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A class of minimum distance estimators in

AR(p) models with infinite error variance∗

Hira L. Koul1 and Xiaoyu Li

Michigan State University

Abstract: In this note we establish asymptotic normality of a class of mini-
mum distance estimators of autoregressive parameters when error variance is
infinite, thereby extending the domain of their applications to a larger class
of error distributions that includes a class of stable symmetric distributions
having Pareto-like tails. These estimators are based on certain symmetrized
randomly weighted residual empirical processes. In particular they include
analogs of robustly weighted least absolute deviation and Hodges–Lehmann
type estimators.

1. Introduction

When modeling extremal events one often comes across autoregressive time se-
ries with infinite variance innovations, cf. Embrecht, Küppelberg and Mikosch [10].
Assessing distributional properties of classical inference procedures in these time
series models is thus important. Weak and strong consistency with some conver-
gence rate of the least square (LS) estimator of the autoregressive parameter vector
in such models are discussed in Kanter and Steiger [13], Hannan and Kanter [12],
and Knight [14]) while Davis and Resnick [4] and [5] discuss its limiting distribu-
tion. Strong consistency and convergence rate of the least absolute deviation (LAD)
estimator are considered separately by Gross and Steiger [11], and An and Chen
[1]. Davis, Knight and Liu [6] and Davis and Knight [3] discuss consistency and
asymptotic distributions of the LAD and M-estimators in autoregressive models of
a known order p when error distribution is in the domain of attraction of a stable
distribution of index α ∈ (0, 2). Knight [15] proves asymptotic normality of a class
ofM -estimators in a dynamic linear regression model where the errors have infinite
variance but the exogenous regressors satisfy the standard assumptions. Ling [18]
discusses asymptotic normality of a class of weighted LAD estimators.

Minimum distance (m.d.) estimation method consists of obtaining an estimator
of a parameter by minimizing some dispersion or pseudo distance between the data
and the underlying model. For a stationary autoregressive time series of a known
order p with i.i.d. symmetric innovations a class of m.d. estimators was proposed
in Koul [16]. This class of estimators is obtained by minimizing a class of certain
integrated squared differences between randomly weighted empirical processes of
residuals and negative residuals. More precisely, let p be a known positive integer
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and consider the linear autoregressive process {Xi} obeying the model

Xi = ρ1Xi−1 + ρ2Xi−2 + · · ·+ ρpXi−p + εi, i = 0,±1,±2, · · · ,(1.1)

for some ρ := (ρ1, · · · , ρp)′ ∈ R
p, where the innovations {εi} are i.i.d. r.v.’s from

a continuous distribution function (d.f.) F , symmetric around zero, not necessarily
known otherwise. We shall also assume {Xi} is a strictly stationary solution of the
equations (1.1). Some sufficient conditions for this to exist in the case of some heavy
tail error distributions are given in the next section. Here, and in the sequel, by
stationary we mean strictly stationary.

Let Yi−1 := (Xi−1, · · · , Xi−p)
′. Because of the assumed symmetry of the inno-

vation d.f. F , Xi − ρ′Yi−1 and −Xi + ρ′Yi−1 have the same distribution for each
i = 1, · · · , n. Using this fact, the following class of m.d. estimators was proposed in
Koul [16].

K+
h (t) :=

∫ ∥∥∥n−1/2
n∑

i=1

h(Yi−1)
{
I(Xi ≤ x+ t′Yi−1)

−I(−Xi < x− t′Yi−1)
}∥∥∥2 dG(x),

ρ+h := argmin{K+
h (t); t ∈ R

p}.
Here h is a measurable function from R

p to R
p with its components hk, k = 1, · · · , p,

G is a nondecreasing right continuous function on R having left limits, possibly
inducing a σ-finite measure on R, and ‖ · ‖ stands for the usual Euclidean norm.

A large subclass of the estimators ρ+h , as h and G vary, is known to be robust
against additive innovation outliers, cf. Dhar [8]. The class of estimators ρ+h , when
h(x) = x and as G varies, have desirable asymptotic relative efficiency properties.
Moreover, for h(x) = x, ρ+h becomes the LAD estimator when G is degenerate at
zero while for G(x) ≡ x, it is an analog of the Hodges–Lehmann estimator.

Asymptotic normality of these estimators under a broad set of conditions on h,
G and F was established in Koul (16, 17, chapter 7). These conditions included
the condition of finite error variance. Main reason for having this assumption was
to ensure stationarity of the underlying process {Xi} satisfying (1.1). Given the
importance of heavy tail error distributions and robustness properties of these m.d.
estimators, it is desirable to extend the domain of their applications to autoregres-
sive time series with heavy tail errors. We now establish asymptotic normality of
these estimators here under similar general conditions in which not only the error
variance is not finite but also even the first moment may not be finite.

In the next section, we first state general conditions for asymptotic normality of
these estimators. Then we give a set of sufficient and easy to verify conditions that
imply these general conditions. Among the new results is the asymptotic normality
of a class of analogs of robust Hodges–Lehmann type estimators of the autoregres-
sive parameters when error distribution has infinite variance. We also give examples
of several functions h and G that satisfy the assumed conditions. In the last section
another class of m.d. estimators based on residual ranks is discussed briefly to be
used when errors may not have a symmetric distribution.

2. Main result

To describe our main result we now state the needed assumptions, most of which
are the same as in Koul [17].

Either e′h(y)y′e ≥ 0, Or e′h(y)y′e ≤ 0, ∀ y, e ∈ R
p, ‖e‖ = 1.(2.1)
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(a) 0 < E(|hk(Y0)| ‖Y0‖) <∞, ∀ 1 ≤ k ≤ p. (b) E‖h(Y0)‖2 <∞.(2.2)

In the following assumptions b is any positive finite real number.∫
E‖h(Y0)‖2|F (x+ n−1/2(v′Y0 + a‖Y0‖))− F (x)| dG(x) = o(1),(2.3)

∀ ‖v‖ ≤ b, a ∈ R.

There exists a constant k ∈ (0,∞), such that for all δ > 0, ‖v‖ ≤ b and 1 ≤ k ≤ p,

lim inf
n

P
(∫ [

n−1/2
n∑

i=1

n∑
k=1

h±k (Yi−1)
{
F (x+ n−1/2v′Yi−1 + δni)(2.4)

−F (x+ n−1/2v′Yi−1 − δni)
}]2

dG(x) ≤ kδ2
)
= 1,

where δni := n−1/2δ‖Yi−1‖, h+k := max(0, hk), h
−
k := hk − h+k .∫ ∥∥∥n−1/2

n∑
i=1

h(Yi−1)
{
F (x+ n−1/2v′Yi−1)− F (x)(2.5)

−n−1/2v′Yi−1f(x)
}∥∥∥2 dG(x) = op(1), ∀ ‖v‖ ≤ b.

The d.f. F has Lebesgue density f satisfying the following.

(a) 0 <

∫
f2 dG <∞, (b) 0 <

∫
f dG <∞, (c)

∫ ∞

0

(1− F ) dG <∞.(2.6)

Assumption of stationarity replaces the assumption of finite error variance (7.4.7)(b)
of Koul [17]. We are now ready to state our main result.

Theorem 2.1 Assume the autoregressive process given at (1.1) exists and is strictly
stationary. In addition, assume the functions h, G, F satisfy assumptions (2.1) –
(2.6) and that G and F are symmetric around zero. Then,

n1/2(ρ+h − ρ) = −
{
Bn

∫
f2 dG

}−1

S+
n + op(1),

where Bn := n−1
∑n

i=1 h(Yi−1)Y
′
i−1, and

S+
n :=

∫
n−1/2

n∑
i=1

h(Yi−1)
{
I(εi ≤ x)− I(−εi < x)

}
f(x) dG(x)

= n−1/2
n∑

i=1

h(Yi−1)[ψ(−εi)− ψ(εi)], ψ(x) :=

∫ x

−∞
f dG.

Consequently,

n1/2(ρ+h − ρ) →d N
(
0,

Var(ψ(ε))

(
∫
f2 dG)2

B−1HB−1
)
,

where B := Eh(Y0)Y
′
0 and H := Eh(Y0)h(Y0)

′.
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The existence of ρ+h under the finite variance assumption has been discussed
in Dhar [9]. Upon a close inspection one sees that this proof does not require
the finiteness of any error moment but only the stationarity of the process and
assumptions (2.1), (2.2)(b) and (2.6)(c). Also note that (2.1), (2.2)(a) and the
Ergodic Theorem implies the existence of B−1, and B−1

n for all n.
In view of the stationarity of the process {Xi}, the details of the proof of Theorem

2.1 are very similar to that of Theorem 7.4.5 in Koul [17] and are left out for an
interested reader.

3. Some stronger assumptions and Examples

In this section we shall now discuss some easy to verify sufficient conditions for
(2.3) to (2.5). In particular, we shall show that the above theorem is applicable to
robust LAD and analogs of robust Hodges–Lehmann type estimators.

First, consider (2.4) and (2.5). As shown in Koul [17], under the finite error
variance assumption, (2.2)(a), (2.4) and (2.5) are implied by (2.2)(b), (2.6)(a) and
the assumption ∫

|f(x+ s)− f(x)|2 dG(x) → 0, s→ 0.(3.1)

We shall now show that (2.4) and (2.5) continue to hold under (2.2)(a), (2.6)(a) and
(3.1) when {Xi} is stationary, without requiring the error variance to be finite. First,
consider (2.4). Recall δni := n−1/2δ‖Yi−1‖. Then, the r.v.’s inside the probability
statement of (2.4) equals to∫ [

n−1/2
n∑

i=1

h±k (Yi−1)

∫ δni

−δni

f(x+ n−1/2v′Yi−1 + s) ds
]2

dG(x)

=

n∑
i=1

n∑
j=1

∫
n−1h±k (Yi−1)h

±
k (Yj−1)

·
∫ δni

−δni

∫ δnj

−δnj

f(x+ n−1/2v′Yi−1 + s)f(x+ n−1/2v′Yj−1 + t) dsdt dG(x)

= δ2n−2
n∑

i=1

n∑
j=1

‖Yi−1‖‖Yj−1‖h±k (Yi−1)h
±
k (Yj−1)

1

δniδnj

∫ δni

−δni

∫ δnj

−δnj

∫
f(x+ n−1/2v′Yi−1 + s)

·f(x+ n−1/2v′Yj−1 + t) dG(x) dsdt

≤ δ2
(
n−1

n∑
i=1

‖Yi−1‖ |hk(Yi−1)|
)2

max
1≤i,j≤n

1

δniδnj

∫ δni

−δni

∫ δnj

−δnj

∫
f(x+ n−1/2v′Yi−1 + s)

·f(x+ n−1/2v′Yj−1 + t) dG(x) dsdt

≤ 4δ2
(
n−1

n∑
i=1

‖Yi−1‖ |hk(Yi−1)|
)2

×
[
max
1≤i≤n

1

2δni

∫ δni

−δni

(∫
f2(x+ n−1/2v′Yi−1 + s) dG(x)

)1/2]2
ds
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→p 4δ2
[
E
(‖Y0‖|hk(Y0)|)]2(∫

f2 dG
)
.

The above last claim is implied by the Ergodic Theorem which uses (2.2)(a), and
the fact that under (2.6)(a) and (3.1), the second factor in the last but one bound
above tends, in probability, to a finite and positive limit

∫
f2 dG.

The argument for verifying (2.5) is similar. Let bni := n−1/2b||Yi−1‖. Then,
∫ ∥∥∥n−1/2

n∑
i=1

h(Yi−1)
{
F (x+n−1/2v′Yi−1)−F (x)−n−1/2v′Yi−1f(x)

}∥∥∥2 dG(x)
=

p∑
k=1

∫ [
n−1/2

n∑
i=1

hk(Yi−1)

∫ n−1/2v′Yi−1

0

{f(x+ s)− f(x)}ds
]2

dG(x)

≤ b2n−2

p∑
k=1

n∑
i=1

n∑
j=1

‖Yi−1‖‖Yj−1‖|hk(Yi−1)||hk(Yj−1)|

× max
1≤i,j≤n

1

bnibnj

∫ bni

−bni

∫ bnj

−bnj

{∫
|f(x+s)−f(x)||f(x+t)−f(x)| dG(x)

}
dsdt

≤ 4b2
p∑

k=1

(
n−1

n∑
i=1

‖Yi−1‖|hk(Yi−1)|
)2

×
[
max
1≤i≤n

1

2bni

∫ bni

−bni

(∫
|f(x+ s)− f(x)|2 dG(x)

)1/2

ds
]2

→p 0.

The last but one inequality follows from the Cauchy–Schwarz inequality,∫
|f(x+ s)− f(x)||f(x+ t)− f(x)| dG(x)

≤
{∫

|f(x+ s)− f(x)|2 dG(x)
}1/2{∫

|f(x+ t)− f(x)|2 dG(x)
}1/2

,

while the last claim follows from (2.2)(a), Ergodic Theorem, and (3.1).

Now we turn to the verification of (2.3). First, consider the case when G is a
finite measure. In this case, by the Dominated Convergence Theorem, (2.2)(b) and
the continuity of F readily imply (2.3).

Of special interest among finite measures G is the measure degenerate at zero.
Now assume that the distribution of Y0 is continuous. Then, because F is contin-
uous, the joint distribution of Yi−1, Xi, 1 ≤ i ≤ n, is continuous for all n, and
hence,

K+
h (t) :=

∥∥∥ n∑
i=1

h(Yi−1)sign(Xi − t′Yi−1)
∥∥∥2, ∀ t ∈ R

p, w.p. 1,

and the corresponding m.d. estimator, denoted by ρ+h,LAD, becomes an analog of
the LAD estimator. Note also that now (3.1) is equivalent to the continuity of f at
zero, ψ(x) of Theorem 2.1 equals f(0)I(x > 0) and Var(ψ(ε)) = f2(0)/4, where ε is
the innovation variable having d.f. F . We summarize asymptotic normality result
for ρ+h,LAD in the following
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Corollary 3.1 Assume the stationary AR(p) model (1.1) and assumptions (2.1),
(2.2) hold. In addition, assume that the symmetric error density f is continuous at
0 and f(0) > 0. Then,

n1/2(ρ+h,LAD−ρ) →d N
(
0,

B−1HB−1

4f2(0)

)
, B := Eh(Y0)Y

′
0 , H := Eh(Y0)h(Y0)

′.

Note that this result does not require finiteness of any error moment.
Examples of h that satisfy (2.1) and (2.2) include the weight function

h(y) = h1(y) := yI(‖y‖ ≤ c) + c(y/‖y‖2)I(‖y‖ > c), c > 0,(3.2)

h(y) = h2(y) := y/(1 + ‖y‖2).(3.3)

Note that both are bounded functions and trivially satisfy (2.1). Moreover, conti-
nuity of Y0 implies that h1 satisfies (2.2), because for all 1 ≤ k ≤ p,

0 < cE
( |Y0k|
‖Y0‖I(‖Y0‖ > c)

)
≤ E

(
|h1k(Y0)| ‖Y0‖

)
≤ E

(
‖Y0‖2I(‖Y0‖ ≤ c) + cI(‖Y0‖ > c)

)
≤ c2 + c.

Similarly, h2 also satisfies (2.2), because for all 1 ≤ k ≤ p,

0 < E
( |Y0k|‖Y0‖
1 + ‖Y0‖2

)
= E|h2k(Y0)| ‖Y0‖ ≤ E

(‖Y0‖2/(1 + ‖Y0‖2
)
< 1.

Ling [18] considers weighted LAD estimators obtained by minimizing∑n
i=1 g(Yi−1)|Xi − t′Yi−1| w.r.t. t, where g is a positive measurable function on R

p

satisfying
E{g(Y0) + g2(Y0)}(‖Y0‖2 + ‖Y0‖3) <∞.(3.4)

This estimator corresponds to ρ+h,LAD with h(y) = g(y)y. Ling establishes asymp-
totic normality of this estimator under some assumptions that include f being
differentiable everywhere.

Now note that with h(y) = g(y)y, (2.1) is a priori satisfied, and (2.2) becomes
0 < E

(
g(Y0)|Y0k|‖Y0‖

)
<∞, 1 ≤ k ≤ p and E

(
g2(Y0)‖Y0‖2

)
<∞. Positivity condi-

tion is again implied by the continuity of the distribution of Y0 and g being positive.
The finiteness of these two expectation is implied by E

[(
g(Y0)+g

2(Y0)
)‖Y0‖2] <∞,

clearly a much weaker condition than (3.4). And the above corollary does not re-
quire differentiability of f . Thus for a large class of weighted LAD estimators, the
above corollary provides a some what stronger result.

Bounded h and σ-finite G: Now we continue our discussion of assumption
(2.3) for a general G that may not induce a finite measure. Note that because the
second error moment is not necessarily finite, the identity function h(x) ≡ x does
not satisfy (2.2). Moreover, if h is unbounded then the corresponding ρ+h is known
to be non-robust against innovation outliers, cf. Dhar [8]. This property is similar
to that of M-estimators, cf. Denby and Martin [7]. We shall thus verify (2.3) only
for a bounded h and a large class of G’s. Accordingly, suppose for some C <∞,

sup
y∈Rp

‖h(y)‖ ≤ C.(3.5)

Additionally, suppose F is absolutely continuous with density f satisfying∫ ∫
f(x+ s)P (‖Y0‖ > n1/2β|s|) dG(x) ds→ 0, ∀ 0 < β <∞.(3.6)
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Now we shall show that (3.5) and (3.6) implies (2.3). Then, by the Fubini The-
orem, ∫

E‖h(Y0)‖2|F (x+ n−1/2(v′Y0 + a‖Y0‖))− F (x)| dG(x)

≤ C2E

∫ n−1/2(b+|a|)‖Y0‖

−n−1/2(b+|a|)‖Y0‖

∫
f(x+ s) dG(x) ds

= C2

∫ ∫
f(x+ s)P (‖Y0‖ > n1/2c−1|s|) dG(x) ds

→ 0,by (3.6).

To summarize, we have shown (2.2)(a), (2.6)(a) and (3.1) imply (2.4) and (2.5)
for general h and G, while (3.6) implies (2.3) for bounded h and a σ-finite G.

Verification of (3.6) is relatively easy if the following two assumptions hold.

G is absolutely continuous with dG(x) = γ(x) dx, where γ is bounded, i. e.,(3.7)

‖γ‖∞ := supx∈R
|γ(x)| <∞,

E‖Y0‖ <∞.(3.8)

For, then, by Fubini’s Theorem, the left hand side of (3.6) is bounded above by

‖γ‖∞
∫ {∫

f(x+ s) dx
}
P
(‖Y0‖ ≥ n1/2c−1|s|) ds = 2n−1/2c‖γ‖∞E‖Y0‖ → 0.

Among the G satisfying (3.7) is the Lebesgue measure dG(x) ≡ dx, where
γ(x) ≡ 1. For this G, (2.6) and (3.1) are implied by (2.6)(a) and E|ε| < ∞,
and the ψ(x) of Theorem 2.1 equals to F (x), where F is the d.f. of ε, so that
Var(ψ(ε) = Var(F (ε)) = 1/12. Moreover,

K+
h (t) = n−1

p∑
k=1

n∑
i=1

n∑
j=1

hk(Xi−1)hk(Xj−1)
[∣∣Xi +Xj − (Yi−1 + Yj−1)

′t
∣∣

−∣∣Xi −Xj − (Yi−1 − Yj−1)
′t
∣∣],

and the corresponding ρ+h , denoted by ρ+h,HL, is a robust analog of the Hodges–
Lehmann type estimator, when h is bounded. Note that for bounded h, (2.2) is
implied by (3.8). Because of the importance of this class of estimators we summarize
their asymptotic normality result in the following corollary.

Corollary 3.2 Assume the stationary AR(p) model (1.1) holds. In addition, sup-
pose h is bounded and satisfies (2.1), and the error d.f. F is symmetric around zero
and satisfies

∫
f2(x) dx <∞, and E|ε| <∞. Then, (3.8) holds, and

n1/2(ρ+h,HL − ρ) →d N
(
0,

B−1HB−1

12(
∫
f2(x) dx)2

)
,

where B := Eh(Y0)Y
′
0 and H := Eh(Y0)h(Y0)

′.

Perhaps it is worth emphasizing that none of the above mentioned literature dealing
with the various estimators in AR(p) models with infinite error variance include this
class of estimators.
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It is thus apparent from the above discussion that asymptotic normality holds
for some members of the above class of m.d. estimators without requiring finiteness
of any moments, and for some other members requiring only the first error moment
to be finite. If one still does not wish to assume (3.8), then it may be possible to
verify (3.6) for some heavy tail error densities. We do not do this but now will give
an example of a large class of strictly stationary processes satisfying (1.1) and for
which this condition holds but which has infinite variance.

Recall that a d.f. F of the error variable ε is said to have a Pareto-like tails of
index α if for some α > 0, 0 ≤ a ≤ 1, 0 < C <∞,

xα(1− F (x)) → aC, xαF (−x) → (1− a)C, x→ ∞.(3.9)

From Brockwell and Davis [2], p. 537, Proposition 13.3.2, it follows that if 1−ρ1x−
ρ2x

2 − · · · − ρpx
p �= 0, |x| ≤ 1, and if F satisfies (3.9), then {Xi} satisfying (1.1)

exists and is strictly stationary and invertible.
Now, (3.9) readily implies xαP (|ε| > x) → C, as x→ ∞, and hence E|ε|δ <∞,

for δ < α, E|ε|δ = ∞, for δ ≥ α. Suppose 1 < α < 2. Then E|ε| < ∞, and
Var(ε) = ∞. Thus we have a large class of strictly stationary AR(p) processes with
finite first moment and infinite variance. In particular these processes satisfy (3.8).
We summarize the above discussion in the following corollary.

Corollary 3.3 Assume the autoregressive model (1.1) holds with the error d.f. F
having Pareto-like tail of index 1 < α < 2. In addition, suppose (2.1) holds, G has
a bounded Lebesgue density, h is bounded, F has square integrable Lebesgue density,
and both F and G are symmetric around zero. Then, the conclusion of Theorem
2.1 holds for the class of m.d. estimators ρ+h .

This still leaves open the problem of obtaining asymptotic distribution of a suit-
ably standardized ρ+h when a stationary solution to (1.1) exists with the error d.f.
having Pareto-like tail of index α ≤ 1.

4. M.D. estimators when F is not symmetric

Here we shall describe an asymptotic normality result of a class of minimum distance
estimators when F may not be symmetric and when in (1.1) error variance may be
infinity. Let Ri(t) denote the rank of Xi − t′Yi−1 among Xj − t′Yj−1, j = 1, · · · , n,
h̄n := n−1

∑n
i=1 h(Yi−1), and define the randomly weighted empirical process of

residual ranks

Zh(t, u) := n−1/2
n∑

i=1

(h(Yi−1)− h̄n)[I(Ri(t) ≤ nu)− u], u ∈ [0, 1],

Kh(t) :=

∫ 1

0

‖Zh(t, u)‖2 dL(u), ρ̃h := argmin{Kh(t); t ∈ R
p},

where L is a d.f. on [0, 1]. See Koul [17] for a motivation on using the dispersion
Kh. It is an analog of the classical Cramér – von Mises statistic useful in regres-
sion and autoregressive models. The following proposition describes the asymptotic
normality of ρ̃h.

Proposition 4.1 Assume the process satisfying (1.1) is strictly stationary with
the error d.f. F having uniformly continuous Lebesgue density f and finite first
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moment. In addition, assume L is a d.f. on [0, 1], (3.5) holds, and the following
hold with Ȳn−1 := n−1

∑n
i=1 Yi−1.

Either e′(h(Yi−1)− h̄n)(Yi−1 − Ȳn−1)
′e ≥ 0,(4.1)

Or e′(h(Yi−1)− h̄n)(Yi−1 − Ȳn−1)
′e ≤ 0, ∀ i = 1, · · · , n, e ∈ R

p, ‖e‖ = 1.

Let F−1(u) := inf{x;F (x) ≥ u}, q(u) := f(F−1(u)), 0 ≤ u ≤ 1. Then,

rn1/2(ρ̃h − ρ) = −
{
Cn

∫ 1

0

q2 dL

}−1

S̃n + op(1),

where Cn := n−1
∑n

i=1(h(Yi−1)− h̄n)(Yi−1 − Ȳn−1)
′, and

S̃n :=

∫ 1

0

n−1/2
n∑

i=1

(h(Yi−1)− h̄n)
{
I(F (εi) ≤ u)− u

}
q(u) dL(u)

= −n−1/2
n∑

i=1

(h(Yi−1)− h̄n)[ϕ(εi)−
∫ 1

0

ϕ(u) du], ϕ(u) :=

∫ u

0

q dL.

Consequently, n1/2(ρ̃h−ρ) →d N
(
0, τ2C−1GC−1

)
, where τ2 := Var(ϕ(ε))/(

∫ 1

0
q2 dL)2

and

C := E
{(
h(Y0)− Eh(Y0)

)
Y ′
0

}
, G := E

(
h(Y0)− Eh(Y0)

)(
h(Y0)− Eh(Y0)

)′
.

The proof of this claim is similar to that of the asymptotic normality of an analogous
estimator θ̂md discussed in chapter 8 of the monograph by Koul [17] in the case of
finite variance, hence not given here. Note that again for bounded h, ρ̃h are robust
against innovation outliers.

A useful member of this class is obtained when L(u) ≡ u. In this case

Kh(t) = −2n−2

p∑
k=1

n∑
i=1

n∑
j=1

(hk(Yi−1)− h̄nk)(hk(Yj−1)− h̄nk)
∣∣Ri(t)−Rj(t)

∣∣,
h̄nk := n−1

n∑
i=1

hk(Yi−1), 1 ≤ k ≤ p.

In the case of finite variance and when h(x) ≡ x, the asymptotic variance of the
corresponding estimator is smaller than that of the LAD (Hodges–Lehmann) es-
timator at logistic (double exponential) errors. It is thus interesting to note that
the above asymptotic normality of the robust analogs of this estimator holds even
when error variance may be infinite. Note that when L(u) ≡ u, the corresponding
τ2 = 1/[12(

∫
f3(x) dx)2].
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