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Abstract: The Expectation-Maximization (EM) algorithm (Dempster, Laird
and Rubin, 1977) is a popular method for computing maximum likelihood
estimates (MLEs) in problems with missing data. Each iteration of the al-
gorithm formally consists of an E-step: evaluate the expected complete-data
log-likelihood given the observed data, with expectation taken at current pa-
rameter estimate; and an M-step: maximize the resulting expression to find
the updated estimate. Conditions that guarantee convergence of the EM se-
quence to a unique MLE were found by Boyles (1983) and Wu (1983). In
complicated models for high-dimensional data, it is common to encounter an
intractable integral in the E-step. The Monte Carlo EM algorithm of Wei and
Tanner (1990) works around this difficulty by maximizing instead a Monte
Carlo approximation to the appropriate conditional expectation. Convergence
properties of Monte Carlo EM have been studied, most notably, by Chan and
Ledolter (1995) and Fort and Moulines (2003).

The goal of this review paper is to provide an accessible but rigorous in-
troduction to the convergence properties of EM and Monte Carlo EM. No
previous knowledge of the EM algorithm is assumed. We demonstrate the im-
plementation of EM and Monte Carlo EM in two simple but realistic examples.
We show that if the EM algorithm converges it converges to a stationary point
of the likelihood, and that the rate of convergence is linear at best. For Monte
Carlo EM we present a readable proof of the main result of Chan and Ledolter
(1995), and state without proof the conclusions of Fort and Moulines (2003).
An important practical implication of Fort and Moulines’s (2003) result relates
to the determination of Monte Carlo sample sizes in MCEM; we provide a brief
review of the literature (Booth and Hobert, 1999; Caffo, Jank and Jones, 2005)
on that problem.

1. Introduction: The Monte Carlo EM algorithm

The expectation-maximization, or EM algorithm, is an algorithm for maximizing
likelihood functions, especially in the presence of missing data. When EM works,
the algorithm’s output is a sequence of parameter values that converges to the
maximum likelihood estimate (MLE). The seminal paper on EM, and that which
gave the algorithm its name, is the article by Dempster, Laird and Rubin (1977).
A book length treatment is given by McLachlan and Krishnan (1997).

Consider a statistical model in which the random vector (Y, U), Y ∈ R
N and

U ∈ R
q, has distribution given by f(y, u; θ), a density with respect to the measure

λ × μ, where λ and μ are measures on R
N and R

q respectively, and indexed by
the unknown parameter θ ∈ Θ. We refer to (Y, U) as the “complete data” but only
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Y = y is observed; U represents the unobserved or “missing” data. The MLE of θ
is the value θ̂ which maximizes the likelihood function

(1) L(θ; y) =

∫
f(y, u; θ)μ(du)

or, equivalently, the log likelihood l(θ; y) = logL(θ; y). The EM algorithm can be

used to find θ̂ even if the integral in (1) is intractable. Define the Q-function, a
mapping on Θ×Θ, by

(2) Q(θ|θ̃; y) = E
{
log f(y, U ; θ)

∣∣ y; θ̃} ,

that is, the expected value of the “complete data” log-likelihood at θ, given the
observed data, this conditional expectation evaluated under θ̃. Each EM iteration
formally consists of an E-step, to evaluate the conditional expectation in (2), and
an M-step, to maximize it. More precisely, if θ(t) is the parameter value as of the
tth iteration, the update θ(t+1) is chosen such that Q(θ(t+1)|θ(t); y) ≥ Q(θ|θ(t); y)
for all θ ∈ Θ. Under regularity conditions (Boyles, 1983; Wu, 1983, and see Sec-
tion 3 below), and given a suitable starting value θ(0), the resulting sequence{
θ(t) : t = 0, 1, . . .

}
will converge to a local maximizer of L.

If the integral in (2) admits a closed form solution, the implementation of EM
is straightforward (though the M-step may still require a numerical optimization
scheme such as Newton-Raphson). Suppose it does not. As noted, the evaluation
of (2) requires taking an expectation with respect to the conditional distribution
of the missing data U , given observed data Y = y. If one has the means to sim-
ulate random draws from this target distribution, the Q-function can be approxi-
mated by Monte Carlo integration. Let u(1), . . . , u(m) denote a random sample from
h(u|y; θ̃) = f(y, u; θ̃)/L(θ̃; y). Then a Monte Carlo approximation to (2) is given by

Qm(θ|θ̃; y) = 1

m

m∑
k=1

log f(y, u(k); θ) .

In the Monte Carlo EM algorithm (MCEM), first introduced by Wei and Tanner
(1990), the update θ(t+1) is the value of θ that maximizes Qm(θ|θ(t); y).

Applications of EM and MCEM have been numerous; in this work we focus on
one in particular, the two-stage hierarchical model, introduced in Section 2. We give
two simple but realistic examples from this class of models, and demonstrate the
implementation of EM and MCEM in those two problems. In Section 3 we discuss
convergence properties of the EM algorithm. Of course, the question of convergence
for MCEM is far more complicated, and an accessible discussion of the major results
in this area is the main objective of this review paper. In Section 4 we provide a
rigorous but accessible review of the two seminal papers on MCEM convergence,
those of Chan and Ledolter (1995) and Fort and Moulines (2003). We make some
concluding remarks in Section 5.

2. Application: The two-stage hierarchical model

Let Y = (Y1, . . . , YN )T , where each Yi is a random variable in R
1, denote the ob-

servable data. In a two-stage hierarchical model, the distribution of Y is specified
conditionally on some unobservable random quantity U = (U1, . . . , Uq)

T . Specifi-
cally, we assume that conditional on U = u, the Yi are independent with conditional
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densities denoted by fi(yi|ui; θ1), where θ1 ∈ Θ1 is an unknown parameter and each
fi is a density with respect to Lebesgue or counting measure. The fi may also de-
pend on an observable covariate xi though this dependence is suppressed in our
notation. Define f(y|u; θ1) =

∏N
i=1 fi(yi|u; θ1), a density on R

N , and this completes
specification of the first level, or stage, of the hierarchy. At the second stage we
specify a marginal distribution for U , defined by h(u; θ2), a density on R

q that
depends on the unknown parameter θ2 ∈ Θ2. Assume the parameter spaces Θ1 and
Θ2 are open subsets of Rd1 and R

d2 , respectively. Let d = d1 + d2. The unknown
parameter θ = (θ1, θ2) lies in the parameter space Θ = Θ1 ×Θ2, an open subset of
R

d.
Suppose we wish to compute maximum likelihood estimates (MLEs) of θ1 and

θ2. Were the random effects U observable the likelihood function would be given by
what we will call the complete data likelihood Lc(θ; y, u) = f(y|u; θ1)h(u; θ2). But
since only the data Y are observed, the random effects must be integrated out of
LC yielding the likelihood function

(3) L(θ; y) =

∫
Lc(θ; y, u)du =

∫
f(y|u; θ1)h(u; θ2)du .

We wish to find the value of θ that maximizes L, that is, the MLE θ̂.
It will most often be the case that the integral in (3) is intractable. Booth,

Hobert and Jank (2001) provide a very nice summary of numerical and Monte
Carlo methods available for maximum likelihood in this problem, arriving at the
conclusion that “Monte Carlo EM is generally the simplest and most efficient Monte
Carlo fitting algorithm for two-stage hierarchical models.” As noted above, the EM
algorithm is a general method for maximum likelihood in the presence of missing
data; hierarchical models are cast in this light by viewing the unobserved random
effects as “missing”.

Let lc = logLc denote the complete data log likelihood, so

lc(θ; y, u) = log f(y|u; θ1) + log h(u; θ2) .

Thus in the setting of hierarchical models, the EM update rule introduced in Section
1 can be written

θ
(t+1)
1 = argmaxE

{
log f(y|U ; θ1)

∣∣ y; θ(t)} ,

θ
(t+1)
2 = argmaxE

{
log h(U ; θ2)

∣∣ y; θ(t)} ,
(4)

that is, the update of θ1 and that of θ2 can be considered separately.
If one or both of the expectations in (4) is intractable, one might employ the

Monte Carlo EM algorithm. The MCEM update rule for the two-stage hierarchical

model is given here. Let θ(t) = (θ
(t)
1 , θ

(t)
2 ) denote the current parameter value; then

θ(t+1) is found by

1. Simulate u(t,1), . . . , u(t,m), a random sample from the conditional density
h(u|y; θ(t));

2. Compute updates

θ
(t+1)
1 = argmax

{
1

m

m∑
k=1

log f(y|u(t,k); θ1)

}

θ
(t+1)
2 = argmax

{
1

m

m∑
k=1

log h(u(t,k); θ2)

}
.
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The “target density” for the Monte Carlo E-step (step 1) is the conditional density
of the random effects given the data,

(5) h(u|y; θ) ∝ f(y|u; θ1)h(u; θ2) .

If direct simulation from (5) is impossible, one might resort to a Markov chain Monte
Carlo (MCMC) method such as the Metropolis-Hastings algorithm. In this case
the sample

{
u(t,k) : k = 1, . . . ,m

}
is an ergodic Markov chain having h(u|y; θ(t))

as its unique stationary density (see, for example, Robert and Casella, 2004). An
alternative approach is to compute a quasi-Monte Carlo or randomized quasi-Monte
Carlo (L’Ecuyer and Lemieux, 2002) approximation to the Q-function with the goal
of reducing Monte Carlo error and hence increasing the efficiency of the algorithm.
We will not consider quasi-Monte Carlo methods any further in this report; the
interested reader is referred to Jank (2004).

2.1. Example 1: A linear mixed model

Table 1 contains a data set for an experiment described by Snedecor and Cochran
(1989). The experiment involved six bulls and very many cows. From each bull,
some number of semen samples was taken, and each of these samples was used
in an attempt to artificially inseminate a large number of cows. Some attempts
were successful and some were not; let Yij denote the success rate (percentage of
conceptions) for sample j from bull i, for j = 1, . . . , ni and i = 1, . . . , q = 6; here
N =

∑q
i=1 ni. Consider the one-way random effects model

yij = μ+ ui + eij

where μ is the overall mean, ui is the ith bull effect, and eij is a residual error term.
As the six bulls were a random sample from a larger population of bulls, the ui are
modeled as independent and identically distributed (i.i.d.) random effects. Model
specification is completed by a distribution assumption on the bull effect and error
term; we take

ui ∼ iid Normal
(
0, σ2

u

)
; independent of eij ∼ iid Normal

(
0, σ2

e

)
.

When there exists a conjugate relationship between f and h, as in the normal linear
mixed model, the integral in (3) can be solved explicitly. The resulting log-likelihood
can be maximized numerically (or analytically in the case of balanced data ni ≡ n);
for the bulls data we obtain μ̂ = 53.318, σ̂2

u = 54.821, and σ̂2
e = 249.23.

Table 1
Bovine artificial insemination data of Example 1 (Snedecor and Cochran, 1989)

Bull (i) ni Percentage of conception
1 5 46, 31, 37, 62, 30
2 2 70, 59
3 7 52, 44, 57, 40, 67, 64, 70
4 5 47, 21, 70, 46, 14
5 7 42, 64, 50, 69, 77, 81, 87
6 9 35, 68, 59, 38, 57, 76, 57, 29, 60

Total 35
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Consider the EM algorithm. We find it more convenient to work with an equiva-
lent version of the model in which yij = ui+ eij and the ui are i.i.d. Normal(μ, σ2

u).
Under this reparameterization the complete data log-likelihood of θ = (μ, σ2

u, σ
2
e)

is

lc(θ; y, u) = −N

2
log(σ2

e)−
1

2σ2
e

q∑
i=1

ni∑
j=1

(yij − ui)
2 − q

2
log(σ2

u)−
1

2σ2
u

q∑
i=1

(ui − μ)2 .

Owing to the conjugacy it is straightforward to show that

(6) Ui|(Y = y; θ) i = 1, . . . , q are indep Normal

(
σ2
eμ+ niσ

2
uȳi

σ2
e + niσ2

u

,
σ2
eσ

2
u

σ2
e + niσ2

u

)
.

Denote the conditional mean and variance of Ui given Y = y by ûi and V̂i, respec-
tively. Then the EM update rule is given by

μ(t+1) =
1

q

q∑
i=1

û
(t)
i

σ2(t+1)

u =
1

q

q∑
i=1

(
V̂

(t)
i +

[
û
(t)
i

]2)
−
[
μ(t+1)

]2

σ2(t+1)

e =
1

N

q∑
i=1

⎡
⎣ ni∑
j=1

y2ij − 2niȳiû
(t)
i + ni

(
V̂

(t)
i +

[
û
(t)
i

]2)⎤⎦ .

Given the existence of a closed form EM update, there is no practical reason to
resort to Monte Carlo EM (indeed there was no practical need for EM, as we found
a closed form expression for the likelihood as well), but we will consider MCEM
for illustration. Let u(t,1), . . . , u(t,m) denote a sequence of simulated draws from
h(u|y; θ(t)), given at (6). The MCEM update rule for θ(t+1) is

μ(t+1) =
1

mq

m∑
k=1

q∑
i=1

u
(t,k)
i

σ2(t+1)

u =
1

mq

m∑
k=1

q∑
i=1

(
u
(t,k)
i − μ(t+1)

)2

σ2(t+1)

e =
1

mN

m∑
k=1

q∑
i=1

ni∑
j=1

(
yij − u

(t,k)
i

)2
.

We ran three independent MCEM runs of 20 iterations each, starting at the point

(μ(0), σ2(0)

u , σ2(0)

e ) = (55, 45, 260). For each update we used Monte Carlo sample size
m = 104; results are shown in Figure 1. The three dashed lines indicate the paths
of the three MCEM runs, and the solid line shows that of ordinary (deterministic)
EM. We did three more runs with starting values closer to the MLE and using
m = 105; those results are summarized in Figure 2.
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Fig 1. Trace plots for Monte Carlo EM in Example 1, based on Monte Carlo sample size m =
104 at each iteration. Top left plot is overall mean μ, top right and bottom left are variance
components σ2

u and σ2
e , respectively. Bottom right plot shows log-likelihood evaluated at current

parameter value. The solid line is deterministic EM and the three dashed lines correspond to three
independent runs of Monte Carlo EM.
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Fig 2. Analogous to Figure 1, but with m = 105 and starting values chosen closer to the true
MLE.
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2.2. Example 2: A logit-normal generalized linear mixed model

Let Y = {Yij : j = 1, . . . , ni; i = 1, . . . , q} denote a set of binary response variables;
here again one can think of Yij as the jth response for the ith subject. Let xij be a
covariate (or vector of covariates) associated with the i, j observation. Conditional
on the random effects U = u ∈ R

q, the responses are independent Bernoulli(πij)
where

log

(
πij

1− πij

)
= βxij + ui .

Let U1, . . . , Uq be independent and identically distributed as Normal(0, σ2). The
likelihood is given by

L(β, σ2; y) =
(
σ2
)−q/2 ×

∫
Rq

exp

⎧⎨
⎩

q∑
i=1

ni∑
j=1

[
yij (βxij + ui)− log

(
1 + eβxij+ui

)]− 1

2σ2

q∑
i=1

u2
i

⎫⎬
⎭ du.

The above model has been used by several authors (Booth and Hobert, 1999; Caffo,
Jank and Jones, 2005; McCulloch, 1997) as a benchmark for comparing Monte Carlo
methods of maximum likelihood. We consider here a data set generated by Booth
and Hobert (1999, Table 2) with ni = 15, q = 10, and xij = j/15 for each i, j. For

these data the MLEs are known to be (β̂, σ̂2) = (6.132, 1.766).
A version of the complete data log-likelihood is given by

lc(β, σ
2; y, u) = −q

2
log
(
σ2
)− 1

2σ2

q∑
i=1

u2
i +

q∑
i=1

ni∑
j=1

[
βxijyij − log

(
1 + eβxij+ui

)]
.

To apply the EM algorithm in this problem we would need to compute the (condi-
tional) expectation of lc with respect to the density

(7) h(u|y; θ) ∝ exp

⎧⎨
⎩

q∑
i=1

ni∑
j=1

[
yijui − log

(
1 + eβxij+ui

)]− 1

2σ2

q∑
i=1

u2
i

⎫⎬
⎭ .

Clearly this integral will be intractable. Thus we consider a Monte Carlo EM algo-
rithm, which requires the means to simulate random draws from the distribution
given by (7). McCulloch (1997) employed a variable-at-a-time Metropolis-Hastings
independence sampler with Normal(0, σ2) proposals, which Johnson, Jones and
Neath (2011) have shown is uniformly ergodic.

Trace plots for three independent runs of MCEM are shown in the left hand
panels of Figure 3. The starting values for these runs were (β(0), σ2(0)) = (2, 1), and
we ran 35 updates with Monte Carlo sample size m = 104 at each iteration. We
conducted three more runs of 25 iterations, starting at (β(0), σ2(0)) = (6, 2), with
m = 105; results are shown in the right hand panels of Figure 3.
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Fig 3. Monte Carlo EM trace plots for logit-normal model of Example 2. Top panels show β,
bottom panels show σ2. Three dashed lines correspond to three independent runs of MCEM, with
solid horizontal line drawn at true MLE. Runs in left hand panels used Monte Carlo sample size
m = 104 at each iteration; in right hand panels we used m = 105 with starting values closer to
the true MLE.

3. Convergence properties of ordinary EM

The basic convergence properties of the EM algorithm were established by Boyles
(1983) and Wu (1983). The presentation given here draws heavily from Geyer
(1998). We will show that if an EM sequence converges, its limit must be a sta-
tionary point of the log-likelihood. We then present conditions that guarantee the
convergence of EM, with additional conditions that guarantee convergence to the
MLE. We conclude this section with a proof that the EM algorithm cannot produce
a superlinearly convergent sequence.

We begin by proving the ascent property of the EM algorithm, which guarantees
that an EM update will never decrease the value of the likelihood function, that is,
if
{
θ(t)
}
is an EM sequence, then l(θ(t+1); y) ≥ l(θ(t); y) for each t.

Define

R(θ|θ̃; y) = E
{
log h(U |y; θ)∣∣ y; θ̃}

= E
{
log f(y, U ; θ)

∣∣ y; θ̃}− E
{
log f(y; θ)

∣∣ y; θ̃}
= Q(θ|θ̃; y)− l(θ; y) .

(8)

We now show that, for fixed θ̃, R(θ|θ̃; y) attains its maximum at θ = θ̃.

Lemma 1. For any θ̃ ∈ Θ, R(θ̃|θ̃; y) ≥ R(θ|θ̃; y) for all θ.
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Proof.

R(θ|θ̃; y)−R(θ̃|θ̃; y) = E

{
log

(
h(U |y; θ)
h(U |y; θ̃)

) ∣∣∣ y; θ̃

}
≤ log

(
E

{
h(U |y; θ)
h(U |y; θ̃)

∣∣∣ y; θ̃

})

by the conditional Jensen inequality (see Billingsley, 1995, page 449); now

E

{
h(U |y; θ)
h(U |y; θ̃)

∣∣∣ y; θ̃

}
=

∫
h(u|y; θ)
h(u|y; θ̃)h(u|y; θ̃)du =

∫
h(u|y; θ)du = 1

and thus R(θ|θ̃; y)−R(θ̃|θ̃; y) ≤ log(1) = 0.

Theorem 1. If Q(θ|θ̃; y) ≥ Q(θ̃|θ̃; y), then l(θ; y) ≥ l(θ̃; y). If Q(θ|θ̃; y) > Q(θ̃|θ̃; y),
then l(θ; y) > l(θ̃; y).

Proof. By (8) and Lemma 1,

l(θ; y)− l(θ̃; y) = Q(θ|θ̃; y)−Q(θ̃|θ̃; y)−
[
R(θ|θ̃; y)−R(θ̃|θ̃; y)

]
≥ Q(θ|θ̃; y)−Q(θ̃|θ̃; y)

The ascent property of EM follows immediately from Theorem 1: since θ(t+1) is
chosen to maximize Q(θ|θ(t); y), it must be that Q(θ(t+1)|θ(t); y) ≥ Q(θ(t)|θ(t); y)
and thus l(θ(t+1); y) ≥ l(θ(t); y). This is an appealing property, as it guarantees that
an EM update will never take a step in the wrong direction. Of course, this result
tells us absolutely nothing about the convergence of an EM sequence.

We now show that if an EM sequence converges, it converges to a stationary
point of the log-likelihood. Unless otherwise noted, ∇ will denote differentiation
with respect to the first argument.

Theorem 2. Suppose the mapping (θ, θ̃) 	→ ∇Q(θ|θ̃; y) is jointly continuous. If θ∗

is the limit of an EM sequence
{
θ(t)
}
, then ∇l(θ∗; y) = 0.

Proof. Since θ(t+1) maximizes Q(θ|θ(t); y) at each t we have ∇Q(θ(t+1)|θ(t); y) = 0
at each t. By the continuity assumption∇Q(θ(t+1)|θ(t); y) → ∇Q(θ∗|θ∗; y) as t → ∞
and thus ∇Q(θ∗|θ∗; y) = 0. Let R be as defined at (8), and note

∇R(θ|θ; y) =
∫ [

∂

∂θ
log h(u|y; θ)

]
h(u|y; θ)du

=

∫ ∂
∂θh(u|y; θ)
h(u|y; θ) h(u|y; θ)du

=
∂

∂θ

∫
h(u|y; θ)du =

∂

∂θ
(1) = 0 .

It then follows from (8) that

∇l(θ∗; y) = ∇Q(θ∗|θ∗; y) = 0 .

From Theorem 2 we have that if the EM algorithm converges, it converges to a
stationary point of l; we as yet have no guarantee that EM converges. By the ascent
property, the limit of an EM sequence (if it exists) cannot be a local minimum. It
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can, however, be a local but not global maximum (Wu, 1983, cites several examples)
or a saddlepoint (Murray, 1977, gives an example).

We will now specify conditions that do guarantee the convergence of the EM
algorithm. We define a generalized EM sequence as one in which each update in-
creases the Q-function, but does not necessarily maximize it.

Definition 1. A generalized EM (GEM) sequence is a sequence of parameter values{
θ(t)
}
satisfying Q(θ(t+1)|θ(t); y) ≥ Q(θ(t)|θ(t); y) for each t.

It is immediately clear from Theorem 1 that a GEM sequence enjoys the ascent
property l(θ(t+1); y) ≥ l(θ(t); y). The conclusion of Theorem 2, that the limit of an
EM sequence (if it exists) must be a stationary point of l, does not hold for GEM
without additional assumptions.

Consider a sequence of parameter values
{
θ(t)
}
satisfying θ(t+1) ∈ M(θ(t)) for

some point-to-set mapping M . For example, a GEM sequence can be formulated

in this manner by taking M(θ̃) =
{
θ : Q(θ|θ̃; y) ≥ Q(θ̃|θ̃; y)

}
. We will indicate a

point-to-set mapping M in Θ by the notation M : Θ ⇒ Θ.

Definition 2. The point-to-set mapping M : Θ ⇒ Θ is outer semicontinuous if the
graph of M , {

(θ, θ̃) ∈ Θ×Θ : θ ∈ M(θ̃)
}

is a closed set; that is, if for any convergent sequence
{
(θ(t), θ̃(t))

}
satisfying θ(t) ∈

M(θ̃(t)) for each t, the limit (θ∗, θ̃∗) satisfies θ∗ ∈ M(θ̃∗).
The following theorem gives a set of conditions under which every cluster point

of a GEM sequence lies in a particular set Γ ⊂ Θ.

Theorem 3. Let Γ ⊂ Θ and M : Θ ⇒ Θ be such that the following conditions
hold.

1. M(θ̃) ⊂
{
θ : Q(θ|θ̃; y) ≥ Q(θ̃|θ̃; y)

}
when θ̃ ∈ Γ.

2. M(θ̃) ⊂
{
θ : Q(θ|θ̃; y) > Q(θ̃|θ̃; y)

}
when θ̃ ∈ Θ \ Γ.

3. The restriction of M to Θ \ Γ is outer semicontinuous.

Further suppose that the log-likelihood l is continuous, that the level set{
θ : l(θ; y) ≥ l(θ(0); y)

}
is compact, and let the sequence

{
θ(t) : t = 0, 1, 2, . . .

}
be

such that θ(t+1) ∈ M(θ(t)) for each t. Then l(θ(t); y) converges to a limit, and every
cluster point of

{
θ(t)
}
is contained in Γ.

Proof. By assumption the log-likelihood is bounded above. Also,
{
θ(t)
}
is a GEM

sequence, hence l(θ(t); y) is nondecreasing, so it converges to a limit λ.
Suppose to get a contradiction there exists a subsequence θ(tk) → θ∗ /∈ Γ. Con-

sider the subsequence
{
θ(tk+1)

}
. By the ascent property l(θ(tk+1); y) ≥ l(θ(0); y) for

each k, so the compactness assumption guarantees that
{
θ(tk+1)

}
has a convergent

subsequence with limit θ∗∗. Further, θ∗∗ ∈ M(θ∗) by the outer semicontinuity of
M , and thus Q(θ∗∗|θ∗; y) > Q(θ∗|θ∗; y) and thus l(θ∗∗; y) > l(θ∗; y) by assumption
2 and Theorem 1, respectively. But l(θ∗∗; y) = λ = l(θ∗; y) by continuity of l, a
contradiction.

Thus all cluster points of
{
θ(t)
}
are in Γ.

In the obvious application of Theorem 3 the solution set Γ is taken to be the set
of stationary points of the log-likelihood. We now have a set of conditions under
which the EM algorithm is guaranteed to converge to the unique MLE θ̂.
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Corollary 1. If the conditions of Theorem 3 hold and the set Γ consists of a single
point θ̂, then the sequence

{
θ(t)
}
converges to θ̂.

Unfortunately, these conditions can be difficult or impossible to verify in many
practical applications. Further, the rate of convergence of the EM algorithm cannot
be superlinear, as we show here.

Definition 3. The sequence
{
θ(t)
}
converging to θ̂ is said to converge superlinearly

if

θ(t+1) − θ̂ = o
(
||θ(t) − θ̂||

)
as t → ∞, where || · || denotes the standard Euclidean norm.

Lemma 2. Suppose the log-likelihood is twice continuously differentiable with a
local maximum at θ̂ and suppose that ∇2l(θ̂; y) is nonsingular and negative def-

inite. Further suppose that ∇2Q(θ̂|θ̂; y) is nonsingular and negative definite and

∇2Q(θ̂|θ̂; y)−∇2l(θ̂; y) is nonsingular. Define the sequence
{
θ(t)
}
by

(9) θ(t+1) = θ(t) −
[
∇2Q(θ(t)|θ(t); y)

]−1

∇Q(θ(t)|θ(t); y)

and suppose that θ(t) → θ̂. Then the convergence is not superlinear.

Proof. Let δNR denote the Newton-Raphson update increment for the optimization
of l, that is, if

{
θ′(t)
}
is a Newton-Raphson sequence then θ′(t+1) = θ′(t)+δNR(θ

′(t))
for each t, or

δNR(θ) = − [∇2l(θ; y)
]−1 ∇l(θ; y) .

Since ∇2l(θ; y) is continuous and ∇2l(θ̂; y) is nonsingular, it must be that ∇2l(θ; y)

is invertible in a neighborhood of θ̂, and thus δNR(θ
(t)) is well-defined for sufficiently

large t.

By convergence of
{
θ(t)
}
and the continuity of ∇l, ∇l(θ(t); y) → ∇l(θ̂; y) = 0.

Together with the continuity of ∇2l(θ; y), this guarantees that

δNR(θ
(t)) = −

[
∇2l(θ(t); y)

]−1

∇l(θ(t); y) →
[
∇2l(θ̂; y)

]−1

· 0 = 0

as t → ∞. Now, consider the sequence
{∇l(θ(t); y)/||∇l(θ(t); y)||}. This sequence

lives on the unit sphere, a compact set, and hence has a convergent subsequence.
Let {tk} denote the indices of a convergent subsequence and b its limit. Then
(10)

θ(tk+1) − θ(tk)

||∇l(θ(tk); y)|| =
− [∇2Q(θ(tk)|θ(tk); y)]−1 ∇l(θ(tk); y)

||∇l(θ(tk); y)|| → −
[
∇2Q(θ̂|θ̂; y)

]−1

b

and

(11)
δNR(θ

(tk))

||∇l(θ(tk); y)|| =
− [∇2l(θ(tk); y)

]−1 ∇l(θ(tk); y)

||∇l(θ(tk); y)|| → −
[
∇2l(θ̂y)

]−1

b

as k → ∞. The equality in (10) follows from the fact that ∇Q(θ|θ; y) = ∇l(θ; y)
for any θ.

Suppose the sequence
{
θ(t)
}
does converge superlinearly. Then it is asymptoti-

cally equivalent to Newton-Raphson by the Dennis-Moré characterization theorem
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(see, for example, Fletcher, 1987), and thus the (sub)sequences defined in (10) and

(11) must have the same limit. Then
[
∇2Q(θ̂|θ̂; y)

]−1

b =
[
∇2l(θ̂; y)

]−1

b = c. So

[
∇2Q(θ̂|θ̂; y)−∇2l(θ̂; y)

]
c = 0

and thus c = 0 since ∇2Q(θ̂|θ̂; y)−∇2l(θ̂; y) is full rank. But b must be on the unit
sphere, a contradiction.

Thus the convergence of
{
θ(t)
}
to θ̂ is not superlinear.

The algorithm defined at (9), with update rule given by a single Newton-Raphson
iteration toward the maximum of the Q-function, was first introduced by Lange
(1995) and is known as the EM gradient algorithm. Details are beyond the scope of
this report, but roughly speaking, the convergence properties of the EM algorithm
are equally enjoyed by Lange’s (1995) EM gradient algorithm. Thus while Lemma
2 takes the convergence of the EM gradient sequence as a given, there is no sacrifice
in the applicability of the result, as the EM gradient converges to a local maximum
under essentially the same conditions as does the EM algorithm.

Theorem 4. Suppose the EM sequence
{
θ(t)
}

converges to a point θ∗ ∈ Θ, a

stationary point of the log-likelihood. Further suppose that l(θ; y), Q(θ|θ̃; y), and
R(θ|θ̃; y) are twice continuously differentiable in θ and that ∇2l(θ∗; y), ∇2Q(θ∗|θ∗; y),
and ∇2R(θ∗|θ∗; y) have full rank. Then the convergence cannot be superlinear.

Proof. Let δEG denote the EM gradient update increment, that is, if
{
θ′(t)
}
is an

EM gradient sequence then θ′(t+1) = θ′(t) + δEG(θ
′(t)) for each t:

δEG(θ) = − [∇2Q(θ|θ; y)]−1 ∇Q(θ|θ; y) .
Define δEM analogously, so θ + δEG(θ) represents the first iteration in a Newton-
Raphson routine starting at θ and converging to θ+δEM (θ). Since Newton-Raphson
converges superlinearly in this subproblem (see, for example, Fletcher, 1987, The-
orem 3.1.1), we have

θ + δEG(θ)− [θ + δEM (θ)] = o (||δEM (θ)||)
or

δEG(θ) = δEM (θ) + o (||δEM (θ)||) ,

and thus the EM gradient algorithm (9) is asymptotically equivalent to the EM
algorithm. But EM gradient is not superlinearly convergent by Lemma 2, and thus
neither is the EM algorithm.

4. Some convergence results for Monte Carlo EM

It seems a statement of the obvious (and an understatement at that) to point out
that the study of convergence properties of Monte Carlo EM is more complicated
than that of ordinary EM. Even before coming to face the complexity of the math-
ematical arguments, one must determine which notion of “convergence” one wishes
to consider – what exactly is going to infinity? We mention here three distinct
approaches to the problem.

The first serious effort in establishing convergence properties of MCEM is that
of Chan and Ledolter (1995), who treat the data as fixed, and hold the Monte Carlo
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sample size m constant across MCEM iterations. They then let m go to infinity,
and study the asymptotic properties of the MCEM sequence as a Monte Carlo
approximation to the ordinary EM sequence with the same starting value (whose
convergence properties are well understood). We will discuss Chan and Ledolter’s
(1995) results in considerable detail in subsection 4.1. On the other hand, unless
the Monte Carlo sample size is allowed to increase with the iteration count, there
is no chance for convergence in the usual sense (convergence to the MLE) because
of persistent Monte Carlo error.

In the version of MCEM considered by Sherman, Ho and Dalal (1997), the Monte
Carlo E-step is carried out by running multiple (independent) Markov chains gener-
ated by a Gibbs sampler. Their theoretical results are built on allowing the number
of chains, the length of each chain, and the number of EM iterations T to all tend
to infinity, as does the data sample size N . They then prove

√
N -consistency and

asymptotic normality of the estimator θ(T ). In other words, Sherman, Ho and Dalal
(1997) found conditions under which the MCEM approximation to the MLE enjoys
the same asymptotic properties as the MLE itself. This represents yet another pos-
sible notion of “convergence” of MCEM, though not one that we will pursue any
further in the present paper.

Fort and Moulines (2003) treat the data as fixed, the Monte Carlo sample size
as increasing (deterministically) across MCEM iterations, and establish a.s. conver-
gence of the sequence as the iteration count goes to infinity. We consider this the
strongest known result on the asymptotic properties of MCEM, as this notion of
convergence seems the most consistent with that of ordinary (deterministic) EM.
We summarize Fort and Moulines (2003) main conclusions in subsection 4.2.

4.1. A result of Chan and Ledolter (1995)

Chan and Ledolter (1995) showed that, given a suitable starting value, a sequence
of parameter values generated by the Monte Carlo EM algorithm will get arbitrarily
close to a maximizer of the observed likelihood with high probability. Their main
result is given as Theorem 5 below. We first establish one more convergence property
of deterministic EM, also attributable to Chan and Ledolter (1995).

Let MEM : Θ → Θ denote the mapping given by the deterministic EM update
rule, that is, MEM (θ̃) = argmaxQ(θ|θ̃; y).
Lemma 3. (Lemma 1 of Chan and Ledolter, 1995) Suppose θ∗ is a local maximizer
of the log-likelihood l(θ; y), a continuous function of θ, and that there exists a neigh-
borhood in which θ∗ is the only stationary point. Then for any neighborhood N of
θ∗, there exists a neighborhood N ∗ such that an EM sequence

{
θ(t) : t = 0, 1, 2, . . .

}
started at any θ(0) ∈ N ∗, satisfies (i) θ(t) ∈ N for all t = 1, 2, . . .; and (ii) θ(t) → θ∗

as t → ∞.

Proof. Let N be a neighborhood of θ∗. There exists a compact, connected sub-
neighborhood N ∗ ⊂ N such that (i) l(θ; y) attains its maximum over N ∗ at θ∗,
(ii) N ∗ contains no other stationary points of l, and (ii) there exists ε > 0 such
that l(θ; y) ≥ l(θ∗; y) − ε for all θ ∈ N ∗. It follows from these conditions that
MEM (θ) ∈ N ∗ for any θ ∈ N ∗; thus an EM sequence

{
θ(t)
}

with θ(0) ∈ N ∗

satisfies θ(t) ∈ N ∗, and thus θ(t) ∈ N , for all t = 1, 2, . . ..

Continue to assume that θ(0) ∈ N ∗ and consider the EM sequence
{
θ(t)
}
. Now

the sequence
{
l(θ(t); y)

}
is nondecreasing and bounded above by l(θ∗; y), and thus
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converges to a finite limit, call it λ. The sequence
{
θ(t)
}
lives in N ∗, a compact set;

let
{
θ(tk)

}
be a convergent subsequence and denote its limit by θ∗∗ ∈ N ∗.

Suppose θ∗∗ �= θ∗. Then l(θ(tk+1); y) → l(MEM (θ∗∗); y) > l(θ∗∗; y) = λ. That is,
the subsequence

{
l(θ(tk+1); y)

}
converges to a limit greater than λ, a contradiction.

Thus any convergent subsequence of
{
θ(t)
}

must converge to θ∗; thus
{
θ(t)
}

converges to θ∗.

In the terminology of the stability theory of dynamical systems (see, for example,
Arrowsmith and Place, 1992, section 3.5), the lemma asserts that an isolated local
maximizer θ∗ of l(θ; y) is an asymptotically stable fixed point for the EM algorithm.
Practically, Lemma 3 tells us that an EM sequence with a sufficiently close starting
value will remain arbitrarily close to θ∗ (by stability) as well as converge to θ∗.

Theorem 5. (Theorem 1 of Chan and Ledolter, 1995). Let
{
θ(t)
}
denote a Monte

Carlo EM sequence based on Monte Carlo sample sizes mt ≡ m, and suppose
that the MCEM update Mm(θ̃) := argmaxQm(θ|θ̃; y) converges in probability to
MEM (θ̃) as m → ∞. Further suppose that this convergence is uniform on compact
subsets of Θ. Let θ∗ be an isolated local maximizer of l(θ; y), a continuous function
of θ. Then there exists a neighborhood of θ∗ such that for any starting value θ(0) in
that neighborhood and for any ε > 0, there exists T0 such that

(12) Pr
{
||θ(t) − θ∗|| < ε for some t ≤ T0

}
→ 1

as the Monte Carlo sample size m → ∞.

Proof. Let N be the set defined as N ∗ in the proof of Lemma 3, so that N is
compact and connected, contains θ∗, and MEM (θ) ∈ N for any θ ∈ N . For any
ε > 0, we will find T0 such that (12) holds for any θ(0) ∈ N .

Let ε > 0 be given. First, there exists a positive number ε1 ≤ ε such that
N1 := {θ ∈ N : ||θ − θ∗|| ≥ ε1} is nonempty; if θ ∈ N1, then MEM (θ) �= θ. By the
ascent property and by continuity of l in θ there exist δ, δ1 > 0 such that for any
θ ∈ N1, if ||θ′ −MEM (θ)|| < δ, then l(θ′; y)− l(θ; y) > δ1.

By construction of N , there exists δ2 > 0 such that for any θ ∈ N , any θ′ with
||θ′ −MEM (θ)|| < δ2 is also in N . Without loss of generality we can take δ2 < δ.
Thus we have that for any θ ∈ N1, any θ′ with ||θ′ −MEM (θ)|| < δ2 is also in N
(though not necessarily in N1) and l(θ′; y)− l(θ; y) > δ1. Let

(13) R = sup
θ,θ′∈N

{l(θ; y)− l(θ′; y)} < ∞

and let T0 = �R/δ1�+ 1, where �·� denotes the greatest integer function.

Now, suppose an element of the MCEM sequence θ(t) = θ̃ ∈ N . Then the
probability that its MCEM update θ(t+1) = Mm(θ(t)) is also in N is

(14) Pr
{
θ(t+1) ∈ N ∣∣ θ(t) = θ̃

}
≥ Pr

{
||θ(t+1) −MEM (θ(t))|| < δ2

∣∣ θ(t) = θ̃
}

by the definition of δ2. Denote a lower bound on the right hand side of (14) by p =
p(δ2,m) > 0 and note that (i) p can be chosen not to depend on the value of θ̃ ∈ N
by the compactness of N and the uniformity of convergence Mm(θ) → MEM (θ)
over compact subsets of Θ; and (ii) for fixed δ2, p(δ2,m) → 1 as m → ∞.
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Consider running a Monte Carlo EM algorithm for T0 updates. For any starting
value θ(0) ∈ N ,

Pr
{
θ(t) ∈ N for t = 0, 1, . . . , T0} ≥

Pr
{
||θ(t+1) −MEM (θ(t))|| < δ2 for t = 0, 1, . . . , T0 − 1

}
,

(15)

and since each Monte Carlo EM update is calculated independently, the right hand
side of (15) is bounded below by p(δ2,m)T0 .

Now, suppose that θ(0) ∈ N , and that ||θ(t+1) − MEM (θ(t))|| < δ2 for each t,
and thus θ(t) ∈ N for each t. Suppose to get a contradiction that ||θ(t) − θ∗|| ≥ ε1,
that is, that θ(t) ∈ N1 for each t = 0, 1, . . . , T0. Then l(θ(t+1); y) − l(θ(t); y) > δ1
for each t = 0, 1, . . . , T0 − 1, and thus l(θ(T0); y) − l(θ(0); y) > δ1T0 > R. But that
contradicts (13), the definition of R, since θ(0) and θ(T0) are both in N .

Thus it must be that if θ(0) ∈ N and ||θ(t+1) − MEM (θ(t))|| < δ2 for each t,
then ||θ(t) − θ∗|| < ε1 ≤ ε for some t, which occurs with probability not less than
p(δ2,m)T0 , which converges to 1 as m → ∞.

A couple of remarks are in order. First, we note that the assumptions of Theorem
5 are slightly different than those made by Chan and Ledolter (1995) in that where
we assumed uniform convergence of the Monte Carlo EM update, Chan and Ledolter
(1995) assumed conditions on the form of the log-likelihood sufficient to guarantee
it. Secondly, the conclusion of Theorem 5, while interesting, is unsatisfying in at
least one respect: It does not guarantee the convergence of an MCEM sequence
in any meaningful sense. Practically, what this theorem tells us is that if you run
the algorithm long enough (at least T0 iterations), the resulting sequence will, with
high probability, at some point get arbitrarily close to the MLE. But to an analyst
examining the output of an MCEM run, even a very long one, there is no way to
know when that has happened, if at all. A more powerful result would be one that
specifies conditions under which the algorithm gets close to the MLE and stays
there.

4.2. A result of Fort and Moulines (2003)

Fort and Moulines (2003) used the ergodic theory of Markov chains to prove the
almost sure (a.s.) convergence of a variation of the Monte Carlo EM algorithm. We
will state their assumptions and main conclusion; the proof is highly technical and
beyond the scope of this report.

We will state Fort and Moulines (2003) convergence result assuming that the
Monte Carlo E-step is accomplished by i.i.d. sampling. In fact the result holds
more generally under Markov chain Monte Carlo methods, assuming the underlying
Markov transition kernel is uniformly ergodic (see, for example, Jones and Hobert,
2001).

Fort and Moulines (2003) consider a variation of Monte Carlo EM they call stable
MCEM, which we define here. Let {Kt : t = 0, 1, 2, . . .} be a sequence of compact
subsets of Θ satisfying

(16) Kt ⊂ Kt+1 for each t, and
∞⋃
t=0

Kt = Θ .
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Set p0 = 0 and choose θ(0) ∈ K0. Given θ(t) and pt, the stable MCEM update rule
for θ(t+1) and pt+1 is given by

1. Let θ′ be the ordinary MCEM update as defined in Section 1.
2. If θ′ ∈ Kpt

, then θ(t+1) = θ′ and pt+1 = pt.
If θ′ /∈ Kpt , then θ(t+1) = θ(0) and pt+1 = pt + 1.

Thus in stable MCEM, any time the ordinary MCEM update falls outside a specific
set, the algorithm is reinitialized at the point θ(0); pt counts the cumulative number
of reinitializations as of update t. Fort and Moulines (2003) showed that under
appropriate assumptions (see Theorem 6 below), {pt} is a.s. finite.

We will assume that the complete data model f(y, u; θ) is from the class of curved
exponential families: Let Y ⊂ R

N denote the range of Y and U ⊂ R
q the range of U .

We assume that for some integer k there exist functions φ : Θ → R
1, ψ : Θ → R

k,
and S : Y × U → S ⊂ R

k such that

lc(θ; y, u) = log f(y, u; θ) = ψ(θ)TS(y, u) + φ(θ) .

Since lc depends on (y, u) only through s = S(y, u) we can write lc(θ; s) = ψ(θ)T s+
φ(θ). Note that the curved exponential families include the linear mixed model of
Example 1 in Section 2, but not the logit-normal GLMM of Example 2.

We will further assume that

1. φ and ψ are continuous on Θ, S is continuous on Y × U ;
2. for all θ ∈ Θ, S̄(θ; y) := E {S(y, U) | y; θ} is finite and continuous on Θ;

3. there exists a continuous function θ̂ : S → Θ such that for all s ∈ S,
lc(θ̂(s); s) = supθ∈Θ lc(θ; s);

4. the observed data log-likelihood l(θ; y) is continuous on Θ, and for any λ, the
level set {θ ∈ Θ : l(θ; y) ≥ λ} is compact;

5. the set of fixed points of the EM algorithm is compact.

Let Γ denote the set of fixed points of the EM algorithm; in a curved exponential

family, and using the notation introduced above, Γ =
{
θ ∈ Θ : θ̂(S̄(θ; y)) = θ

}
.

As shown by Wu (1983, Theorem 2), under the above assumptions, if Θ is open
and φ and ψ are differentiable on Θ, then l(θ; y) is differentiable on Θ and Γ =
{θ ∈ Θ : ∇l(θ; y) = 0}. In other words, the set of fixed points of the EM algorithm
coincides with the set of stationary points of the log-likelihood l(θ; y); see also our
Theorem 2.

Finally, note that assumptions 4. and 5. guarantee that the set {l(θ; y) : θ ∈ Γ}
is compact as well. We can now state Fort and Moulines’s (2003) main result. We
will denote the closure of a sequence by Cl(·), so that Cl(

{
θ(t)
}
) represents the

union of the sequence
{
θ(t)
}
itself with its limit points.

Theorem 6. (Theorem 3 of Fort and Moulines, 2003) Assume the complete data
model is from the class of curved exponential families, and the model satisfies as-
sumptions 1. through 6. above. Consider an implementation of the stable MCEM
algorithm using a sequence of sets {Kt} satisfying (16). Let θ(0) ∈ K0 and suppose
the Monte Carlo sample sizes {mt} satisfy

∑∞
t=0 m

−1
t < ∞. Then

1. (a) limt→∞ pt < ∞ with probability 1 (w.p. 1) and lim supt→∞ ||θ(t)|| < ∞
w.p. 1;

(b)
{
l(θ(t); y)

}
converges w.p. 1 to a connected component of l(Γ; y) where

Γ denotes the set of stationary points of l(θ; y) (and fixed points of the
EM algorithm).
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2. If
{
l(θ; y) : θ ∈ Γ ∩ Cl(

{
θ(t)
}
)
}
has an empty interior, then

{
l(θ(t); y)

}
con-

verges w.p. 1 to a point λ∗ and
{
θ(t)
}
converges to the set {θ : l(θ; y) = λ∗}.

It is often the case that the set Γ is made up of isolated points; the above theorem
then guarantees pointwise convergence of

{
l(θ(t); y)

}
to a stationary point of l(θ; y).

If Γ consists of a single point θ̂, the theorem guarantees that l(θ(t); y) → l(θ̂; y) w.p.

1 and θ(t) → θ̂ w.p. 1, analogous to Corollary 1.

Finally, we note that the assumption that
∑

m−1
t < ∞ can be weakened in many

instances, but is necessarily of the form
∑

m−p
t < ∞ for some p ≥ 1.

5. Remarks: Lessons for the (MC)EM practitioner

We conclude with a brief discussion of the practical implications of the convergence
results of Sections 3 and 4. First, as we noted in our discussion following Theorem
2, even when EM converges, there is no guarantee in general that it has converged
to a global maximum. In more complex settings such as mixture models, or model-
based clustering, the likelihood function may have multiple optima, most of which
will be local optima. While the EM algorithm may converge, its limit point is
sub-optimal. Solutions to overcome local optima can include merging the ideas of
the EM algorithm with those of global optimization. One example is described in
the paper by Heath, Fu and Jank (2009) who combine EM with the cross-entropy
method and model reference adaptive search, two global optimization heuristics.
Another example can be found in Tu, Ball and Jank (2008), who combine the EM
algorithm with the genetic algorithm to model flight delay distributions.

With respect to Monte Carlo EM, as we have previously noted, the Monte Carlo
sample size must be increased with the iteration count; otherwise there is no chance
for convergence in the usual sense, due to the persistence of Monte Carlo error. The
convergence results of section 4.2 (Fort and Moulines, 2003) require

∑
m−1

t < ∞.
Intuitively it makes sense to start the algorithm with modest simulation sizes:
when the parameter value is relatively far from the MLE, the (deterministic) EM
update makes a substantial jump, and less precision is required for the Monte Carlo
approximation to that jump. When the parameter value is close to the MLE, as
will be the case after a number of iterations, the EM update is a small step, and
greater precision is required for the Monte Carlo approximation.

Thus it is clear that mt must be an increasing function of t, though it is not at all
clear what might be an appropriate form. In fact there exists a literature, beginning
with Booth and Hobert (1999), on automated Monte Carlo EM algorithms, in which
the simulation size for each Monte Carlo E-step is determined internally to the
algorithm, based on some rule for assessing the level of precision required for the
Monte Carlo approximation at hand. Other authors who have contributed to this
literature include Levine and Casella (2001) and Caffo, Jank and Jones (2005).

One can view the Monte Carlo EM update to the parameter value θ(t) as an
estimate of the deterministic EM update MEM (θ(t)). In Booth and Hobert’s (1999)
algorithm, each MCEM update requires the computation of an asymptotic confi-
dence region for MEM (θ(t)) in addition to the point estimate Mmt

(θ(t)). If θ(t)

falls within this confidence region, we must accept that the current parameter
value θ(t) is statistically indistinguishable from its EM update MEM (θ(t)). This
suggests that the MCEM update was “swamped by Monte Carlo error,” and thus
the simulation size must be increased at the next iteration. The reader is referred
to Booth and Hobert (1999) for details and examples. Levine and Casella (2001)
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use a regeneration-based approach to Monte Carlo standard errors in computing
their confidence region.

The Ascent-based Monte Carlo EM algorithm of Caffo, Jank and Jones (2005)
seeks to prevent the MCEM update from being swamped by Monte Carlo error by
successively appending the Monte Carlo sample until one has a pre-specified level
of confidence that the proposed update increases the log-likelihood over the current
parameter value, that is, until we are confident that indeed l(θ(t+1); y) ≥ l(θ(t); y).
Recall that this ascent property is guaranteed for ordinary EM (Theorem 1). Since
the MCEM update maximizes an estimate of the Q-function rather than the Q-
function itself, there is no ascent property for MCEM in general. But a parameter
update computed according to the Ascent-based MCEM rule will increase the log-
likelihood with high probability. Again the reader is referred to the source (Caffo,
Jank and Jones, 2005) for details. Empirical comparisons between Ascent-based
MCEM and Booth and Hobert’s (1999) algorithm can be found in Caffo, Jank and
Jones (2005) and Neath (2006).

A second practical implication of the convergence properties of Monte Carlo
EM relates to convergence criteria, or stopping rules for the algorithm. At what
point should the MCEM iterations be terminated and the current parameter value
accepted as the MLE? The usual stopping rules employed in a deterministic iterative
algorithm like ordinary EM terminate when it is apparent that further iterations
(i) will not substantively change the approximation to the MLE, or (ii) will not
substantively change the value of the objective (likelihood) function. For example,
one might terminate at the first iteration t to satisfy

(17) max
i

{
|θ(t)i − θ

(t−1)
i |

|θ(t)i |+ δ

}
< ε

for user-specified δ and ε, where the maximum is taken over components of the
parameter vector. In Monte Carlo EM, such criteria run the risk of terminating too
early, as (17) may be attained only because of Monte Carlo error in the update. An
obvious but inelegant solution is to terminate only after (17) is met for, say, three
consecutive iterations. This is the stopping rule recommended by Booth and Hobert
(1999). Other MCEM stopping rules considered in the literature include Chan and
Ledolter’s (1995) suggestion to terminate at the first iteration where l(θ(t); y) −
l(θ(t−1); y) is stochastically small; in a similar vein Caffo, Jank and Jones (2005)
terminate when an asymptotic upper bound on Q(θ(t)|θ(t−1); y)−Q(θ(t−1)|θ(t−1); y)
falls below a pre-specified tolerance.

Finally, we note that while our focus throughout has been on finding a good
approximation to the MLE, meaningful statistical inference requires at minimum
a reliable estimate of the standard error as well. A formula in Louis (1982) ex-
presses the observed Fisher Information as an expectation taken with respect to
the conditional distribution of the unobserved data given the observed data. Thus
a Monte Carlo approximation to the inverse covariance matrix of the MLE is read-
ily available from the simulation already conducted to compute the final MCEM
update.
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