ = 1/3 to the
probabilities P0 and P1 with respective densities tx and ux with respect to π. This
results in a function φ(x, ·) which satisfies, for any s ∈ S and X with density sx,

(6.2) Esx

[
φ(x,X)

]
≤ 1− 1

3
h2(tx, ux) + 2h2(sx, tx).

and

(6.3) Esx

[
1

φ(x,X)

]
≤ 1− 1

3
h2(tx, ux) + 2h2(sx, ux).

The idea, in order to use Assumption 3 efficiently, is to replace the original Markov
chain by a subset of it. We first split the chain into blocks of size m = l + k + 1
(assuming that n ≥ m). In each such piece of size m, we ignore the l + 1 first
elements and draw one at random among the k remaining ones. We finally keep
this element together with its predecessor in each block of size m. More formally,
we denote the integer part of n/m by N and we define the random integers Ji =
mi + Ui − k, 1 ≤ i ≤ N , where the Ui are i.i.d. random integers drawn uniformly
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among {1, . . . , k} and independent of the Markov chain X = (X0, X1, . . . , Xn). We
shall only use the subset {XJi−1, XJi , 1 ≤ i ≤ N} of X to build our tests.

Given the real number z, we define the following test function ψt,u,z(X) between
t and u by

(6.4) ψt,u,z(X) =

{
t if

∑N
i=1 log

(
φ(XJi−1, XJi)

)
< z;

u if
∑N

i=1 log
(
φ(XJi−1, XJi)

)
> z,

the choice in case of equality being unimportant. The performance of this test when
X is driven by the transition density s is given by the following proposition.

Proposition 1. Let X = (X0, X1, . . . , Xn) be a Markov chain on Ξ with transition
density s(x, ·) with respect to π that satisfies Assumption 3 with m = l+ k+1 ≤ n.
Let N be the integer part of n/m, t, u two elements of S, z a real number and ψt,u,z

the test function defined by (6.4). Then

(6.5) Ps

[
ψt,u,z(X) = u

]
≤ exp

[
−z − Nα

3
H2(t, u) + 2NβH2(s, t)

]
and

(6.6) Ps

[
ψt,u,z(X) = t

]
≤ exp

[
z − Nα

3
H2(t, u) + 2NβH2(s, u)

]
.

Proof. Let us set n′ = mN and φi(X) = k−1
∑k

j=1 φ(Xmi+j−k−1, Xmi+j−k) for
1 ≤ i ≤ N so that φi(X) ∈ Fmi. The independence between the Ji and X and the
fact that m(N − 1) = n′ −m imply that

Es

[
N∏
i=1

φ(XJi−1, XJi)

]
= Es

[
N∏
i=1

φi(X)

]
= Es

[
Es

[
N∏
i=1

φi(X) | Fn′−m

]]

= Es

[
Es

[
N−1∏
i=1

φi(X)

]
Es

[
φN (X) |Xn′−m

]]
.

Then

E = Es

[
φN (X) |Xn′−m

]
=

1

k

k∑
j=1

Es

[
φ(Xn′−k+j−1, Xn′−k+j) |Xn′−m

]
=

1

k

k∑
j=1

Es

[
Es

[
φ(Xn′−k+j−1, Xn′−k+j) |Xn′−k+j−1

]
|Xn′−m

]
.

Since, by (6.2),

Es

[
φ(Xn′−k+j−1, Xn′−k+j) |Xn′−k+j−1

]
≤ 1− 1

3
h2(tXn′−k+j−1

, uXn′−k+j−1
) + 2h2(sXn′−k+j−1

, tXn′−k+j−1
),

we derive that

Es

[
Es

[
φ(Xn′−k+j−1, Xn′−k+j) |Xn′−k+j−1

]
|Xn′−m

]
≤ 1− 1

3
Es

[
h2(tXn′−k+j−1

, uXn′−k+j−1
) |Xn′−m

]
+ 2Es

[
h2(sXn′−k+j−1

, tXn′−k+j−1
) |Xn′−m

]
= 1− 1

3

∫
h2(tx, ux)s

l+j
Xn′−m

(x) dπ(x) + 2

∫
h2(sx, tx)s

l+j
Xn′−m

(x) dπ(x)
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and finally,

E ≤ 1− 1

3k

k∑
j=1

∫
h2(tx, ux)s

l+j
Xn′−m

(x) dπ(x) +
2

k

k∑
j=1

∫
h2(sx, tx)s

l+j
Xn′−m

(x) dπ(x).

It then follows from Assumption 3 that

E ≤ 1− α

3

∫
h2(tx, ux) dπ(x) + 2β

∫
h2(sx, tx) dπ(x)

≤ exp

[
−α

3
H2(t, u) + 2βH2(s, t)

]
,

so that by induction,

Es

[
N∏
i=1

φi(X)

]
≤ Es

[
N−1∏
i=1

φi(X)

]
exp

[
−α

3
H2(t, u) + 2βH2(s, t)

]
≤ exp

[
−Nα

3
H2(t, u) + 2NβH2(s, t)

]
.

Applying Lemma 1 leads to (6.5). The proof of (6.6) derives in the same way from
(6.3).

Proposition 1 implies that the test we have built satisfies Assumption 1 with
B = 1, a = Nα/6 and κ =

√
12β/α, which allows to apply Theorem 1 to the

estimation of transition densities of Markov chains provided that Assumption 3
holds. This is clearly a serious restriction but we have been unable to weaken it.

7. Conclusion

It follows from the previous sections that the testing results which are valid for
density estimation (with n i.i.d. observations) can be extended to the estimation of
conditional densities and Markov transitions. In both cases, we have to estimate a
function of two variables (not necessarily real variables), s(y|z) or s(x, y), with a loss
function which is an adequate version of the Hellinger distance on the parameter
space. The only additional assumption we need, as compared to density estimation,
is the existence of upper and lower bounds on the design density (for conditional
densities) or the parameter itself (for Markov transitions). This is of course a strong
assumption since the value of the lower bound has to be known from the statistician.
Nevertheless, under this assumption, all known results for density estimation can
be translated to estimation of conditional densities and Markov transitions. For
instance, using similar families of models, we get the same rates of convergences for
estimating the density or the transition s(x, y). We shall not insist on this point,
just mentioning that many examples of applications of T-estimators which have
been considered in [12, 13] and [4] can be extended to the cases of conditional
densities and Markov transitions. Examples could be the estimation of Hölderian
Markov transitions with anisotropic smoothness or the problems considered in [1]
about conditional density estimation in the i.i.d. case. Note that Assumption (B)
of [1] also requires a known lower bound (denoted ι(f) in the paper) for the design
density. Many more estimation problems for conditional densities could be dealt
with, at least in an abstract way, with the use of Theorem 2.
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