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On the asymptotic distribution of the

analytic center estimator

Keith Knight∗

University of Toronto

Abstract: The analytic center estimator is defined as the analytic center of
the so-called membership set. In this paper, we consider the asymptotics of
this estimator under fairly general assumptions on the noise distribution.

1. Introduction

Consider the linear regression model

(1) Yi = xT
i β + εi (i = 1, · · · , n)

where xi is a vector of covariates (of length p) whose first component is always 1, β
is a vector of unknown parameters and ε1, · · · , εn are i.i.d. random variables with
|εi| ≤ γ0 where it is assumed that γ0 is known. We will not necessarily require that
the bound γ0 be tight although there are advantages in estimation if it is known
that the noise is “boundary visiting” in the sense that P (|εi| ≤ γ0 − ε) < 1 for all
ε > 0.

Given the bound γ0 on the absolute errors, we can define the so-called member-
ship set (Schweppe [19]; Bai et al., [4])

(2) Sn =
{
φ : −γ0 ≤ Yi − xT

i φ ≤ γ0 for all i = 1, · · · , n} ,
which contains all parameter values consistent with the assumption that |εi| ≤ γ0.
There is a considerable literature on estimation based on the membership set in
different settings; see, for example, Milanese and Belforte [16], Mäkilä [15], Tse et
al. [21], and Akçay et al. [3].

The membership set Sn in (2) is a bounded convex polyhedron and we can

use some measure of its center to estimate β. The analytic center estimator β̂n is
defined to be the maximizer of the concave objective function

gn(φ) =

n∑
i=1

ln
(
γ2
0 − (Yi − xT

i φ)
2
)

=

n∑
i=1

{
ln(γ0 − Yi + xT

i φ) + ln(γ0 + Yi − xT
i φ)

}
.(3)
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β̂n is the analytic center (Sonnevend, [20]) of the membership set Sn. The idea
is that the logarithmic function essentially acts as a barrier function that forces
the estimator away from the boundary of Sn and thus makes the constraint that
the estimator must lie in Sn redundant. In certain applications, the analytic center
estimator is computationally convenient since it can be computed efficiently in “on-
line” applications, more so other estimators based on the membership set such as the
Chebyshev center or the maximum volume inscribed ellipsoid estimators. Bai et al.
(2000) derive some convergence results for the analytic center estimator but do not
give its limiting distribution. In addition, Bai et al. [4], Akçay [2], and Kitamura et
al. [11] discuss properties of the membership set, showing under different conditions
that the membership set shrinks to a single point as the sample size increases.

The maximizer of gn in (3) lies in the interior of Sn and hence β̂n satisfies

(4)

n∑
i=1

Yi − xT
i β̂n

γ2
0 − (Yi − xT

i β̂n)
2
xi = 0.

The “classical” approach to asymptotic theory is to approximate (4) by a linear

function of
√
n(β̂n−β) and derive the limiting distribution of

√
n(β̂n−β) via this

approximation. However, expanding (4) in a Taylor series around β, it is easy to see
that if the distribution of {εi} has a sufficiently large concentration of probability
in a neighbourhood of ±γ0 then asymptotic normality will not hold. Intuitively,
we should have a faster convergence rate in such cases but a different approach is
needed to prove this.

In this paper, we will consider the asymptotic distributions of both the mem-
bership set and the analytic center estimator under the assumption that the noise
distribution is regularly varying at the boundaries ±γ0 of the error distribution. In
section 2, we provide some of the necessary technical foundation for section 3 where
we derive the asymptotics of the membership set and the analytic center estimator.

2. Technical preliminaries

Define F to be the distribution function of {εi}; we then define non-decreasing
functions G1 and G2 on [0, 2γ0] by

G1(t) = 1− F (γ0 − t)(5)

G2(t) = F (−γ0 + t).(6)

We will assume that both G1 and G2 are regularly varying at 0 with the same
parameter of regular variation α and that G1 and G2 are “balanced” in a neigh-
bourhood of 0. More precisely, for each x > 0,

lim
t↓0

Gk(tx)

Gk(t)
= xα for k = 1, 2

and

lim
t↓0

G1(t)

G1(t) +G2(t)
= κ

where 0 < κ < 1. Thus for some sequence of constants {an} with an → ∞ and
some α > 0, we have

lim
n→∞nG1(t/an) = κtα(7)

lim
n→∞nG2(t/an) = (1− κ)tα(8)
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where 0 < κ < 1. The parameter α describes the concentration of probability mass
close to the endpoints ±γ0; this concentration increases as α becomes smaller.

The type of convergence as well as the rate of convergence are determined by
α. If α > 2, we can approximate the left hand side of (4) by a linear function
and obtain asymptotic normality using the classical argument. On the other hand,
when α < 2, the limiting distribution is determined by the the errors lying close to
the endpoints ±γ0; in particular, given the conditions (5) – (8) on the distribution
F of {εi}, it is straightforward to derive a point process convergence result for the
number of {εi} lying within O(a−1

n ) of ±γ0.
We will make the following assumptions about the errors {εi} and the design

{xi}:
(A1) {εi} are i.i.d. random variables on [−γ0, γ0] with distribution function F where

G1 and G2 defined in (5) and (6) satisfy (7) and (8) for some sequence {an},
α > 0, and 0 < κ < 1.

(A2) There exists a probability measure μ on Rp such that for each set B with
μ(∂B) = 0,

lim
n→∞

1

n

n∑
i=1

I(xi ∈ B) = μ(B).

Moreover, the mass of μ is not concentrated on a lower dimensional subspace
of Rp.

Under conditions (A1) and (A2), it is easy to verify that the point process

Mn(A×B) =
n∑

i=1

I {an(γ0 − εi) ∈ A,−xi ∈ B}(9)

+

n∑
i=1

I {an(γ0 + εi) ∈ A,xi ∈ B}

converges in distribution with respect to the vague topology on measures (Kallen-
berg, [10]) to a Poisson process M whose mean measure is given by

(10) E[M(A×B)] =

{
α

∫
A

tα−1 dt

}
μ̄(B)

where

(11) μ̄(B) = κμ(−B) + (1− κ)μ(B).

We can represent the points of the limiting Poisson process M in terms of two
independent sequences of i.i.d. random variables {Ei} and {Xi} where {Ei} are
exponential with mean 1 and {Xi} have the measure μ̄ defined in (11). For a given
value of α, we then define

(12) Γi = E1 + · · ·+ Ei for i ≥ 1.

The points of the Poisson process M in (9) (with mean measure given in (10)) are

then represented by {(Γ1/α
i ,Xi) : i ≥ 1}.

In the case where the support of {xi} (and of the limiting measure μ) is un-
bounded, we need to make some additional assumptions; note that (A3) and (A4)
below hold trivially (given (A1) and (A2)) if {xi} are bounded.
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(A3) G1 and G2 defined in (5) and (6) satisfy

n {G1(t/an) +G2(t/an)} = tα{1 + rn(t)}
where for any u,

max
1≤i≤n

|rn(xT
i u)| → 0.

(A4) For the measure μ defined in (A2),

1

n

n∑
i=1

‖xi‖α →
∫

‖x‖α μ(dx) < ∞.

Moreover,
1

n
max
1≤i≤n

‖xi‖α → 0.

As stated above, β̂n maximizes a concave objective function or, equivalently,
minimizes a convex objective function. The key tool that will be used in deriving the
limiting distribution of β̂n is the notion of epi-convergence in distribution (Geyer,
[9]; Pflug, [18]; Knight, [12]; Chernozhukov, [7]; Chernozhukov and Hong, [8]) and
point process convergence for extreme values (Kallenberg, [10]; Leadbetter et al,
[13]).

3. Asymptotics

It is instructive to first consider the asymptotic behaviour of the membership set
as a random set. Define a centered and rescaled version of Sn defined in (2):

S ′
n = an(Sn − β)

=

n⋂
i=1

{
u : an(εi − γ0) ≤ uTxi ≤ an(εi + γ0)

}
.(13)

Note that S ′
n is closely related to the point process Mn defined in (9).

The following result describes the asymptotic behaviour of {S ′
n} as a sequence of

random closed sets using the topology induced by Painlevé–Kuratowski convergence
(Molchanov, [17]). Since we have a finite dimensional space, it follows that the
Painlevé–Kuratowski topology coincides with the Fell (hit or miss) topology (Beer,

[6]); thus S ′
n

d−→ S ′ if

P (S ′
n ∩K 
= ∅) → P (S ′ ∩K 
= ∅)

for all compact sets K such that

P (S ′ ∩K 
= ∅) = P (S ′ ∩ intK 
= ∅) .
It turns out that the convexity of the random sets {S ′

n} provides a very simple
sufficient condition for checking convergence in distribution.

Lemma 3.1. Assume the model (1) and conditions (A1) – (A4). If S ′
n is defined

as in (13) then

(14) S ′
n

d−→ S ′ =
∞⋂
i=1

{
u : uTXi ≤ Γ

1/α
i

}
where {Γi}, {Xi} are independent sequences with Γi defined in (12) and {Xi} i.i.d.
with distribution μ̄ defined in (11).
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Proof. First, note that S ′ has an open interior with probability 1. To see this, define

S ′′ =
∞⋂
i=1

{
u : ‖u‖‖Xi‖ ≤ Γ

1/α
i

}
=

{
u : ‖u‖ ≤ min

i

Γ
1/α
i

‖Xi‖

}

and note that S ′′ ⊂ S ′. Using the properties of the Poisson process M whose mean
measure is defined in (10), we have

P

(
min
i

Γ
1/α
i

‖Xi‖ > r

)
= exp

(
−rα

∫
‖x‖α μ̄(dx)

)
for r ≥ 0. Thus S ′′ contains an open set with probability 1 and therefore so must
S ′. The fact that S ′ contains an open set makes proof of convergence in distribution
very simple; we simply need to show that

P (u1 ∈ S ′
n, · · · ,uk ∈ S ′

n) → P (u1 ∈ S ′, · · · ,uk ∈ S ′)

for any u1, · · · ,uk. Defining x+ = xI(x > 0) and x− = −xI(x < 0), we then have

P (u1 ∈ S ′
n, · · · ,uk ∈ S ′

n)

=

n∏
i=1

{
1−G2

(
a−1
n max

1≤j≤k
(uT

j xi)+

)
−G1

(
a−1
n min

1≤j≤k
(uT

j xi)−

)}

→ exp

[
−
∫ {

(1− κ)

(
max
1≤j≤k

uT
j x

)α

+

+ κ

(
min

1≤j≤k
uT
j x

)α

−

}
μ(dx)

]

= exp

{
−
∫ (

max
1≤j≤k

uT
j x

)α

+

μ̄(dx)

}
= P (u1 ∈ S ′, · · · ,uk ∈ S ′) ,

which completes the proof.

Note that S ′ is bounded with probability 1; this follows since for any u 
= 0,
P (XT

i u > 0) ≥ min(κ, 1 − κ) > 0, hence P (XT
i u > 0 infinitely often) = 1. Thus

with probability 1, for each u ∈ S ′ there exists j such that such that 0 < XT
j u ≤ Γj

and so for t sufficiently large tu 
∈ S ′.
Lemma 3.1 says that points in the membership set lie within Op(a

−1
n ) of β and

therefore the analytic center estimator β̂n (or indeed any estimator based on the

membership set) must satisfy β̂n − β = Op(a
−1
n ). Since an = n1/αL(n) it follows

that we have a faster than Op(n
−1/2) convergence rate when α < 2. On the other

hand, if α > 2 then n1/2/an → ∞; fortunately, in these cases, it is typically possible
to achieve Op(n

−1/2) convergence.

Theorem 3.1. Assume the model (1) and conditions (A1) – (A4) for some α ≥ 2
and assume that

E[(γ0 − εi)
−1] = E[(γ0 + εi)

−1].

Suppose that β̂n maximizes (3).
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(i) If α > 2 then
√
n(β̂n − β)

d−→ N (0, σ2C−1) where

σ2 = Var[εi/(γ
2
0 − ε2i )]

/{
E[(γ2

0 + ε2i )/(γ
2
0 − ε2i )

2]
}2

and C =

∫
xxT μ(dx).

(ii) If α = 2 then

b
(1)
n

b
(2)
n

(β̂n − β)
d−→ N (0, C−1)

where {b(1)n } satisfies

1

b
(1)
n

n∑
i=1

γ2
0 + ε2i

(γ2
0 − ε2i )

2

p−→ 1

and {b(2)n } satisfies

1

b
(2)
n

n∑
i=1

εi
γ2
0 − ε2i

xi
d−→ N (0, C−1).

The proof of Theorem 3.1 is standard and will not be given here. Note that
conditions (A2) – (A4) are much stronger than necessary for Theorem 3.1 to hold.
For example, we need only assume that

1

n

n∑
i=1

xix
T
i → C

and
1

n
max
1≤i≤n

‖xi‖2 → 0

for asymptotic normality to hold. More generally, Theorem 3.1 also holds in the
case where the bounds ±γ0 are overly conservative in the sense that for some ε > 0,

P (−γ0 + ε ≤ εi ≤ γ0 − ε) = 1.

In this case, if the model (1) contains an intercept (that is, one element of xi is
always 1) then we can rewrite the model (1) as

Yi = θ + xT
i β + (εi − θ)

= xT
i β

′ + ε′i (i = 1, · · · , n)

where ε′i = εi−θ. Then there exists θ such that {ε′i} satisfies the moment conditions
in Theorem 3.1 and so the proof of Theorem 3.1 will go through as before.

When α < 2, the limiting behaviour of β̂n is highly dependent on the limiting
Poisson process M (with mean measure given in by (10)). In particular, the se-
quences of random variables {(γ0 − εi)

−1} and {(γ0 + εi)
−1} lie in the domain of

a stable law with index α and so it is not surprising to have non-Gaussian limiting
distributions.

Theorem 3.2. Assume the model (1) and conditions (A1) – (A4) for some 0 <

α < 2 and assume that β̂n maximizes (3). Define {Γi} and {Xi} as in Lemma 3.1
and S ′ as in (14).
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(a) If α < 1 then an(β̂n − β)
d−→ U where U maximizes

∞∑
i=1

ln

(
1− XT

i u

Γ
1/α
i

)

over u ∈ S ′.
(b) If α = 1 and

na−1
n E

[
εi

γ2
0 − ε2i

I

(∣∣∣∣ εi
γ2
0 − ε2i

∣∣∣∣ ≤ an

)]
→ 0

then an(β̂n − β)
d−→ U where U maximizes

∞∑
i=1




(
XT

i u

Γ
1/α
i

)
−

∞∑
i=1

{
XT

i u

Γ
1/α
i

− E

(
XT

i u

Γ
1/α
i

I(Γ
1/α
i ≥ 1)

)}

over u ∈ S ′ where 
(x) = ln(1− x) + x.
(c) If 1 < α < 2 and

E[(γ0 − εi)
−1] = E[(γ0 + εi)

−1]

then an(β̂n − β)
d−→ U where U maximizes

∞∑
i=1




(
XT

i u

Γ
1/α
i

)
−

∞∑
i=1

{
XT

i u

Γ
1/α
i

− E

(
XT

i u

Γ
1/α
i

)}

over u ∈ S ′ where 
(x) = ln(1− x) + x.

Proof. an(β̂n − β) maximizes the concave function

Zn(u) =

n∑
i=1

{
ln

(
1 +

xT
i u

an(γ0 − εi)

)
+ ln

(
1− xT

i u

an(γ0 + εi)

)}
subject to u ∈ S ′

n defined in (13). Since the limiting objective function is finite on
an open set (since S ′ contains an open set with probability 1), it suffices to show
finite dimensional weak convergence of Zn. Note that we can write (for u ∈ S ′

n),

Zn(u) =

∫
ln

(
1− xTu

w

)
Mn(dw × dx)

where Mn is defined in (9). For α < 1, we approximate ln(1+xTu/w) by a sequence
of bounded functions {gm(w,x;u)}. Following Lepage et al. [14], we have∫

gm(w,x;u)
d−→

∞∑
i=1

gm(Γ
1/α
i ,Xi;u) as n → ∞

→
∞∑
i=1

ln(1−XT
i u/Γ

1/α
i ) with probability 1 as m → ∞

and

lim
m→∞ lim sup

n→∞
P

[∣∣∣∣∫ {ln(1 + xTu/w)− gm(w,x;u)
}
Mn(dw × dx)

∣∣∣∣ > ε

]
= 0.
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For 1 ≤ α < 2, a similar argument works by writing ln(1 + xTu/w) = xTu/w +

(xTu/w) and applying the argument used for α < 1 to∫


(xTu/w)Mn(dw × dx) =
n∑

i=1

{



(
− xT

i u

an(γ0 − εi)

)
+ 


(
xT
i u

an(γ0 + εi)

)}
.

The result now follows by noting that, in each case, the limiting objective function
Z has a unique maximizer on the set S ′; to see this, note that Z is strictly concave
on S ′ and that as u → ∂S ′, Z(u) → −∞.

In Theorem 3.2, note that no moment condition is needed when α < 1. In this
case, the limit of an(β̂n − β), U , can be interpreted as the analytic center of the
random set S ′, and thus

P (U ∈ intS ′) = 1.

In contrast, we require a moment condition for 1 ≤ α < 2 (such as

(15) E[(γ0 − εi)
−1] = E[(γ0 + εi)

−1]

for α > 1) in order to have P (U ∈ intS ′) = 1. What happens if the moment
condition, for example (3.3), fails? Theorem 3.3 below states that the limiting dis-

tribution of an(β̂n − β) is concentrated the vertices of the limiting membership
set S ′.

Theorem 3.3. Assume the model (1) and conditions (A1) – (A4) for some α ≥ 1

and assume that β̂n maximizes (3). Define S ′ as in (14) with {Γi} and {Xi} as in
Lemma 3.1. If for some (non-negative) sequence {bn} (bn = n for α > 1)

b−1
n

n∑
i=1

{
(γ0 − εi)

−1 − (γ0 + εi)
−1
} p−→ ω 
= 0

then an(β̂n − β)
d−→ U where U maximizes

ω

∫
uTxμ(dx) subject to u ∈ S ′.

Proof. an(β̂n − β) maximizes

Zn(u) =
an
bn

n∑
i=1

{
ln

(
1 +

xT
i u

an(γ0 − εi)

)
+ ln

(
1− xT

i u

an(γ0 + εi)

)}
for u ∈ S ′

n. Defining 
(x) = ln(1− x) + x as before, we have (for u ∈ S ′
n),

Zn(u) =
1

bn

n∑
i=1

xT
i u
{
(γ0 − εi)

−1 − (γ0 + εi)
−1
}

+
an
bn

n∑
i=1

{



(
− xT

i u

an(γ0 − εi)

)
+ 


(
xT
i u

an(γ0 + εi)

)}

=
1

bn

n∑
i=1

xT
i u
{
(γ0 − εi)

−1 − (γ0 + εi)
−1
}
+ op(1)

p−→ ω

∫
uTxμ(dx)



Analytic center estimator 131

noting that an = o(bn) and applying the results of Adler and Rosalsky [1]. Since
S ′ is bounded, the linear function ω

∫
uTxμ(dx) has a finite maximum on S ′.

Uniqueness follows from the assumption that the measure μ puts zero mass on
lower dimensional subsets.

For α > 1, ω = E[(γ0 − εi)
−1 − (γ0 + εi)

−1] while for α = 1, ω is typically first
moment of an appropriately truncated version of (γ0−εi)

−1−(γ0+εi)
−1 where the

truncation depends on the slowly varying component of the distribution function
F near ±γ0. Note that the limiting distribution of an(β̂n − β) depends on ω only
via its sign. Like κ, ω is a measure of the relative weight of the distribution F near
its endpoints ±γ0. However, they are not necessarily related in the sense that for
a given value of κ, ω can be positive or negative; for example, κ > 1/2 does not
imply that ω > 0. The following implication of Theorem 3.3 is interesting: Even
though β̂n lies in the interior of Sn (and thus an(β̂n−β) lies in the interior of S ′

n),
the limiting distribution is concentrated on the boundary of S ′.

It is also interesting to compare the limiting distribution of the analytic cen-
ter estimator to those of other estimator, for example, the least squares estimator
constrained to the membership set and the Chebyshev center estimator. The con-
strained least squares estimator β̃n minimizes

n∑
i=1

(Yi − xT
i φ)

2

subject to φ ∈ Sn. The asymptotics of β̃n depend on whether or not E(εi) =

0. If E(εi) 
= 0 then an(β̃n − β) converges in distribution to the maximizer of
E(εi)

∫
xTuμ(dx) subject to u ∈ S ′ similar to the result of Theorem 3.3 with ω

defined differently; note that this result holds for any α > 0. Moreover, for α ≥ 1,
the analytic center estimator β̂n and the constrained least squares estimator β̃n

have the same limiting distribution if both ω and E(εi) are non-zero and have the
same sign. On the other hand, when E(εi) = 0, the type of limiting distribution

depends on α, specifically whether or not α < 2. If α ≥ 2 then β̃n has the same
limiting distribution as the unconstrained least squares estimator; for example, for
α > 2, we have √

n(β̃n − β)
d−→ N (0,Var(εi)C

−1)

where C is defined as in Theorem 3.1. For α < 2, an(β̃n − β) converges in distri-
bution to the maximizer of W Tu subject to u ∈ S ′ where W ∼ N (0, C) and W
is independent of the Poisson process defining S ′.

Similarly, we can derive the asymptotics for the Chebyshev center estimator,
defined as the center of largest radius ball (in the Lr norm) contained within Sn;

β̃n maximizes δ subject to the constraints

xT
i φ+ ‖xi‖qδ ≤ Yi + γ0 for i = 1, · · · , n

−xT
i φ+ ‖xi‖qδ ≤ γ0 − Yi for i = 1, · · · , n

where q is such that r−1+q−1 = 1. If (β̃n,Δn) is the solution of this linear program

then (an(β̃n − β), anΔn)
d−→ (U ,Δ0) where the limit maximizes δ subject to

uTXi + δ‖Xi‖q ≤ Γ
1/α
i for i ≥ 1.

Note that P (U ∈ intS ′) = 1 without any moment conditions. The downside of the
Chebyshev center estimator is that it is somewhat computationally more complex
than the analytic center estimator.
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