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Reducing data nonconformity in linear

models

Andrew L. Rukhin

National Institute of Standards and Technology, NIST

Abstract: Procedures to reduce nonconformity in interlaboratory studies by
shrinking multivariate data toward a consensus matrix-weighted mean are dis-
cussed. Some of them are shown to have a smaller quadratic risk than the ordi-
nary least squares rule. Bayes procedures and shrinkage estimators in random
effects models are also considered. The results are illustrated by an example
of collaborative studies.
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1. Introduction and summary

Consider the situation where a consensus (or reference) vector value is to be estab-
lished by combining information from several, say, p, studies or laboratories. This
is a classical problem of meta-analysis which appears in many diverse fields. See
Hedges and Olkin (1985) or Hartung, Knapp and Sinha (2008),

Assume that the ni-dimensional data from the i-th laboratory satisfies the linear
model,

(1.1) Yi = Biθi + ei.

Here i = 1, . . . , p indexes the laboratories, Bi is the i-th study design matrix of
size ni × q, ni ≥ q, and of rank q, which is the dimension of the parameter θi.
It will be assumed that the errors ei are independent and normally distributed,
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ei ∼ Nni(0, σ2
i I). The parameters θi are expected to be “close” to the same q-

dimensional vector θ.
We define the consensus value of individual parameters as a matrix weighted

average (discussed in more detail later),

(1.2) θ̂ =

⎛
⎝∑

j

BT
j Bj

σ2
j

⎞
⎠

−1 ∑
i

BT
i Bi

σ2
i

θi.

Our problem is to determine a procedure to evaluate (1.2) by using data Yi, and to
estimate the associated uncertainties, i.e., the covariance matrix of the estimator.

Let Xi = (BT
i Bi)−1BT

i Yi be the classical least squares estimator of θi. The
covariance matrix of Xi is σ2

i (BT
i Bi)−1. The traditional unbiased estimate of the

laboratory variance σ2
i is

v2
i = (ni − q)−1 (Yi − BiXi)

T (Yi − BiXi) ,

i = 1, . . . , p. However, the best equivariant estimator of σ2
i under the quadratic loss

is s2
i = (ni − q)v2

i /(ni − q + 2), so that s2
i /σ2

i ∼ χ2
ni −q/(ni − q + 2). The relative

improvement upon v2
i is noticeable for small to medium values of ni − q (Rukhin,

1987).
With S = (s2

1, . . . , s
2
p), let

(1.3) θ̃ = θ̃(X, S) =

(
p∑

i=1

s−2
i BT

i Bi

)−1 p∑
i=1

s−2
i BT

i BiXi,

be a matrix weighted mean which can be viewed as a plug-in estimator of (1.2).
When q = 1, this statistic is closely related to the often employed in collaborative
studies Graybill-Deal estimator.

Commonly, the full data set Y = (Y T
1 , . . . , Y T

p )T does not comply with the model
in which θi ≡ θ̂, as the datum Yi is influenced by systematic, laboratory specific
errors. In this case one needs a procedure to reduce or to remove this non-conformity.

To this end, we first look at Stein-type minimax estimators. When estimating the
pq-dimensional vector (θT

1 , . . . , θT
p )T , they shrink towards q-dimensional subspace

V formed by vectors V θ̂ = (θ̂T , . . . , θ̂T )T . With our goal in mind, for n =
∑

i ni it
is more natural to think about estimation of the n-dimensional vector formed by
stacked vectors, Biθi, i = 1, . . . , p. In this case shrinkage of the data/estimator Y

is performed toward Bθ̃, where B = (BT
1 , . . . , BT

p )T , and θ̃ is the estimator of θ̂
defined by (1.3). These procedures are known to have a smaller mean squared error
than X = (XT

1 , . . . , XT
p )T .

A nonconformity removal procedure shrinks the data Y toward Bθ̃,

δ = Bθ̃ +

(
1 − a∑

j | |Yj − Bj θ̃| |2/s2
j

)
(Y − Bθ̃)

(1.4) =

(
1 − a∑

j | |Yj − Bj θ̃| |2/s2
j

)
Y +

a∑
j | |Yj − Bj θ̃| |2/s2

j

Bθ̃,

where a is a positive constant. Thus, δ is a linear (convex if a ≤
∑

j | |Yj −Bj θ̃| |2/s2
j )

combination of Y and Bθ̃ with θ̃ defined as in (1.3), i.e., of the original data and
the predictor Bθ̃ of this data from the linear model in which θi ≡ θ̂.
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Theorem 2.1 shows that the procedure (1.4) dominates Y (and therefore is min-
imax) under invariant quadratic loss when a ≤ 2(n − q − 2.) Thus, our approach
assumes that n ≥ q + 3. According to a dual result, shifting the least squares
estimator X = (XT

1 , . . . , XT
p )T toward V θ̃ = (θ̃T , . . . , θ̃T )T ,

(1.5) ψ = V θ̃ +

(
1 − b∑

j(Xj − θ̃)T (BT
j Bj)(Xj − θ̃)/s2

j

)
(X − V θ̃),

also leads to a minimax rule, but the loss function is different and the condition
on the constant b is now b ≤ 2(pq − q − 2). In this case the least squares estimator
of the vector (θ1, . . . , θp) is replaced by its linear combination with the estimate
when in the linear model θi ≡ θ̂. A body of literature deals with a given covariance
matrix of Y , or shrinkage applied toward a fixed subspace. In our problem the
true metric is unknown (as it depends on σ’s), so the projection onto a subspace
is performed after an estimated distance. Shrinking toward a subspace chosen from
variable selection was investigated by Lee and Birkes (1994).

Strawderman and Rukhin (2010) derived a minimaxity result when q = 1, with
unknown covariance matrix so that the metric is estimated. The estimators sug-
gested there reduce nonconformity in interlaboratory studies by shrinking data
toward a scalar consensus mean. Here we deal with the multivariate version of the
problem. As is shown in section 2, the positive part version of Stein estimator can
be used for nonconformity reduction. However, in many applications (1.4) may not
sufficiently pull all Y ’s together. As an alternative, in section 3 we suggest a Bayes
procedure as well as estimators which take into account a random effects component
in a more general version of (1.1) discussed in section 7.1. All proofs are collected
in the Appendix.

2. Minimaxity results

We start with estimators of the form (1.4) for model (1.1).

Theorem 2.1. Suppose Yi ∼ Nni(Biθi, σ
2
i I) and an independent s2

i , s2
i /σ2

i ∼
χ2

νi
/(νi + 2), i = 1, . . . , p, min ni ≥ q. Then the estimator (1.4) of the vector θ =

(θT
1 , . . . , θT

p )T dominates δ0 = Y under the weighted quadratic loss L(θ, σ, δ) =∑
i | |δi − Biθi| |2/σ2

i provided that 0 ≤ a ≤ 2(n − q − 2). If the function g of pos-
itive argument takes values in the unit interval, 0 ≤ g ≤ 1 and is monotonically
non-decreasing, the same result holds for estimators of the form

δg = Bθ̃ +

(
1 −

ag(
∑

j | |Yj − Bj θ̃| |2/s2
j )∑

j | |Yj − Bj θ̃| |2/s2
j

)
(Y − Bθ̃)

(2.1) = Y −
ag(

∑
j | |Yj − Bj θ̃| |2/s2

j )∑
j | |Yj − Bj θ̃| |2/s2

j

(Y − Bθ̃).

In particular, the choice of g(z) = min(z/a, 1), z ≥ 0, shows that the positive-
part estimator

(2.2) δ+ = Bθ̃ +

(
1 − a∑

j | |Yj − Bj θ̃| |2/s2
j

)
+

(Y − Bθ̃),
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x+ = max(x, 0), is minimax. The domination result in Theorem 2.1 implies that
δ = (δT

1 , . . . , δT
p )T and similarly defined δ+ are minimax estimators, i.e., for all

θ, σ, EL(θ, σ, δ) ≤ supθ,σ EL(θ, σ, X). In the context of discussion in section 1,
νi = ni − q.

Theorem 2.2. Suppose Xi has a Nq(θi, σ
2
i (BT

i Bi)−1) distribution and an indepen-
dent s2

i , i = 1, . . . , p, has the same meaning as in Theorem 2.1. Then the estimator
(1.5) of the vector θ = (θT

1 , . . . , θT
p )T dominates ψ0 = X under the quadratic loss

L(θ, σ, ψ) =
∑

i(ψi − θi)T (BT
i Bi)(ψi − θi)/σ2

i provided that 0 ≤ b ≤ 2(pq − q − 2).

The same result holds for estimators of the form

(2.3) ψ+ = V θ̃ +

(
1 − b∑

j(Xj − θ̃)T (BT
j Bj)(Xj − θ̃)/s2

j

)
+

(X − V θ̃),

and for the counterpart of (2.1) where the function g has the same properties as in
Theorem 2.1.

Since ∑
j

| |δ+
j − Bj θ̃| |2

s2
j

≤
∑

j

| |δj − Bj θ̃| |2
s2

j

≤
∑

j

| |Yj − Bj θ̃| |2
s2

j

,

δ+
j are always closer to Bj θ̃ than the original data. (n − pq)−1

∑
j | |Yj − Bj θ̃| |2/s2

j

extends to a multivariate setting the concept of Birge ratio, which is commonly
used in metrology for testing goodness-of-fit. The above shows that the Birge ratio
evaluated for the original data Y is always larger than the Birge ratio for δ+.

For a q-dimensional vector t, we put | |t| |2j = tT BT
j Bjt, j = 1, . . . , p. Under this

notation, ∑
j

| |ψ+
j − θ̃| |2j
s2

j

≤
∑

j

| |Xj − θ̃| |2j
s2

j

≤
∑

j

| |Yj − Bj θ̃| |2
s2

j

.

The last inequality here is due to the fact that I − Bi(BT
i Bi)−1BT

i , being a pro-
jection matrix, is non-negative definite.

3. Random effects models

Meta-analysis has in its arsenal more versatile statistics than the Graybill-Deal
estimator (1.3). One of them introduced by DerSimonian and Laird (1986) to esti-
mate common scalar mean, turned out to be very popular in the meta-analysis of
multicenter clinical trials.

A linear model extension of this procedure can be based on the so-called random
effects version of (1.1),

(3.1) Yi = Bi(θ + �i) + ei,

with Bi having the same meaning as in (1.1) (see Rukhin, 2011). Thus θi = θ + �i,
where θ is the unknown consensus value, and �i represents a random study effect
which is independent of the errors ei and is normally distributed with zero mean
and some covariance matrix Ξ. Then Cov(Yi) = σ2

i I + BiΞBT
i , and as in section 1,

s2
i = (ni − q+2)−1| |Yi − BiXi| |2 ∼ τ2

i χ2
νi

/(νi +2), are independent of Xi, minimum
variance equivariant estimators of τ2

i .
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When all variances are known, the best (in terms of the mean squared error)
unbiased estimator of θ̂ in the model (3.1) is a matrix weighted mean,

(3.2) θ̃W =

(
p∑

i=1

Wi

)−1 p∑
i=1

WiXi,

with Wi = (BiΞBT
i + σ2

i I)−1, i = 1, . . . , p. When σ2
i ≡ σ2, Bi ≡ B, θ̃W reduces to

the sample mean X̄, and with Wi = s−2
i BiB

T
i , i = 1, . . . , p, (1.3) takes the form

(3.2) as well.
It makes sense to estimate the within-lab variances σ2

i by the available estimates
s2

i . Put

C =
∑

i

s−2
i (BT

i Bi)1/2(Xi − θ̃0)(Xi − θ̃0)T (BT
i Bi)1/2 − pI

+
∑

i

s−2
i (BT

i Bi)1/2

(∑
k

s−2
k BT

k Bk

)−1

(BT
i Bi)1/2,

With ωi defined by (7.3), the moment-type equation

∑
i

s−2
i (BT

i Bi)1/2
(
I − ωi

)
V

(
I − ωi

)T

(BT
i Bi)1/2

(3.3) +
∑

i

s−2
i (BT

i Bi)1/2

⎛
⎝ ∑

j:j �=i

ωjV ωT
j

⎞
⎠ (BT

i Bi)1/2 = C,

allows to determine a symmetric matrix solution V (an estimator of Ξ). See Rukhin
(2007) for details. We take VDL = V+ to be the positive part of V , i.e., let VDL have
the same spectral decomposition as V , with its eigenvalues being positive parts of
V eigenvalues. The matrix weights of the estimator θ̃DL then have the form

(3.4) Wi = (BiVDLBT
i + s2

i I)−1.

Many practical examples and simulation results suggest that the DerSimonian-
Laird estimator is a better shrinkage center than θ̃. While our focus so far was
on reducing nonconformity among the estimated laboratory means via shrinkage
methods, one of the main goals of interlaboratory studies is to establish the con-
sensus value. For this purpose the DerSimonian-Laird estimator θ̃DL determined
by the matrix weights in (3.4) may be preferable to (1.3), although it is unknown
if the positive-part estimator, which shrinks toward θ̃DL, is minimax.

4. Bayesian procedure

We look now at Bayes procedures to reduce nonconformity of data by using a
(generalized) prior distribution with density π(θ1, . . . , θp) such that

(4.1) log π(θ1, . . . , θp|σ2
1 , . . . , σ2

p) = − β

2

∑
i

| |θi − θ̂| |2i
σ2

i

.
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Here θ̂ is the parametric consensus value (1.2), and the prior distribution is con-
centrated around the subspace of vectors V . The degree of this concentration is
measured by a positive parameter β.

For fixed σ2
1 , . . . , σ2

p, we evaluate the posterior mode (which in this case coincides
with the posterior mean),

(4.2) arg min
θ1,...,θp

[∑
i

| |Yi − Biθi| |2
σ2

i

+ β
∑

i

| |θi − θ̂| |2i
σ2

i

]
.

Let the block diagonal matrix C be formed by matrices BT
i Bi/σ2

i , i = 1, . . . , p,
and put AT = (

∑
j BT

j Bj/σ2
j )−1/2(BT

1 B1/σ2
1 , . . . , BT

p Bp/σ2
p)T , D = (BT

1 Y1/σ2
1 , . . . ,

BT
p Yp/σ2

p)T . Then (4.2) can be written as

θT [(1 + β)C − βAAT ]θ − 2DT θ +
∑

j

Y T
j Yj

σ2
j

.

It follows that the Bayes estimator of (θ1, . . . , θp) is found as the solution to

[(1 + β)C − βAAT ]θ = D.

Since AT C−1A = I,

[(1 + β)C − βAAT ]−1 =
1

1 + β
C−1 +

β

(1 + β)(1 + 2β)
C−1AAT C−1,

and the Bayes estimator of θ is

θ̃B =
1

1 + β
X +

β

(1 + β)(1 + 2β)
V

⎛
⎝∑

j

BT
j Bj

σ2
j

⎞
⎠

−1 ⎛
⎝∑

j

BT
j Yj

σ2
j

⎞
⎠ .

The minimum M in (4.2) is

M =
∑

j

Y T
j Yj

σ2
j

− 1
1 + β

∑
j

Y T
j Bj(BT

j Bj)−1BT
j Yj

σ2
j

− β

(1 + β)(1 + 2β)

⎛
⎝∑

j

BT
j Yj

σ2
j

⎞
⎠

T ⎛
⎝∑

j

BT
j Bj

σ2
j

⎞
⎠

−1 ⎛
⎝∑

j

BT
j Yj

σ2
j

⎞
⎠ ,

and this function of σ2
1 , . . . , σ2

p combined with the prior density is to be minimized.
For example, if σ’s are assigned a noninformative density

∏
i σ−α

i , differentiation
of M shows that the Bayes estimators of these parameters satisfy simultaneous
equations,

(ni + α)σ2
i = Y T

i Yi − 1
1 + β

Y T
i Bi(BT

i Bi)−1BT
i Yi

− 2β

(1 + β)(1 + 2β)
Y T

i Bi

⎛
⎝∑

j

BT
j Bj

σ2
j

⎞
⎠

−1 ⎛
⎝∑

j

BT
j Yj

σ2
j

⎞
⎠ +

β

(1 + β)(1 + 2β)

×

⎛
⎝∑

j

BT
j Yj

σ2
j

⎞
⎠

T ⎛
⎝∑

j

BT
j Bj

σ2
j

⎞
⎠

−1

BT
i Bi

⎛
⎝∑

j

BT
j Bj

σ2
j

⎞
⎠

−1 ⎛
⎝∑

j

BT
j Yj

σ2
j

⎞
⎠ ,

i = 1, . . . , p. These equations can be solved iteratively by using the initial values
σ

(0)
i = si, and this was done for α = 1 in the example discussed in the next section.
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Fig 1. Silver vapor pressure data.

5. Silver vapor pressure study

In the silver vapor pressure study (Paule and Mandel, 1971) nine laboratories per-
formed via different techniques measurements of silver vapor pressure P as a func-
tion of the absolute temperature T in the (individual for each laboratory) range
from 800 to 1600K.

After the heat law, the logarithm of pressure must be a linear function of 1/T ,
so we take the design matrix Bi to be formed by pairs (1, 1/Tij), j = 1, . . . , ni, i =
1, . . . , 9. A natural assumption is that the error variance depends only on the in-
dividual laboratory (and not on the temperature value). This study then fits the
model (1.1) with p = 9 and q = 2. Figure 1 displays the data set.

There are a total of 304 different temperature points Tij , i = 1, . . . , 9, j =
1, . . . , ni, n1 + · · · + n9 = 304 given in Paule and Mandel (1971), Table 4 which
employs 1/T104 in K−1 units. The results of one laboratory (# 9) portrayed in the
center of Figure 1 seem to be dubious, so a procedure to remove this nonconformity
is of interest.

Here are the estimates of the intercept θ0 and the slope θ1

θ̃ (1.3) θ̃B θ̃RL

θ0 13.30 12.80 14.16 14.07
θ1 −3.19 −3.13 −3.30 −3.28

.
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Fig 2. Silver vapor pressure data for lab 9 (marked by +) and this data with nonconformity
removed by (2.2) (marked by ’o’) The dash-dotted line corresponds to (3.4).

The restricted maximum likelihood estimator θ̃RL was found from the R-language
function lme, and its numerical evaluation was possible only after removal of the
results of lab 9, as with the full data, an error message in lme function indicated
false convergence.

The estimated within lab variance VDL is(
1.62 −0.72

−0.72 0.09

)
.

The procedure (2.2) with a = 2(n − 4) = 600, a(
∑

j | |Yj − Bj θ̃| |2/s2
j )

−1 = 0.004,
virtually leaves the original data intact. The Bayes rule with β = 0.12 pulls the
data towards the line determined by the results of this lab. Larger values of β
lead to Bayes estimators which pull all θi towards the origin, which shows some
shortcomings of the prior (4.1). The DerSimonian-Laird estimator with weights
(3.4) defines the consensus line which brings the data of lab 9 in better agreement
with other labs data. See Figure 2.

6. Conclusions

Removal of data nonconformity is formulated here as a statistical estimation prob-
lem in a rather general context of linear models. Minimaxity of Stein-type proce-
dures is established although the practical importance of this property is not clear.
In fact, the matrix weighted means which do not satisfy conditions of Theorems 2.1
or 2.2 seem to do a better job in terms of reconciling the data. Clearly, further study
of this challenging practical problem is desirable. In particular, it is of interest to
determine if there is a prior distribution such that the Bayes estimator is a convex
combination of X and its projection onto V .
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7. Appendix

7.1. Proof of Theorem 2.1

We give the proof only for the estimator (1.4). The proof for the general estimator
(2.1) is similar. It uses the facts that 0 ≤ g2(t) ≤ g(t) and g′(t) ≥ 0, as discussed in
Strawderman and Rukhin (2010), to show that the contribution to the risk difference
of terms involving derivatives is negative.

The difference Δ between the risk functions of δ0 and δ can be written as

Δ = a2
∑

i

E
| |Yi − Biθ̃| |2

σ2
i [

∑
j | |Yj − Bj θ̃| |2/s2

j ]2
− 2a

∑
i

E
(Yi − Biθi)T (Yi − θ̃)

σ2
i

∑
j | |Yj − Bj θ̃| |2/s2

j

(7.1) = a2
∑

i

E
s4

i | |Yi − Biθ̃| |2/σ2
i

s4
i [

∑
j | |Yj − Bj θ̃| |2/s2

j ]2
− 2a

∑
i

E div

(
Yi − θ̃∑

j | |Yj − Bj θ̃| |2/s2
j

)
.

Here we have used the well known in statistical decision theory, Stein identity (e.g.,
Lehmann and Casella, 1998),

E
(Yi − Biθi)T gi(Yi)

σ2
i

= E
∑

k

∂

∂Yi(k)
gi(Y ) = E div(gi),

Yi = (Yi(1), . . . , Yi(ni))T . This formula holds provided that the ni-dimensional
vector function gi is weakly differentiable and the integral in the left hand side
exists.

The motivation for rewriting the first term in (7.1) is another useful identity,
according to which under the same conditions on function h,

E
s4

i h(S)
σ2

i

= Es2
i h(S) + 2(νi + 2)Es4

i

∂

∂s2
i

h(S).

Indeed by using this formula, with h = s−4
i | |Yi − Biθ̃| |2[

∑
j | |Yj − Bj θ̃| |2/s2

j ]
−2,

i = 1, . . . , p, we can evaluate the first term in (7.1) as follows,

Δ = a2
∑

i

E
| |Yi − Biθ̃| |2

s2
i [

∑
j | |Yj − Bj θ̃| |2/s2

j ]2

+2a2
∑

i

(νi + 2)Es4
i

∂

∂s2
i

| |Yi − Biθ̃| |2

s4
i [

∑
j | |Yj − Bj θ̃| |2/s2

j ]2

−2a
∑

i

E div

(
Yi − Bj θ̃∑

j | |Yj − Bj θ̃| |2/s2
j

)

(7.2) ≤ a2
∑

i

E
| |Yi − Biθ̃| |2/s2

i

[
∑

j | |Yj − Bj θ̃| |2/s2
j ]2

− 2a
∑

i

E div

(
Yi − Biθ̃∑

j | |Yj − Bj θ̃| |2/s2
j

)
,

since, as will be shown below, the term which involves ∂/∂s2
i is non-positive.
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Note that the first term in (7.2) is a2E
(∑

i | |Yi − Biθ̃| |2/s2
i

)−1

. Define the nor-
malized matrix weights

(7.3) ωi =
( ∑

j

BT
j Bj/s2

j

)−1

BT
i Bi/s2

i ,

∑
i ωi = I, and ni × ni matrices

(7.4) Ji = I − Bi

( ∑
j

s−2
j BT

j Bj

)−1

BT
i /s2

i ,

i = 1, . . . , p. Then θ̃ =
∑

i ωiXi =
( ∑

j BT
j Bj/s2

j

)−1 ∑
BT

i Yi/s2
i , and

∑
i BT

i (Yi −
Biθ̃)/s2

i = 0. The second term in (7.2) is the expected value of

∑
i

div

(
JiYi − Bi

∑
j �=i ωj(BT

j Bj)−1BT
j Yj∑

j | |Yj − Bj θ̃| |2/s2
j

)

=
∑

i

ni − tr (ωi)∑
j | |Yj − Bj θ̃| |2/s2

j

− 2
∑

i

(Yi − Biθ̃)T (Yi − Biθ̃)/s2
i

(
∑

j | |Yj − Bj θ̃| |2/s2
j )2

+2
∑

i

∑
k(Yk − Bkθ̃)T Bk

( ∑
j BT

j Bj/s2
j

)−1

BT
i (Yi − Biθ̃)/s2

i

(
∑

j | |Yj − Bj θ̃| |2/s2
j )2

(7.5) =
n − q − 2∑

j | |Yj − Bj θ̃| |2/s2
j

.

Hence, if 0 < a ≤ 2(n − q − 2),

Δ ≤ E
a2 − 2(n − q − 2)a∑

j | |Yj − Bj θ̃| |2/s2
j

< 0.

It remains to be shown that

∂

∂s2
i

| |Yi − Biθ̃| |2

[s2
i

∑
j | |Yj − Bj θ̃| |2/s2

j ]2
≤ 0.

For fixed i and j,
∂

∂s2
i

ωj =
ωi

s2
i

(ωj − δijI),

so that
∂

∂s2
i

θ̃ =
ωi

s2
i

(θ̃ − Xi),

∂

∂s2
i

| |Yj − Bj θ̃| |2 = 2(Yj − Bj θ̃)T Bjωi(Xi − θ̃)/s2
i ,

and
∂

∂s2
i

s2
i

∑
j

| |Yj − Bj θ̃| |2/s2
j =

∑
j �=i

| |Yj − Bj θ̃| |2/s2
j
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+2
∑

j

(Yj − Bj θ̃)T Bjωi(Xi − θ̃)/s2
j =

∑
j �=i

| |Yj − Bj θ̃| |2/s2
j .

Thus,
∂

∂s2
i

| |Yi − Biθ̃| |2

[s2
i

∑
j | |Yj − Bj θ̃| |2/s2

j ]2
=

2(Yi − Biθ̃)T Biωi(Xi − θ̃)
s6

i [
∑

j | |Yj − Bj θ̃| |2/s2
j ]2

−
2| |Yi − Biθ̃| |2

∑
j �=i | |Yj − Bj θ̃| |2/s2

j

s6
i [

∑
j | |Yj − Bj θ̃| |2/s2

j ]3
.

Our goal is to prove that for a fixed i,

(Yi − Biθ̃)T Biωi(Xi − θ̃)
∑

j

| |Yj − Bj θ̃| |2/s2
j

− | |Yi − Biθ̃| |2
∑
j �=i

| |Yj − Bj θ̃| |2/s2
j ≤ 0,

or that

(7.6)
| |Yi − Biθ̃| |4

s2
i

≤ (Yi − Biθ̃)T (Yi − Biθ̃ − Biωi(Xi − θ̃))
∑

j

| |Yj − Bj θ̃| |2
s2

j

.

If Ji is defined by (7.4), then JiBi = Bi(I − ωi), and

Biωi(Xi − θ̃) = (I − Ji)(Yi − Biθ̃).

It is easy to check that

J −1
i = I + Bi

( ∑
j �=i

s−2
j BT

j Bj

)−1

BT
i /s2

i ,

and
Yi − Biθ̃ = Ji

[
Yi − Bi

( ∑
j

s−2
j BT

j Bj

)−1 ∑
k �=i

BT
k Yk/s2

k

−s−2
i Bi

( ∑
k �=i

s−2
k BT

k Bk

]−1

BT
i Bi

( ∑
j

s−2
j BT

j Bj

)−1 ∑
k �=i

BT
k Yk/s2

k

]

= Ji

(
Yi − Biθ̃

(i)
)
,

where
θ̃(i) =

( ∑
k �=i

s−2
k BT

k Bk

)−1 ∑
k �=i

BT
k Yk/s2

k

is the least squares estimator of θ based on all data excluding Yi. Wu (1986) discusses
the relationship between θ̃ and delete-one estimators θ̃(i), i = 1, . . . , p, which are
used to form a jackknife estimator of θ.

It follows that for any j = 1, . . . , p,

Bj θ̃ = Bj(BT
i Bi)−1BT

i

[
(I − Ji)Yi + JiBiθ̃

(i)
]
,

Yj − Bj θ̃ = Yj − Bj θ̃
(i) + Bj

(∑
k

s−2
k BT

k Bk

)−1

BT
i (Yi − Biθ̃

(i))/s2
i .
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Since
∑

j �=i BT
j (Yj − Bj θ̃

(i))/s2
j = 0, we get

s2
i

∑
j �=i

| |Yj − Bj θ̃| |2
s2

j

= s2
i

∑
j �=i

| |Yj − Bj θ̃
(i)| |2

s2
j

+ (Yi − Biθ̃
(i))T Bi

(∑
k

s−2
k BT

k Bk

)−1

(
∑
j �=i

s−2
j BT

j Bj)

(∑
k

s−2
k BT

k Bk

)−1

BT
i (Yi − Biθ̃

(i))/s2
i .

Therefore,

s2
i

∑
j �=i

| |Yj − Bj θ̃| |2
s2

j

≥ (Yi − θ̃)T J −1
i Bi

(∑
k

s−2
k BT

k Bk

)−1

×

⎛
⎝∑

j �=i

s−2
j BT

j Bj

⎞
⎠(∑

k

s−2
k BT

k Bk

)−1

BT
i J −1

i (Yi − Biθ̃)/s2
i ,

as

J −1
i Bi

(∑
k

s−2
k BT

k Bk

)−1
⎛
⎝∑

j �=i

s−2
j BT

j Bj

⎞
⎠(∑

k

s−2
k BT

k Bk

)−1

BT
i = I.

This fact establishes (7.6). Indeed it follows from the inequality,

| |Yi − Biθ̃| |4 ≤ (Yi − Biθ̃)T J −1
i (Yi − Biθ̃)(Yi − Biθ̃)T Ji(Yi − Biθ̃),

(Beckenbach and Bellman, 1961, Ch 2, Theorem 20.)

7.2. Proof of Theorem 2.2

The modifications needed in the proof in Section 7.1 are as follows. By employing
the same, integration by parts identities, we see that the difference Ψ between the
risk functions of ψ0 and ψ can be written as

Ψ = b2
∑

i

E
| |Xi − θ̃| |2i

σ2
i (

∑
j | |Xj − θ̃| |2j/s2

j )2
− 2b

∑
i

E
(Xi − θi)T BT

i Bi(Xi − θ̃)
σ2

i

∑
j | |Xj − θ̃| |2j/s2

j

(7.7) = b2
∑

i

E
s4

i | |Xi − θ̃| |2i /σ2
i

s4
i (

∑
j | |Xj − θ̃| |2j/s2

j )2
− 2b

∑
i

E div

(
Xi − θ̃∑

j | |Xj − θ̃| |2j/s2
j

)
.

The evaluation of the second term in (7.7) is done similarly to (7.5) by using the
fact that

∑
i BT

i Bi(Xi − θ̃)/s2
i = 0. It gives

∑
i

E div

(
Xi − θ̃∑

j | |Xj − θ̃| |2j/s2
j

)
= E

pq − q − 2∑
j | |Xj − θ̃| |2j/s2

j

.

The first sum in (7.7) is

b2
∑

i

E
| |Xi − θ̃| |2i /s2

i

(
∑

j | |Xj − θ̃| |2/s2
j )2

+ 2b2
∑

i

(νi + 2)Es4
i

∂

∂s2
i

| |Xi − θ̃| |2i
s4

i (
∑

j | |Xj − θ̃| |2j/s2
j )2

,
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so that it suffices to prove that the last term here is non-positive.
With ωi defined by (7.3), one gets for a fixed i,

∂

∂s2
i

| |Xi − θ̃| |2i
(s2

i

∑
j | |Xj − θ̃| |2j/s2

j )2
=

2(Xi − θ̃i)T BT
i Biωi(Xi − θ̃)

s6
i (

∑
j | |Xj − θ̃| |2j/s2

j ]2

−
2| |Xi − θ̃| |2i

∑
j �=i | |Xj − θ̃| |2j/s2

j

s6
i (

∑
j | |Xj − θ̃| |2j/s2

j )3
.

Theorem 2.2 will be proven when the inequality

| |Xi − θ̃| |4i
s2

i

≤
∑

j

| |Xj − θ̃| |2j
s2

j

[
(Xi − θ̃i)T BT

i Bi(I − ωi)(Xi − θ̃)
]
,

is established for i = 1, . . . , p.
To show that this inequality holds, note that θ̃ = ωiXi + (I − ωi) θ̃(i), and

Xj − θ̃ = Xj − θ̃(i) − ωi(Xi − θ̃(i)), so that

∑
j

| |Xj − θ̃| |2j
s2

j

=
| |(I − ωi)(Xi − θ̃)| |2i

s2
i

+
∑
j �=i

| |Xj − θ̃(i)| |2j
s2

j

+
∑
j �=i

| |ωi(Xi − θ̃(i))| |2j
s2

j

≥ | |(I − ωi)(Xi − θ̃)| |2i
s2

i

+ (Xi − θ̃(i))T ωT
i

⎛
⎝∑

j �=i

BT
j Bj

s2
j

⎞
⎠ωi(Xi − θ̃(i))

=
| |(I − ωi)(Xi − θ̃)| |2i

s2
i

+(Xi −θ̃)T (I −ωT
i )−1ωT

i

⎛
⎝∑

j �=i

BT
j Bj

s2
j

⎞
⎠ ωi(I −ωi)−1(Xi −θ̃).

It remains to observe that⎛
⎝∑

j �=i

BT
j Bj

s2
j

⎞
⎠ ωi(I − ωi)−1 =

⎛
⎝∑

j

BT
j Bj

s2
j

⎞
⎠ (I − ωi)ωi(I − ωi)−1

=

⎛
⎝∑

j

BT
j Bj

s2
j

⎞
⎠ ωi =

BT
i Bi

s2
i

,

which concludes the proof by appealing to the same fact as in Theorem 2.1.
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